Abstract
甲状腺相关眼病(thyroid-associated ophthalmopathy,TAO)是一种多因素介导的自身免疫性眼眶病,居成人眼眶疾病发病率首位。其临床表现复杂,病程迁延,严重影响患者的身心健康。TAO的发病机制至今尚未完全明确,治疗上缺乏特异性,对TAO发病机制的深入研究有利于寻找有效的治疗方法。近年的研究表明TAO患者中存在肠道菌群紊乱,TAO的危险因素可促进肠道菌群紊乱。紊乱的肠道菌群可以通过影响T细胞分化,模拟自身抗原和影响宿主非编码RNA表达参与TAO的发生和发展。调节肠道菌群对于TAO有治疗作用,是一种潜在的有前途的治疗方法。
Keywords: 肠道菌群, 甲状腺相关眼病, T细胞, 促甲状腺激素受体
Abstract
Thyroid-associated ophthalmopathy (TAO) is a multifactorial-mediated autoimmune orbital disease with the highest incidence of orbital disease in adults. Due to the complex clinical manifestations and prolonged course,TAO seriously affect the physical and mental health of patients.The pathogenesis of TAO has not been fully elucidated and the treatment lacks specificity. Therefore, in-depth research on the pathogenesis of TAO is to find effective treatments. In recent years, studies have suggested that there is gut microbiota disorder in TAO, and the risk factors of TAO can promote gut microbiota disorder. Disordered gut microbiota can participate in the occurrence and development of TAO via influencing T cell differentiation, mimicking autoantigens, and influencing host non-coding RNA expression. Modulating the gut microbiota also has therapeutic effects on TAO and is a promising therapeutic approach.
Keywords: gut microbiota, thyroid-associated ophthalmopathy, T cells, thyrotropin receptor
甲状腺相关眼病(thyroid-associated ophthalmo-pathy,TAO)是以眼眶糖胺聚糖沉积、组织纤维化、脂肪增生为主要病理改变的自身免疫性疾病,临床表现为眼睛干涩、畏光、流泪、疼痛、异物感、视力下降、复视、眼球突出、结膜充血水肿、眼睑退缩及运动障碍、暴露性角膜炎和视神经受累等,严重影响患者的生活质量。目前,TAO发病的危险因素较为清晰,但确切的发病机制仍未完全明确。肠道菌群作为人体中最重要的微生态系统,已被证实与类风湿关节炎[1]、系统性红斑狼疮[2]、强直性脊柱炎[3]等多种自身免疫性疾病的发病机制相关。近年来,越来越多的研究[4-7]表明肠道菌群与TAO密切相关。本文就肠道菌群和TAO的相关性进行综述,探讨调节肠道菌群对TAO的治疗作用。
1. 肠道菌群的概述
肠道菌群是指寄居在肠道内数量庞大、种类繁多的微生物群,由细菌、古细菌、真菌、病毒和原生生物组成。目前发现,成年人的肠道内约有1×1014个细菌,携带的基因是人类基因组的100多倍[8]。肠道菌群不仅在胃肠稳态的维持、营养的吸收和维生素的合成等方面发挥着举足轻重的作用,而且还对宿主免疫系统的正常发育和功能产生巨大的影响。肠道菌群受遗传、年龄、性别、饮食、环境等诸多因素的影响。正常情况下,肠道菌群的丰度和多样性相对稳定,菌群结构处于动态平衡,与肠道黏膜共同构成免疫屏障,抵御病原体的入侵;而当肠道菌群发生紊乱时,可通过影响T细胞分化,模拟自身抗原和影响宿主非编码RNA表达等途径参与TAO的发生和发展。
2. TAO的发病机制
TAO的发病机制至今尚未完全明确,目前多认为与免疫、遗传、环境等因素相关。机体特异性免疫反应在TAO发病中至关重要,其中细胞免疫的作用尤为关键。T细胞可分化为辅助性T(helper T,Th)1、Th2、Th17细胞和调节性T(regulatory T cell,Treg)细胞等亚型。Th17细胞分泌的白细胞介素(interleukin,IL)-17A具有很强的促炎和促纤维化作用,对TAO的发生和发展起促进作用[9];相反,Treg细胞可通过分泌IL-35、IL-10等细胞因子发挥抗炎作用,阻止宿主发生自身免疫功能紊乱。因此,Th17细胞与Treg细胞的失衡与TAO的发生和发展密切相关[10]。此外,活化的T细胞通过共刺激信号和分泌细胞因子激活B细胞,使其分化为浆细胞并产生抗体[11]。参与TAO发病的一个关键抗体是促甲状腺激素受体抗体(thyroid stimulating hormone receptor antibody,TRAb),其通过与眼眶成纤维细胞表达的促甲状腺激素受体(thyrotropin receptor,TSHR)结合启动眼眶组织重塑。此外,遗传和环境因素在TAO的发病中也起着重要作用。作为表观遗传学主要机制之一的非编码RNA,在不改变DNA序列的前提下,通过激活各种炎症反应途径和调节参与纤维化和脂肪生成的不同信号分子表达,促进炎症级联反应和眼眶成纤维细胞的活化,最终导致眼眶组织的显著扩张、纤维化及炎症浸润[12]。吸烟、缺硒等是TAO的发生与发展重要环境因素[13]。
