Abstract
心房纤颤(atrial fibrillation,AF)是一种常见的心律失常,通常发生于器质性心脏病患者,是临床上致死致残的重要原因。目前针对AF患者的药物治疗效果不佳,且存在不良反应。射频消融较传统的药物治疗更有效,但这种侵入性操作伴有潜在风险,且可能出现术后复发,在一定程度上限制了AF患者的临床获益。因此不断深化对AF分子机制的研究,并以之为基础挖掘出新的治疗策略已成为当前所需。长链非编码RNA(long noncoding RNA,lncRNA)是一类长度超过200 nt的非编码RNA,其在多水平调控基因表达。越来越多的证据表明lncRNA参与AF发生发展的诸多重要环节,如结构重塑、电重构、肾素-血管紧张素系统及钙调控异常等。参与结构重塑、电重塑等的lncRNAs可能成为AF诊断及治疗的靶标,而参与自主神经重构的lncRNAs可能为AF的预后及复发带来新的启示。
Keywords: 心房纤颤, 长链非编码RNA, 结构重构, 电重构, 肾素-血管紧张素系统, 能量代谢障碍, 钙调控异常, 自主神经重构
Abstract
Atrial fibrillation (AF), a common arrhythmia that usually occurs in patients with heart disease, is one of the leading causes for mortality and disability worldwide. Current drug therapy for AF patients lacks sufficient efficacy and has side effects. Radiofrequency ablation is more effective than traditional drug therapy, but this invasive procedure is associated with potential risks and postoperative recurrence, limiting the clinical benefits for AF patients. Therefore, it is necessary to expand our understanding about the underlying molecular mechanism of AF and to explore the new therapeutic strategies. Long noncoding RNA (lncRNA) is a set of noncoding RNA longer than 200 nucleotides. Growing evidence indicates that lncRNA is involved in numerous pathophysiological processes of AF, such as structural remodeling, electrical remodeling, renin-angiotensin system, abnormal calcium regulation, etc. In addition, lncRNA involved in structural remodeling and electrical remodeling has the potential to be a novel target for the diagnosis and treatment of AF, and lncRNA involved in autonomic nerve remodeling may bring new enlightenment for the prognosis and recurrence of AF.
Keywords: atrial fibrillation, long noncoding RNA, structural remodeling, electrical remodeling, renin-angiotensin system, energy metabolism abnormality, abnormal calcium regulation, autonomic nerve remodeling