3. 肠道菌群紊乱与TAO
TAO患者及小鼠模型中存在肠道菌群紊乱的现象。研究[14]发现,与健康对照组相比,TAO患者的肠道菌群多样性显著降低,菌群结构发生明显的变化,主要表现为厚壁菌门/拟杆菌门比值明显下降,在属水平上普雷沃菌属占比显著增加。进一步对TAO患者、无眼征的格雷夫斯病(Graves disease,GD)患者以及健康人群的肠道菌群进行比较分析,发现TAO患者的罕见小球菌属和嗜胆菌属在肠道菌群中的占比显著高于GD患者,而布劳特氏菌属、丁酸弧菌属、多尔氏菌属、丁酸球菌属在GD患者中更为丰富,并且使用随机森林分析可以区分TAO患者、GD患者以及健康人群,准确率达70%~80%[5]。这表明肠道菌群的紊乱与TAO相关,而不是仅与甲状腺自身免疫相关。在TAO小鼠模型中也观察到肠道菌群的紊乱。厚壁菌门与拟杆菌门是人类和小鼠微生物群的主要组成部分,它们的占比通常被作为微生态失调的标志。国内的学者发现TAO小鼠拟杆菌门在肠道菌群中的占比增加[6],然而,国外的一项研究[15]发现在TAO小鼠中,厚壁菌门在肠道菌群中的占比增加,拟杆菌门的占比降低。这提示在肠道菌群的相关研究中应考虑区域差异。不论是TAO小鼠模型还是TAO患者,这些发现均表明TAO与肠道菌群紊乱相关。
研究发现一些TAO的危险因素可引起肠道菌群的紊乱。首先,吸烟作为一个独立的风险因素与眼部疾病密切相关,包括TAO、老年性黄斑变性、葡萄膜炎等[16]。香烟烟雾中的有害成分通过反复刺激损伤肠道上皮细胞,导致抗菌肽生成减少,杀菌能力降低[17],同时,这些有害成分也会直接改变肠道微环境,两者协同诱导肠道菌群失调。吸烟可显著降低肠道中乙酸、丙酸和丁酸等有机酸的浓度[18],从而提高肠道内pH值,这可能有益于某些细菌的生长。还有研究发现,吸烟会导致肠道菌群多样性降低和普雷沃菌属的丰度明显增加[19],这恰好与TAO患者的肠道菌群改变相同[14]。
其次,硒是人体必需的微量元素,在维持机体免疫系统等的稳态中发挥着重要作用。研究表明,肠道菌群会影响宿主硒的生物利用度和硒蛋白质组的表达。如肠道乳酸菌可以将亚硒酸钠转化为硒代半胱氨酸和硒代蛋氨酸,从而提高机体对硒的摄取利用率[20]。同时,肠道菌群的构成也会受到硒水平的影响。硒缺乏会导致机体免疫力下降,不需要硒的细菌得以存活,从而诱发感染[21];适当补充硒可以优化肠道菌群,防止肠道功能障碍[22]。
4. 肠道菌群在TAO发病中的作用机制
4.1. 通过诱导T细胞分化参与TAO
近年研究发现,肠道菌群及其代谢物对人T细胞的分化具有重要作用,并在一定程度上参与TAO的进展。分节丝状菌是Th17细胞发育、活化的重要影响因素,其在肠道内的定植水平与Th17细胞数量息息相关[23]。分节丝状菌可通过菌群黏附触发的内吞作用将自身菌壁蛋白从肠上皮细胞转运至固有层中,刺激肠上皮细胞产生活性氧、IL-1β、血清淀粉样蛋白A1、血清淀粉样蛋白A2,最终驱动Th17细胞极化[24]。此外,普雷沃菌也被确定是诱导Th17细胞产生的特定细菌,主要通过骨髓来源树突状细胞上的Toll样受体2发出信号来诱导Th17极化细胞因子的产生,包括IL-23和IL-1[25],同时也可以通过刺激上皮细胞产生IL-8、IL-6和CC趋化因子配体20(C-C motif chemokine ligand 20,CCL20),从而促进肠黏膜Th17细胞介导的免疫反应[26]。研究[27]表明,在人体小肠和结肠固有层中,脆弱拟杆菌、梭状芽孢杆菌等都能够诱导Treg细胞的形成。
肠道菌群还可以通过分解机体所摄入的食物产生乙酸、丙酸、丁酸等短链脂肪酸(short-chain fatty acid,SCFA)。其中以丁酸为代表的SCFA是促进CD4+ T细胞分化的主要代谢产物[28]。肠道内的SCFA通过与初始CD4+ T细胞表面的G蛋白偶联受体(G-protein coupled receptor,GPR)43和树突状细胞表面的GPR109A结合,促进IL-10、IL-18以及视黄酸脱氢酶分泌,诱导T细胞向Treg细胞及其他分泌IL-10的Th细胞分化,从而调节机体免疫功能,抑制炎症的发生[29-30]。此外,SCFA还可通过加强叉头状转录因子P3(forkhead box P3,FOXP3)基因启动子和保守的非编码序列区域中的组蛋白H3乙酰化,从而上调Treg细胞的数量并增强其功能[31-32]。Shi等[14]发现TAO患者肠道内普雷沃菌属占比显著升高,而布劳特氏菌属、丁酸弧菌属等产丁酸菌属占比明显降低。由此可知,TAO患者肠道菌群存在异常改变,使相关的代谢产物也随之改变,诱导初始T淋巴细胞异常活化,对Th17细胞和/或Treg细胞的数量及其占比产生影响,从而导致一系列眼眶炎症反应,促使TAO的进展。
4.2. 通过模拟自身抗原参与TAO
基于肠道微生物及其代谢产物与自身抗原部分结构的相似性,肠道菌群可能通过分子模拟的方式诱导机体免疫应答,从而参与TAO的发生和发展。分子模拟致病的最早证据源于自身免疫性疾病风湿热[33],并且分子模拟被认为是诱发类风湿关节炎、系统性红斑狼疮等多种自身免疫性疾病的方式之一[34-35]。研究[36]发现,耶尔森菌与TSHR的胞外结构域有共同的抗原表位,进一步分析发现TSHR的氨基酸残基第22~272、186~330、319~363和684~749的抗原表位与耶尔森菌的YopM、Ysp、外切聚半乳糖醛酸酶和SpyA具有高度的同源性。并且,抗耶尔森菌的抗体与TSHR的抗原表位有很强的亲和力[37]。此外,Figura等[38]发现TSHR与9种幽门螺杆菌蛋白部分同源。Masetti等[15]研究发现肠道微生物在TSHR诱导的TAO小鼠模型的临床异质性方面起重要的调节作用。Shi等[14, 39]的研究表明,在TAO患者中,血清TRAb水平与琥珀酸弧菌科、普雷沃菌科及罕见小球菌属在肠道菌群中的占比呈正相关,与狄氏副拟杆菌的占比呈负相关。TRAb作为针对TSHR的特异性抗体,可与甲状腺细胞膜表面或眼眶内高表达的TSHR结合,激活一系列信号,导致局部炎症反应,促进TAO的发生和发展。因此,肠道菌群可能通过分子模拟触发针对自身抗原TSHR的免疫应答,从而参与TAO的发生和发展。