心房纤颤(atrial fibrillation,AF)是临床最常见的心律失常之一,因其可引起脑卒中、心力衰竭等严重并发症,已成为人类健康的重要杀手。流行病学调查[1]显示:中国约有800万AF患者,35岁以上人群AF患病率约为0.71%,处于上升趋势,且随着年龄增加患病率升高,75岁以上人群患病率高达2.35%。这不仅增加了患者的医疗花费,降低了患者的生活质量,而且还给国家带来了巨大的卫生经济负担。
AF的治疗目的在于改善症状及预防并发症,主要通过以下两种途径实现:第一,控制心率,预防快速性心室率的发生;第二,控制心律,即恢复或维持窦性心律。这些治疗方法往往疗效不佳,且伴有潜在的不良反应。因而,更新对AF发病机制的认识,发现干预AF的新靶点以改善目前AF治疗的不足是大势所趋。
长链非编码RNA(long noncoding RNA,lncRNA)是一类长度超过200 nt的非编码RNA,它们被RNA聚合酶II转录,聚腺苷酸化,并进行剪接。LncRNA也有启动子结构,在整个基因组中广泛表达[2]。近年来,大量研究[3-6]证实lncRNA不仅参与动脉粥样硬化、高血压、冠心病、心肌病和心力衰竭等心血管疾病的发生,还参与AF发生发展的诸多重要环节,如结构重塑、电重构、肾素-血管紧张素系统(renin-angiotensin system,RAS)及钙调控异常等。
1. LncRNA的分类
根据lncRNA与邻近蛋白质编码基因的位置关系,可大体将其分为5类,分别为同义lncRNA、反义lncRNA、双向lncRNA、内含子lncRNA和基因间lncRNA[7]。同义lncRNA从蛋白质编码基因的正义链转录而来,它们可以在同一条链上重叠一个或多个蛋白质编码基因的外显子;反义lncRNA则是从蛋白质编码基因的反义链转录而来;双向lncRNA在与蛋白质编码基因相反的方向进行转录,且间距一般小于1 000个碱基对;内含子lncRNA来自蛋白质编码基因的内含子,它们不与任何外显子重叠;基因间lncRNA位于两个基因的间隔中,它们具有独立的转录单位,并且不与蛋白质编码基因重叠[8]。此外,全基因组研究[9]表明增强子亦可被转录,衍生出一类新的lncRNA,即增强子RNA(enhancer-derived RNA,eRNA)。
2. LncRNA的功能
LncRNA的生物学功能主要包括3种:1)lncRNA可在细胞核内调节基因的转录。例如,lncRNA一方面可通过顺式调控途径调节组蛋白H3的甲基化,进而直接沉默附近基因的转录[10];另一方面,lncRNA可通过反式调控途径,导致位于不同染色体上的远距离基因位点的激活或抑制基因的表达[11];此外,eRNA能直接作用于增强子并调节其活性[12]。2)lncRNA参与细胞质中的转录后调节,促进或抑制mRNA翻译,改变mRNA和蛋白质的稳定性,甚至改变蛋白质的易位性。它们还可以作为竞争性内源性RNA(也称为microRNA海绵)发挥作用,通过直接结合miRNA来调控其下游靶基因的表达[13]。例如,lncRNA MALAT1可以靶向miR-200来调节H2O2介导的心肌细胞氧化损伤[14]。3)lncRNA还能通过外分泌途径发挥生物学效应。研究[15]发现:lncRNA可以被包装在胞外囊泡中,如形成胞外体,通过单独或与蛋白质结合的方式分泌到细胞外。
3. LncRNA在AF中异常表达
LncRNA在AF中存在差异表达。Wu等[16]研究风湿性二尖瓣心脏病患者心房中lncRNA的表达谱,结果显示风湿性二尖瓣心脏病患者lncRNA表达水平与对照组比较,有16个差异表达的lncRNA,其中lncRNA n336928可能通过调节Smad2、TGF-β1、基质金属蛋白酶9(matrix metallopeptidase 9,MMP9)和组织金属蛋白酶抑制剂-1(tissue inhibitor of metalloproteinase 1,TIMP1)等纤维化相关蛋白质来参与AF的发病,但具体的表达与功能调节需进一步研究。Ruan等[17]应用微阵列技术检测AF患者心房组织lncRNA的表达谱,并与无AF患者进行比较,发现了219个差异表达的lncRNA;随后,该团队选择5个上调和5个下调的lncRNA进行实时定量PCR验证,证实上调和下调的lncRNA中有4个与AF基因相关。同样,Xu等[18]发现AF患者与对照组相比有177个lncRNA差异表达,同时通过构建共表达网络发现这些lncRNA受转录调控元件珠蛋白转录因子1、TATA框结合蛋白关联因子和早期B细胞因子的调控。此外,Ke等[19]研究发现AF患者的左心房和右心房存在lncRNA差异表达。Chen等[20]通过基因芯片比较左心耳到肺静脉周围及左心耳心房组织的lncRNA,鉴定出94个差异表达的lncRNA,其中以lncRNA AK055347变化最为明显。如此大量差异表达的lncRNA在AF中作用及其影响AF发展的具体机制等目前尚不清晰,但不可否定其作为治疗及预防等方面的靶点具有一定前景。
4. LncRNA在AF中的作用
4.1. LncRNA与结构重塑
AF相关的结构重塑为成纤维细胞异常增生及细胞外基质过量沉积导致的心房纤维化[21]。TGF-β1/Smad通路是导致心房纤维化最常见的机制,上调TGF-β1可以促进心房纤维化及AF[22]。Zhao等[23]对心外膜的脂肪组织进行分析,发现心外膜脂肪组织可分泌多种lncRNA,并通过被动扩散至邻近的心肌组织,调节心房重构。Cao等[24]研究发现lncRNA PVT1能与miR-128-3p结合,激活TGF-β1,从而导致心房纤维化。过表达PVT1的成纤维细胞TGF-β1信号上调,胶原I和II同样增加;而敲低PVT1表达后恰恰相反。另有研究[25]揭示AF患者外周血白细胞中lncRNA MIAT表达上调,miR-133a-3p的表达显著下调,这与从AF大鼠模型心房组织中得到的结果一致,进一步研究提示MIAT可能通过miR-133a-3p调节心房中TGF-β1的表达和胶原纤维的生成。TGF-β1型受体Alk5是促进肿瘤细胞增殖的重要分子[26],能够调节TGF-β1的表达,最近它被证明在心肌成纤维细胞中起一定作用。LncRNA GAS5能通过下调Alk5表达,抑制心肌成纤维细胞增殖,最终延缓AF的发展[27]。巨噬细胞在心肌纤维化中也起一定作用。巨噬细胞有M1和M2两种表型。M1型巨噬细胞最先到达受损部位并促进组织碎片清除,而M2型巨噬细胞则在后期的组织修复与愈合中扮演关键角色。研究[28]表明抑制M1型和促进M2型巨噬细胞可以防止心脏重构。Sun等[29]发现:lncRNA NRON(repressor of the nuclear factor of activated T cells)能通过抑制活化T细胞核转录因子1的核转运引起IL-12的表达降低,造成M1型巨噬细胞减少,最终延缓心肌纤维化进程。此外,NRON也能通过增加活化T细胞核转录因子c3的磷酸化抑制成纤维细胞增殖,进而减轻心房纤维化[30]。结构重塑是AF发展过程极其重要的环节,当心肌纤维化通过lncRNA被靶向调节时,可在很大程度上促进AF甚至其他心血管疾病的一、二级预防;但心肌纤维化除了受TGF-β1/Smad通路的影响,还可能受JAK/STAT及PI3K/Akt通路[31-32]的影响,上述或其他lncRNA是否对这些通路有影响还需进一步探究。
4.2. LncRNA与电重构
AF时心肌电重构主要表现为心房有效不应期及动作电位时程缩短。在Li等[33]构建的兔AF模型中,lncRNA-TCONS_00075467存在特异性表达,慢病毒介导的TCONS_00075467沉默能有效缩短心房的有效不应期,缩短L型钙通道电流及动作电位时程;此外,该团队还发现TCONS_00075467可吸附miR-328,调节其下游基因L型电压依赖钙离子通道Α1C亚基的表达,从而影响AF电重构。已有多种心脏转录因子,如成对样同源域转录因子(paired-like homeodomain transcription factor,PITX)2和T-Box转录因子5(T-Box transcription factor 5,TBX5)被证明参与离子通道基因的调节,在AF中发挥作用[34]。当PITX水平降低时,心房有效不应期缩短[35]。Gore-Panter等[36]揭示了一个存在于PITX2上游的lncRNA,即PITX2相邻非编码RNA(PANCR),PITX2与PANCR表达呈正相关,PANCR敲低后PITX2水平也同步降低。因此,PANCR极有可能通过PITX2参与调控AF的发生发展。值得注意的是,PANCR和PITX2不存在互补结合区域,考虑到lncRNA可作为miRNA海绵的功能特性,不排除PANCR通过miRNA间接调控PITX2的可能性,后续可采用生物学信息分析,结合靶点预测、荧光素酶报告基因、RNA免疫共沉淀及RNA pulldown等方法来进行验证。TBX5缺失可导致不规则去极化及心房传导速度减慢,引起AF的快速发生[37]。Yang等[38]确定了一种依赖于TBX5的lncRNA,即RACER,但RACER是否在AF中发挥作用仍有待进一步研究阐明。