4.3. 通过影响宿主非编码RNA表达参与TAO
非编码RNA(non-coding RNA,ncRNA)是一类缺乏编码蛋白质能力的RNA,包括微RNA(microRNA,miRNA)、长链非编码RNA(long noncoding RNA,lncRNA)和环状RNA(circular RNA,circRNA),它们在自身免疫性甲状腺疾病的发病过程中扮演着重要的角色[40]。肠道菌群可通过影响ncRNA来调节宿主基因的表达。Peck等[41]研究表明,在共生菌的作用下,肠道上皮细胞中有19个miRNA差异表达。肠道共生菌可通过Toll样受体2/4信号途径诱导肠上皮细胞miRNA的转录[42]。Dempsey等[43]首次证明,肠道微生物群不仅在肠道局部,而且能在其他代谢器官中远程调节lncRNA的表达。Gao等[44]发现小鼠的肠道菌群代谢产生的丁酸盐可通过抑制组蛋白去乙酰化途径上调lncLy6C的表达,然后经lncLy6C/CCAAT增强子结合蛋白β(CCAAT enhancer-binding proteinβ,C/EBPβ)/核受体亚家族4A组成员1(nuclear receptor subfamily 4 group A member 1,NR4A1)轴实现Ly6Chigh至Ly6Cint/neg的转化,从而促进巨噬细胞的分化。Zhu等[45]发现肠道微生物群以IL-11依赖性方式抑制mmu_circ_0000730表达以调节相应miRNA的水平。由此推测肠道菌群及其代谢物可能通过调控ncRNA的表达,从而影响TAO的进程。然而,迄今为止关于肠道菌群与TAO的研究相对较少,肠道菌群和ncRNA作为人体中数量极其庞大又十分复杂的2个体系,相互之间的作用复杂,有必要投入更多的精力进行研究。
5. 调节肠道菌群与防治TAO
调节肠道菌群紊乱的方法主要包括饮食干预、补充益生菌以及粪便移植,它们对TAO均具有一定的预防与治疗作用。
5.1. 饮食干预
饮食结构是塑造肠道微生物组成的主要因素,特定的食物和饮食方式会影响肠道中不同类型细菌的丰度及菌群多样性。TAO患者均存在菌群多样性降低,可以通过增加膳食纤维的摄入量来恢复微生物群的多样性[46]。硒是饮食中最常见的微量元素之一,研究[47-48]发现饮食中的硒可增加成年C57BL/6J雄性小鼠的肠道菌群多样性,并且补充硒能改善TAO患者的生活质量,减轻患者眼部症状,并延缓疾病进程,这可能与硒对肠道菌群的调节作用有关。然而,饮食干预肠道菌群的复杂性以及短期的外界干预不足以显著改变其固有结构,导致很难准确判断需要增加或减少哪些具体的成分才能使患者持续受益,因此,仍需要对饮食干预用于TAO的辅助治疗开展大量的研究。
5.2. 益生菌
近年来,益生菌疗法成为一种流行的干预方法,已被证明对缓解类风湿关节炎、系统性红斑狼疮等自身免疫病安全有效[34-35]。在治疗甲状腺疾病方面,已有研究提示补充益生菌可能有更好的效果。如,益生菌长双歧杆菌联合甲巯咪唑治疗能更快地改善GD患者的甲状腺功能并降低TRAb的水平[49]。益生菌群Lab4是由嗜酸乳杆菌(CUL60)、嗜酸乳杆菌(CUL21)、乳双歧杆菌(CUL34)和两歧双歧杆菌(CUL20)组成。研究[50]发现,补充Lab4可使正常小鼠眼眶Treg细胞数量增加,但会加重TSHR诱导的TAO模型小鼠的临床表型,这可能与Lab4组成相关,尽管两歧双歧杆菌缺乏可能与TSHR发生交叉反应的蛋白抗原,但不排除其他菌株与TSHR具有同源性,存在潜在的交叉反应[51]。因此,在未来的研究需要优化益生菌的配方。
5.3. 粪便移植
粪便移植是一种干预肠道菌群的特殊方法,通过将健康供体的粪菌转移到受体的微生态系统中,从而增加受体肠道微生物群的丰度和多样性,建立一个全新的菌群平衡体,达到预防或治疗疾病的目的。目前,粪便移植已被证明对艰难梭菌感染引起的难治性结肠炎有显著的治疗效果,甚至可达到治愈的效果[52]。令人鼓舞的是,粪便移植正逐渐被用于治疗越来越多的疾病。研究[50]发现,来源于重度TAO患者的粪便移植会加重TAO模型小鼠的临床表型,那么来源于健康人的粪便移植是否可对TAO产生治疗作用,这可能是未来研究的重要方向。
6. 结 语
TAO是成人最常见的眼眶病之一,严重影响患者的生活质量。目前TAO的具体机制尚未完全明确,临床上针对TAO多采用糖皮质激素作为一线治疗,并不能从根本达到预防和治疗的效果,且仍有部分TAO患者对糖皮质激素反应差,并伴随较多的不良反应。近年来多项研究[5-6, 14-15]表明TAO患者及小鼠模型的肠道菌群结构和多样性发生明显改变,已发生改变的肠道菌群可能通过诱导T细胞分化,与自身抗原发生交叉反应,以及影响宿主ncRNA的表达等途径促进TAO的发生和发展。针对菌群紊乱的治疗方法主要包括饮食干预、补充益生菌以及粪便移植,这些方法治疗TAO虽处于起步过程阶段,但均显示出良好的治疗作用。未来的研究应注意留存初诊TAO患者的样本,进行肠道菌群分析,找出TAO患者的差异性菌群,积极开展临床随机对照试验和基础实验,以明确调节差异性菌群对于TAO的治疗作用。
基金资助
河南省中医药传承与创新人才工程(仲景工程)中医药拔尖人才(CZ0237-02)。
This work was supported by the Henan Traditional Chinese Medicine Inheritance and Innovation Talent Project (Zhongjing Project) Top Talents of Traditional Chinese Medicine, China (CZ0237-02).
利益冲突声明
作者声称无任何利益冲突。
作者贡献
赵静晓 文献收集与整理,论文撰写与修改;王萍、蒋敏敏 论文修改与审校;燕树勋 论文审校。所有作者阅读并同意最终的文本。
原文网址
http://xbyxb.csu.edu.cn/xbwk/fileup/PDF/2023111753.pdf
参考文献
- 1. du Teil Espina M, Gabarrini G, Harmsen HJM, et al. Talk to your gut: the oral-gut microbiome axis and its immunomodulatory role in the etiology of rheumatoid arthritis[J]. FEMS Microbiol Rev, 2019, 43(1): 1-18. 10.1093/femsre/fuy035. [DOI] [PubMed] [Google Scholar]
- 2. Mohd R, Chin SF, Shaharir SS, et al. Involvement of gut microbiota in SLE and lupus nephritis[J]. Biomedicines, 2023, 11(3): 653. 10.3390/biomedicines11030653. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3. Song ZY, Yuan D, Zhang SX. Role of the microbiome and its metabolites in ankylosing spondylitis[J]. Front Immunol, 2022, 13: 1010572. 10.3389/fimmu.2022.1010572. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4. Covelli D, Ludgate M. The thyroid, the eyes and the gut: a possible connection[J]. J Endocrinol Invest, 2017, 40(6): 567-576. 10.1007/s40618-016-0594-6. [DOI] [PubMed] [Google Scholar]
- 5. Shi TT, Xin Z, Hua L, et al. Comparative assessment of gut microbial composition and function in patients with Graves’ disease and Graves’ orbitopathy[J]. J Endocrinol Invest, 2021, 44(2): 297-310. 10.1007/s40618-020-01298-2. [DOI] [PubMed] [Google Scholar]
- 6. Li Y, Luo B, Tong B, et al. The role and molecular mechanism of gut microbiota in Graves’ orbitopathy[J]. J Endocrinol Invest, 2023, 46(2): 305-317. 10.1007/s40618-022-01902-7. [DOI] [PubMed] [Google Scholar]
- 7. Zhang Q, Tong B, Xie Z, et al. Changes in the gut microbiota of patients with Graves’ orbitopathy according to severity grade[J]. Clin Exp Ophthalmol, 2023, 51(8): 808-821. 10.1111/ceo.14291. [DOI] [PubMed] [Google Scholar]
- 8. Zhu B, Wang X, Li L. Human gut microbiome: The second genome of human body[J]. Protein Cell, 2010, 1(8): 718-725. 10.1007/s13238-010-0093-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9. Fang S, Huang Y, Wang S, et al. IL-17A exacerbates fibrosis by promoting the proinflammatory and profibrotic function of orbital fibroblasts in TAO[J]. J Clin Endocrinol Metab, 2016, 101(8): 2955-2965. 10.1210/jc.2016-1882. [DOI] [PubMed] [Google Scholar]
- 10. 王萍, 符宇, 蒋敏敏, 等. Th17和Treg细胞及其平衡对甲状腺相关眼病的影响[J]. 国际眼科杂志, 2022, 22(7): 1137-1142. [Google Scholar]; WANG Ping, FU Yu, JIANG Minmin, et al. Effects of Th17 and Treg cells with their balance on thyroid-associated ophthalmopathy[J]. International Eye Science, 2022, 22(7): 1137-1142. 10.3980/j.issn.1672-5123.2022.7.14. [DOI] [Google Scholar]