4.3. LncRNA与RAS
RAS活化后血管紧张素II(angiotensin II,Ang II)分泌增加不仅能造成左心房压力增高,导致左心房扩张,也会使心肌细胞膜上离子通道改变;RAS持续激活会进一步引起心肌组织的纤维化及炎症[39]。Shen等[40]在Ang II诱导的小鼠AF模型中发现lncRNA KCNQ1重叠转录物1(lncRNA KCNQ1OT1)显著上调。KCNQ1OT1能与miR-384结合,使L型电压依赖钙离子通道Α1C亚基表达上调,从而对AF发展起促进作用。泛素C端水解酶L1(ubiquitin carboxyl-terminal hydrolase L1,UCHL1)可通过多个信号通路如AKT、ERK1/2、HIF-1α和TGF-β/Smad2/3促进Ang II诱导的AF[41]。已有研究[42]证明UCHL1蛋白质的翻译受lncRNA UCHL1-AS1调控。但lncRNA UCHL1-AS1能否通过干预UCHL1表达参与AF的发生发展,亟需后续研究来进一步验证。
4.4. LncRNA与能量代谢异常
van Bilsen等[43]首次提出在心力衰竭及心肌肥大疾病中存在能量代谢变化,这些变化由高能磷酸盐代谢异常、线粒体功能障碍等引起。与AF相关的能量代谢异常主要体现为腺苷酸活化蛋白激酶变化、线粒体功能障碍及活性氧自由基蓄积[44]。过氧化物酶体增殖物激活受体γ辅助激活因子1α/过氧化物酶体增殖物激活受体γ(peroxisome proliferator-activated receptor γ coactivator 1α/peroxisome proliferator-activated receptor γ,PGC-1α/PPARγ)是AF能量代谢异常中的重要通路,其受腺苷酸活化蛋白激酶调节,能改善AF的脂质代谢[45],同时也能通过脱乙酰作用改善线粒体功能[46];李建华等[47]在AF兔中筛选出与能量代谢相关的lncRNA TCONS_00016478,其表达下调可引起PGC1-α/PPARγ水平降低,进而导致心房肌脂质沉积[47]。但关于TCONS_00016478能否通过PGC1-α/PPARγ通路改善线粒体功能,仍有待进一步研究。另有学者[20]揭露lncRNA AK055347在AF患者中表达显著上调,其可能通过调节Cyp450、ATP合酶和MSS51表达,抑制线粒体能量的产生。在糖尿病肾病小鼠中,lncRNA Tug1可能作为eRNA促进PGC1-α的激活,改善足细胞线粒体功能[48],但Tug1是否在AF中表达尚不清楚。Li等[49]发现lncRNA HOTAIR可以结合并抑制miR-125,激活miR-125靶基因基质金属蛋白酶2(matrix metallopeptidase 2,MMP2),从而加剧氧化应激诱导的心肌细胞损伤。MMP2已被证实与AF相关[50]。HOTAIR极有可能通过miR-125/MMP2促进心肌氧化应激,加速AF的发展。AF时心房肌的快速收缩和舒张消耗大量能量,因此,保持心房的能量代谢平衡不失为AF治疗的新思路,但目前能量代谢障碍在AF中研究较少,仍需探索。
4.5. LncRNA与钙调控异常
钙调控异常与心肌细胞中的钙储存及释放有关,而钙储存与释放又取决于心脏肌浆网钙ATP酶2a(sarcoplasmic reticulum calcium ATPase 2a,SERCA2a)及兰尼碱受体2(ryanodine receptor 2,RyR2)。SERCA2a已被证实能抑制AF的发生[51]。在小鼠心肌梗死模型中,lncRNA ZFAS1能通过抑制SERCA2a引起细胞质Ca2+超负荷,触发线粒体介导的细胞凋亡[52]。此外,lncRNA DACH1亦被发现能通过泛素化促进SERCA2a降解而加剧心功能损害[53]。目前虽无证据表明这些lncRNA与AF存在直接关联,但随着研究的不断深入,这些lncRNA或许能在将来成为AF防治的新靶点。RyR2受一种参与肌浆网电偶联的信号蛋白Junctophillin-2(JP2)调节。一项临床研究[54]显示:AF患者JP2꞉RyR2值降低,并伴有lncRNA-LINC00472下调和miR-24上调;miR-24可以降低JP2的表达水平,而lncRNA-LINC00472则能通过抑制miR-24上调JP2水平,从而提高JP2꞉RyR2值,最终改善AF。在Ang II诱导的AF小鼠中,lncRNA通过影响钙通道导致AF[40],这说明RAS与钙调控异常存在共同机制,提示可能存在某种lncRNA同时影响这些机制,这种lncRNA将成为AF治疗的重要靶点。
4.6. LncRNA与自主神经重构
自主神经重构导致的神经发芽及交感、副交感神经平衡失调是导致AF的重要机制[55]。有研究[56]通过测序及生物信息学分析发现:AF犬心脂肪垫中存在lncRNA的异常表达,且这些lncRNA(如lncRNA TCONS_00032546和TCONS_0002610)与自主神经重构相关。生长相关蛋白43(growth associated protein-43,GAP-43)是神经生长或再生的重要标志物[57],而酪氨酸羟化酶(tyrosine hydroxylase,TH)是交感神经神经递质合成途径的限速酶,其表达意味着交感神经在心脏分布。射频消融犬lncRNA056298过表达后,GAP-43和TH水平随之升高,心房有效不应期缩短,AF诱发率升高,表明lncRNA056298可能通过GAP-43和TH介导神经重构,进而易化AF[58]。另外,Zhao等[59]研究发现lncRNA TCONS_00202959在AF大鼠中表达下调,且伴有心房有效不应期缩短和AF诱发率升高,心率变异性分析显示自主神经功能紊乱;而转染lncRNA TCONS_00202959过表达慢病毒后,AF大鼠心房有效不应期延长和AF诱发率降低,自主神经功能显著改善,同时TH水平下调,提示lncRNA TCONS_00202959可能通过改善心脏自主神经功能遏制AF的发生发展。自主神经重构的周期较长,我们认为其可以成为预测复发的标志,因此,检测与调控这些lncRNA或许是监测及预防AF复发的新型分子途径。
5. 展 望
LncRNA能够在表观遗传、转录、翻译及翻译后修饰等多个水平干预基因表达,且参与了结构重塑、电重构、神经重构和能量代谢重构等AF发生发展的关键环节,但目前我们对lncRNA与AF关系的认知和掌控仍处于初级阶段,尚不能将其完全运用于临床诊断、预后评估和治疗。首先,lncRNA在血液中能被检测到,这使其具备了成为临床标志物的潜能,但这些lncRNA的来源、具体功能及与AF的确切关系尚未明了,且lncRNA在血液中含量较低,用PCR等传统方法对其进行检测不仅耗时而且费用高昂,因此有研究者提出了滚轮扩增荧光检测lncRNA的方法,能使样本中的lncRNA扩增数十倍,但目前尚未用于临床。其次,lncRNA组织特异性高,能调节AF的发生发展,这使得lncRNA作为AF基因治疗新靶点存在理论可行性:一方面是功能获得性治疗,即升高组织中表达降低的lncRNA来达到疗效,常用的方法有质粒转染,但质粒转染受限于其仅能用于体外试验,临床价值有限;腺病毒转染虽然能解决这个问题,但是并不能携带片段较长的lncRNA,因此近几年开发了CRISPR基因编辑工具,能够将较长lncRNA转录进入基因组。另一方面是功能失去性治疗,即降低病理过程中过表达的lncRNA,常见的方法有小干扰RNA转染,但其仅能作用于细胞质中的lncRNA且疗效不持久;而新型的GapmeR能部分解决这个问题,它能够同时沉默细胞质及细胞核内的lncRNA。上述方法已在动物模型中初见成效,但lncRNA在物种间保守性差,同样的方法在人体内是否奏效,是否存在不良反应以及采取何种方式将其输送至特定的人体器官、组织和细胞,亟待进一步明确。最后,越来越多的学者致力于探寻lncRNA在AF中所扮演的角色,然而多数研究仅仅是简单陈述了两者的关联性,并未对其中的具体分子机制进行阐明。我们相信,随着GapmeR和CRISPR/Cas9等新型基因编辑工具的兴起,lncRNA作用于AF的内在方式终将浮出水面。
基金资助
中南大学教育教学改革研究项目(2020jy143)。
This work was supported by the Research Project of Education and Teaching Reform in Central South University, China (2020jy143).