- 11. Huang Y, Fang S, Li D, et al. The involvement of T cell pathogenesis in thyroid-associated ophthalmopathy[J]. Eye (Lond), 2019, 33(2): 176-182. 10.1038/s41433-018-0279-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12. Wang Y, Ma XM, Wang X, et al. Emerging insights into the role of epigenetics and gut microbiome in the pathogenesis of Graves’ ophthalmopathy[J]. Front Endocrinol (Lausanne), 2022, 12: 788535. 10.3389/fendo.2021.788535. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13. Cao J, Su Y, Chen Z, et al. The risk factors for Graves’ ophthalmopathy[J]. Graefes Arch Clin Exp Ophthalmol, 2022, 260(4): 1043-1054. 10.1007/s00417-021-05456-x. [DOI] [PubMed] [Google Scholar]
- 14. Shi TT, Xin Z, Hua L, et al. Alterations in the intestinal microbiota of patients with severe and active Graves’ orbitopathy: a cross-sectional study[J]. J Endocrinol Invest, 2019, 42(8): 967-978. 10.1007/s40618-019-1010-9. [DOI] [PubMed] [Google Scholar]
- 15. Masetti G, Moshkelgosha S, Köhling HL, et al. Gut microbiota in experimental murine model of Graves’ orbitopathy established in different environments may modulate clinical presentation of disease[J]. Microbiome, 2018, 6(1): 97. 10.1186/s40168-018-0478-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16. Alfuzaie R. The link between gastrointestinal microbiome and ocular disorders[J]. Clin Ophthalmol, 2023, 17: 2133-2140. 10.2147/OPTH.S415425. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17. Berkowitz L, Pardo-Roa C, Salazar GA, et al. Mucosal exposure to cigarette components induces intestinal inflammation and alters antimicrobial response in mice[J]. Front Immunol, 2019, 10: 2289. 10.3389/fimmu.2019.02289. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18. Tomoda K, Kubo, Asahara T, et al. Cigarette smoke decreases organic acids levels and population of bifidobacterium in the caecum of rats[J]. J Toxicol Sci, 2011, 36(3): 261-266. 10.2131/jts.36.261. [DOI] [PubMed] [Google Scholar]
- 19. Antinozzi M, Giffi M, Sini N, et al. Cigarette smoking and human gut microbiota in healthy adults: a systematic review[J]. Biomedicines, 2022, 10(2): 510. 10.3390/biomedicines10020510. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20. Martínez FG, Moreno-Martin G, Pescuma M, et al. Biotransformation of selenium by lactic acid bacteria: formation of seleno-nanoparticles and seleno-amino acids[J]. Front Bioeng Biotechnol, 2020, 8: 506. 10.3389/fbioe.2020.00506. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21. Sumner SE, Markley RL, Kirimanjeswara GS. Role of selenoproteins in bacterial pathogenesis[J]. Biol Trace Elem Res, 2019, 192(1): 69-82. 10.1007/s12011-019-01877-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22. Ouyang J, Deng B, Zou B, et al. Oral hydrogel microbeads-mediated in situ synthesis of selenoproteins for regulating intestinal immunity and microbiota[J]. J Am Chem Soc, 2023, 145(22): 12193-12205. 10.1021/jacs.3c02179. [DOI] [PubMed] [Google Scholar]