利益冲突声明
作者声称无任何利益冲突。
原文网址
http://xbyxb.csu.edu.cn/xbwk/fileup/PDF/202108877.pdf
参考文献
- 1. Wang Z, Chen Z, Wang X, et al. The disease burden of atrial fibrillation in China from a national cross-sectional survey[J]. Am J Cardiol, 2018, 122(5): 793-798. [DOI] [PubMed] [Google Scholar]
- 2. Jathar S, Kumar V, Srivastava J, et al. Technological developments in lncRNA biology[J]. Adv Exp Med Biol, 2017, 1008: 283-323. [DOI] [PubMed] [Google Scholar]
- 3. 周杨, 孟祥丽, 张继伟, 等. 长链非编码RNA在心血管疾病中的研究进展[J]. 基因组学与应用生物学, 2017, 36(5): 1876-1881. [Google Scholar]; ZHOU Yang, MENG Xiangli, ZHANG Jiwei, et al. Research progress of long non-coding RNA in cardiovascular diseases [J]. Genomics and Applied Biology, 2017, 36(5): 1876-1881. [Google Scholar]
- 4. Uchida S, Dimmeler S. Long noncoding RNAs in cardiovascular diseases[J]. Circ Res, 2015, 116(4): 737-750. [DOI] [PubMed] [Google Scholar]
- 5. Huang Y. The novel regulatory role of lncRNA-miRNA-mRNA axis in cardiovascular diseases[J]. J Cell Mol Med, 2018, 22(12): 5768-5775. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6. Zhou D, Yang K, Hu J, et al. Noncoding RNAs in atrial fibrillation: Current status and prospect[J]. J Cardiovasc Pharm, 2020, 75(1): 10-17. [DOI] [PubMed] [Google Scholar]
- 7. Schonrock N, Harvey RP, Mattick JS. Long noncoding RNAs in cardiac development and pathophysiology[J]. Circ Res, 2012, 111(10): 1349-1362. [DOI] [PubMed] [Google Scholar]
- 8. Thum T, Condorelli G. Long noncoding RNAs and microRNAs in cardiovascular pathophysiology[J]. Circ Res, 2015, 116(4): 751-762. [DOI] [PubMed] [Google Scholar]
- 9. Kim TK, Hemberg M, Gray JM, et al. Widespread transcription at neuronal activity-regulated enhancers[J]. Nature, 2010, 465(7295): 182-187. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10. Lee JT, Bartolomei MS. X-inactivation, imprinting, and long noncoding RNAs in health and disease[J]. Cell, 2013, 152(6): 1308-1323. [DOI] [PubMed] [Google Scholar]
- 11. Rinn JL, Kertesz LM, Wang JK, et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs[J]. Cell, 2007, 129(7): 1311-1323. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12. Ørom UA, Shiekhattar R. Long noncoding RNAs usher in a new era in the biology of enhancers[J]. Cell, 2013, 154(6): 1190-1193. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13. Karreth FA, Tay Y, Perna D, et al. In vivo identification of tumor-suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma[J]. Cell, 2011, 147(2): 382-395. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14. 李家睿, 闫波. 抑制LncRNA MALAT1靶向促进miR-200a表达减少心肌细胞凋亡[J]. 中国老年学杂志, 2019, 39(18): 4527-4530. 30926750 [Google Scholar]; LI Jiarui, YAN Bo. Inhibiting LncRNA MALAT1 targeting to promote miR-200a expression and reduce cardiomyocyte apoptosis[J]. Chinese Journal of Gerontology, 2019, 39(18): 4527-4530. [Google Scholar]
- 15. Lin C, Yang L. Long noncoding RNA in cancer: Wiring signaling circuitry[J]. Trends Cell Biol, 2018, 28(4): 287-301. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16. Wu J, Han D, Shi R, et al. Identification of atrial fibrillation-associated lncRNAs in atria from patients with rheumatic mitral valve disease[J]. Microsc Res Tech, 2019, 82(7): 1136-1144. [DOI] [PubMed] [Google Scholar]
- 17. Ruan Z, Sun X, Sheng H, et al. Long non-coding RNA expression profile in atrial fibrillation[J]. Int J Clin Exp Pathol, 2015, 8(7): 8402-8410. [PMC free article] [PubMed] [Google Scholar]
- 18. Xu Y, Huang R, Gu J, et al. Identification of long non-coding RNAs as novel biomarker and potential therapeutic target for atrial fibrillation in old adults[J]. Oncotarget, 2016, 7(10): 10803-10811. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19. Ke ZP, Xu YJ, Wang ZS, et al. RNA sequencing profiling reveals key mRNAs and long noncoding RNAs in atrial fibrillation[J]. J Cell Biochem, 2020, 120(8/9): 3752-3763. [DOI] [PubMed] [Google Scholar]