- 23. Wang Y, Yin Y, Chen X, et al. Induction of intestinal Th17 cells by flagellins from segmented filamentous bacteria[J]. Front Immunol, 2019, 10: 2750. 10.3389/fimmu.2019.02750. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24. Ivanov II, Atarashi K, Manel N, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria[J]. Cell, 2009, 139(3): 485-498. 10.1016/j.cell.2009.09.033. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25. Huang Y, Tang J, Cai Z, et al. Prevotella induces the production of Th17 cells in the colon of mice[J]. J Immunol Res, 2020, 2020: 9607328. 10.1155/2020/9607328. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26. Larsen JM. The immune response to Prevotella bacteria in chronic inflammatory disease[J]. Immunology, 2017, 151(4): 363-374. 10.1111/imm.12760. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27. Cheng H, Guan X, Chen D, et al. The Th17/Treg cell balance: a gut microbiota-modulated story[J]. Microorganisms, 2019, 7(12): 583. 10.3390/microorganisms7120583. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28. Chen D, Qiu YB, Gao ZQ, et al. Sodium propionate attenuates the lipopolysaccharide-induced epithelial-mesenchymal transition via the PI3K/akt/mTOR signaling pathway[J]. J Agric Food Chem, 2020, 68(24): 6554-6563. 10.1021/acs.jafc.0c01302. [DOI] [PubMed] [Google Scholar]
- 29. Smith PM, Howitt MR, Panikov N, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis[J]. Science, 2013, 341(6145): 569-573. 10.1126/science.1241165. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30. Mukherjee A, Lordan C, Ross RP, et al. Gut microbes from the phylogenetically diverse genus Eubacterium and their various contributions to gut health[J]. Gut Microbes, 2020, 12(1): 1802866. 10.1080/19490976.2020.1802866. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31. Furusawa Y, Obata Y, Fukuda S, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells[J]. Nature, 2013, 504(7480): 446-450. 10.1038/nature12721. [DOI] [PubMed] [Google Scholar]
- 32. Huang J, Wang L, Dahiya S, et al. Histone/protein deacetylase 11 targeting promotes Foxp3+ Treg function[J]. Sci Rep, 2017, 7(1): 8626. 10.1038/s41598-017-09211-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33. Kaplan MH, Meyeserian M. An immunological cross-reaction between group-a streptococcal cells and human heart tissue[J]. Lancet, 1962, 1(7232): 706-710. 10.1016/s0140-6736(62)91653-7. [DOI] [PubMed] [Google Scholar]