- 20. Chen G, Guo H, Song Y, et al. Long non-coding RNA AK055347 is upregulated in patients with atrial fibrillation and regulates mitochondrial energy production in myocardiocytes[J]. Mol Med Rep, 2016, 14(6): 5311-5317. [DOI] [PubMed] [Google Scholar]
- 21. Oka T, Komuro I. Molecular and cellular mechanisms of organ fibrosis[J]. Nihon Rinsho, 2012, 70(9): 1510-1516. [PubMed] [Google Scholar]
- 22. Kira S, Abe I, Ishii Y, et al. Role of angiopoietin-like protein 2 in atrial fibrosis induced by human epicardial adipose tissue: Analysis using an organo-culture system[J]. Heart Rhythm, 2020, 17(9): 1591-1601. [DOI] [PubMed] [Google Scholar]
- 23. Zhao L, Ma Z, Guo Z, et al. Analysis of long non-coding RNA and mRNA profiles in epicardial adipose tissue of patients with atrial fibrillation[J]. Biomed Pharmacother, 2020, 121: 109634. [DOI] [PubMed] [Google Scholar]
- 24. Cao F, Li Z, Ding WM, et al. LncRNA PVT1 regulates atrial fibrosis via miR-128-3p-SP1-TGF-β1-Smad axis in atrial fibrillation[J]. Mol Med, 2019, 25(1): 7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25. Yao L, Zhou B, You L, et al. LncRNA MIAT/miR-133a-3p axis regulates atrial fibrillation and atrial fibrillation-induced myocardial fibrosis[J]. Mol Biol Rep, 2020, 47(4): 2605-2617. [DOI] [PubMed] [Google Scholar]
- 26. Ling LE, Lee WC. TGF-beta type I receptor (Alk5) kinase inhibitors in oncology[J]. Curr Pharm Biotechnol, 2011, 12(12): 2190-2202. [DOI] [PubMed] [Google Scholar]
- 27. Lu J, Xu FQ, Guo JJ, et al. Long noncoding RNA GAS5 attenuates cardiac fibroblast proliferation in atrial fibrillation via repressing ALK5[J]. Eur Rev Med Pharmacol Sci, 2019, 23(17): 7605-7610. [DOI] [PubMed] [Google Scholar]
- 28. Funes SC, Rios M, Escobar-Vera J, et al. Implications of macrophage polarization in autoimmunity[J]. Immunology, 2018, 154(2): 186-195. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29. Sun F, Guo Z, Zhang C, et al. LncRNA NRON alleviates atrial fibrosis through suppression of M1 macrophages activated by atrial myocytes[J]. Biosci Rep, 2019, 39(11): BSR20192215. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30. Wang Y, Xu P, Zhang C, et al. LncRNA NRON alleviates atrial fibrosis via promoting NFATc3 phosphorylation[J]. Mol Cell Biochem, 2019, 457(1/2): 169-177. [DOI] [PubMed] [Google Scholar]
- 31. Liu M, Li Y, Liang B, et al. Hydrogen sulfide attenuates myocardial fibrosis in diabetic rats through the JAK/STAT signaling pathway[J]. Int J Mol Med, 2018, 41(4): 1867-1876. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32. Yang X, Li X, Lin Q, et al. Up-regulation of microRNA-203 inhibits myocardial fibrosis and oxidative stress in mice with diabetic cardiomyopathy through the inhibition of PI3K/Akt signaling pathway via PIK3CA[J]. Gene, 2019, 715: 143995. [DOI] [PubMed] [Google Scholar]
- 33. Li Z, Wang X, Wang W, et al. Altered long non-coding RNA expression profile in rabbit atria with atrial fibrillation: TCONS_00075467 modulates atrial electrical remodeling by sponging miR-328 to regulate CACNA1C[J]. J Mol Cell Cardiol, 2017, 108: 73-85. [DOI] [PubMed] [Google Scholar]
- 34. Mikhailov AT, Torrado M. Interplay between cardiac transcription factors and non-coding RNAs in predisposing to atrial fibrillation[J]. J Mol Med (Berl), 2018, 96(7): 601-610. [DOI] [PubMed] [Google Scholar]
- 35. Holmes AP, Kirchhof P. Pitx2 adjacent Noncoding RNA: A new, long, noncoding kid on the 4q25 block[J]. Circ Arrhythm Electrophysiol, 2016, 9(1): e003808. [DOI] [PubMed] [Google Scholar]