- 34. 牛思佳, 张娟, 张志毅, 等. 肠道菌群与类风湿关节炎相关性研究进展[J]. 中华风湿病学杂志, 2022, 26(4): 266-271. [Google Scholar]; NIU Sijia, ZHANG Juan, ZHANG Zhiyi, et al. Research progress on correlation between intestinal flora and rheumatoid arthritis[J]. Chinese Journal of Rheumatology, 2022, 26(4): 266-271. 10.3760/cma.j.cn141217-20210625-00251. [DOI] [Google Scholar]
- 35. 刘雷, 洪学志, 陈晓欢, 等. 肠道菌群与系统性红斑狼疮关系的研究进展[J]. 中华风湿病学杂志, 2021, 25(11): 769-774. [Google Scholar]; LIU Lei, HONG Xuezhi, CHEN Xiaohuan, et al. Research progress on the relationship between intestinal flora and systemic lupus erythematosus[J]. Chinese Journal of Rheumatology, 2021, 25(11): 769-774. 10.3760/cma.j.cn141217-20200623-00259. [DOI] [Google Scholar]
- 36. Zhang H, Kaur I, Niesel DW, et al. Yersinia enterocolitica envelope proteins that are crossreactive with the thyrotropin receptor (TSHR) also have B-cell mitogenic activity[J]. J Autoimmun, 1996, 9(4): 509-516. 10.1006/jaut.1996.0068. [DOI] [PubMed] [Google Scholar]
- 37. Benvenga S, Santarpia L, Trimarchi F, et al. Human thyroid autoantigens and proteins of Yersinia and Borrelia share amino acid sequence homology that includes binding motifs to HLA-DR molecules and T-cell receptor[J]. Thyroid, 2006, 16(3): 225-236. 10.1089/thy.2006.16.225. [DOI] [PubMed] [Google Scholar]
- 38. Figura N, Di Cairano G, Moretti E, et al. Helicobacter pylori infection and autoimmune thyroid diseases: the role of virulent strains[J]. Antibiotics, 2019, 9(1): 12. 10.3390/antibiotics9010012. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39. Shi TT, Hua L, Wang H, et al. The potential link between gut microbiota and serum TRAb in Chinese patients with severe and active Graves’ orbitopathy[J]. Int J Endocrinol, 2019, 2019: 9736968. 10.1155/2019/9736968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40. Yin L, Zeng C, Yao J, et al. Emerging roles for noncoding RNAs in autoimmune thyroid disease[J]. Endocrinology, 2020, 161(8): bqaa053. 10.1210/endocr/bqaa053. [DOI] [PubMed] [Google Scholar]
- 41. Peck BC, Mah AT, Pitman WA, et al. Functional transcriptomics in diverse intestinal epithelial cell types reveals robust microRNA sensitivity in intestinal stem cells to microbial status[J]. J Biol Chem, 2017, 292(7): 2586-2600. 10.1074/jbc.M116.770099. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42. Nakata K, Sugi Y, Narabayashi H, et al. Commensal microbiota-induced microRNA modulates intestinal epithelial permeability through the small GTPase ARF4[J]. J Biol Chem, 2017, 292(37): 15426-15433. 10.1074/jbc.M117.788596. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43. Dempsey J, Zhang A, Cui JY. Coordinate regulation of long non-coding RNAs and protein-coding genes in germ-free mice[J]. BMC Genomics, 2018, 19(1): 834. 10.1186/s12864-018-5235-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44. Gao Y, Zhou J, Qi H, et al. LncRNA lncLy6C induced by microbiota metabolite butyrate promotes differentiation of Ly6Chigh to Ly6Cint/neg macrophages through lncLy6C/C/EBPβ/Nr4A1 axis[J]. Cell Discov, 2020, 6(1): 87. 10.1038/s41421-020-00211-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45. Zhu Z, Huang J, Li X, et al. Gut microbiota regulate tumor metastasis via circRNA/miRNA networks[J]. Gut Microbes, 2020, 12(1): 1788891. 10.1080/19490976.2020.1788891. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46. 张亚琨, 张美莉, 白雪. 膳食纤维及短链脂肪酸对肠道微生物组成的影响[J]. 中国粮油学报, 2023, 38(2): 195-202. 10.20048/j.cnki.issn.1003-0174.000403/. [DOI] [Google Scholar]; ZHANG Yakun,ZHANG Meili,BAI Xue. Effects of dietary fiber and short chain fatty acids on intestinal microbial composition[J]. Journal of the Chinese Cereals and Oils Association, 2023, 38(2): 195-202. 10.20048/j.cnki.issn.1003-0174.000403/. [DOI] [Google Scholar]
- 47. Kasaikina MV, Kravtsova MA, Lee BC, et al. Dietary selenium affects host selenoproteome expression by influencing the gut microbiota[J]. FASEB J, 2011, 25(7): 2492-2499. 10.1096/fj.11-181990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48. Marcocci C, Kahaly GJ, Krassas GE, et al. Selenium and the course of mild Graves’ orbitopathy[J]. N Engl J Med, 2011, 364(20): 1920-1931. 10.1056/NEJMoa1012985. [DOI] [PubMed] [Google Scholar]
- 49. Huo D, Cen C, Chang H, et al. Probiotic Bifidobacterium longum supplied with methimazole improved the thyroid function of Graves’ disease patients through the gut-thyroid axis[J]. Commun Biol, 2021, 4(1): 1046. 10.1038/s42003-021-02587-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 50. Moshkelgosha S, Verhasselt HL, Masetti G, et al. Modulating gut microbiota in a mouse model of Graves’ orbitopathy and its impact on induced disease[J]. Microbiome, 2021, 9(1): 45. 10.1186/s40168-020-00952-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 51. Benvenga S, Guarneri F. Molecular mimicry and autoimmune thyroid disease[J]. Rev Endocr Metab Disord, 2016, 17(4): 485-498. 10.1007/s11154-016-9363-2. [DOI] [PubMed] [Google Scholar]
- 52. Beinortas T, Burr NE, Wilcox MH, et al. Comparative efficacy of treatments for Clostridium difficile infection: a systematic review and network meta-analysis[J]. Lancet Infect Dis, 2018, 18(9): 1035-1044. 10.1016/S1473-3099(18)30285-8. [DOI] [PubMed] [Google Scholar]