- 36. Gore-Panter SR, Hsu J, Barnard J, et al. PANCR, the PITX2 adjacent noncoding RNA, is expressed in human left atria and regulates PITX2c expression[J]. Circ Arrhythm Electrophysiol, 2016, 9(1): e003197. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37. Nadadur RD, Broman MT, Boukens B, et al. Pitx2 modulates a Tbx5-dependent gene regulatory network to maintain atrial rhythm[J]. Sci Transl Med, 2016, 8(354): 354ra115. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38. Yang XH, Nadadur RD, Hilvering CR, et al. Transcription-factor-dependent enhancer transcription defines a gene regulatory network for cardiac rhythm[J]. Elife, 2017, 6: e31683. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39. Nair GM, Nery PB, Redpath CJ, et al. The role of renin angiotensin system in atrial fibrillation[J]. J Atr Fibrillation, 2014, 6(6): 972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40. Shen C, Kong B, Liu Y, et al. YY1-induced upregulation of lncRNA KCNQ1OT1 regulates angiotensin II-induced atrial fibrillation by modulating miR-384b/CACNA1C axis[J]. Biochem Biophys Res Commun, 2018, 505(1): 134-140. [DOI] [PubMed] [Google Scholar]
- 41. Bi HL, Zhang YL, Yang J, et al. Inhibition of UCHL1 by LDN-57444 attenuates Ang II-Induced atrial fibrillation in mice[J]. Hypertens Res, 2020, 43(3): 168-177. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42. Carrieri C, Cimatti L, Biagioli M, et al. Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat[J]. Nature, 2012, 491(7424): 454-457. [DOI] [PubMed] [Google Scholar]
- 43. van Bilsen M, Smeets PJ, Gilde AJ, et al. Metabolic remodelling of the failing heart: the cardiac burn-out syndrome?[J]. Cardiovasc Res, 2004, 61(2): 218-226. [DOI] [PubMed] [Google Scholar]
- 44. 鲁爽, 刘广忠, 李悦. 心房颤动与心房肌能量代谢的研究进展[J]. 中国循证心血管医学杂志, 2017, 9(8): 1006-1007. [Google Scholar]; LU Shuang, LIU Guangzhong, LI Yue. Research progress of atrial fibrillation and atrial muscle energy metabolism[J]. Chinese Journal of Evidence-Based Cardiovascular Medicine, 2017, 9(8): 1006-1007. [Google Scholar]
- 45. Liu Y, Bai F, Liu N, et al. The Warburg effect: A new insight into atrial fibrillation[J]. Clin Chim Acta, 2019, 499: 4-12. [DOI] [PubMed] [Google Scholar]
- 46. Fang WJ, Wang CJ, He Y, et al. Resveratrol alleviates diabetic cardiomyopathy in rats by improving mitochondrial function through PGC-1α deacetylation[J]. Acta Pharmacol Sin, 2018, 39(1): 59-73. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 47. 李建华, 李展, 贾晓萌, 等. TCONS_00016478通过PGC1-α/PPARγ信号通路影响实验性房颤兔心房肌能量代谢重构的机制[J]. 山东大学学报(医学版), 2019, 57(4): 1-8. [Google Scholar]; LI Jianhua, LI Zhan, JIA Xiaomeng, et al. TCONS_00016478 through the PGC1-α/PPARγ signaling pathway to affect the mechanism of atrial muscle energy metabolism remodeling in experimental atrial fibrillation rabbits[J]. Journal of Shandong University. Medical Edition, 2019, 57(4): 1-8. [Google Scholar]
- 48. Long J, Badal SS, Ye Z, et al. Long noncoding RNA Tug1 regulates mitochondrial bioenergetics in diabetic nephropathy[J]. J Clin Invest, 2016, 126(11): 4205-4218. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49. Li L, Zhang M, Chen W, et al. LncRNA-HOTAIR inhibition aggravates oxidative stress-induced H9c2 cells injury through suppression of MMP2 by miR-125[J]. Acta Biochim Biophys Sin (Shanghai), 2018, 50(10): 996-1006. [DOI] [PubMed] [Google Scholar]
- 50. Diao SL, Xu HP, Zhang B, et al. Associations of MMP-2, BAX, and bcl-2 mRNA and protein expressions with development of atrial fibrillation[J]. Med Sci Monit, 2016, 22: 1497-1507. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 51. Wang HL, Zhou XH, Li ZQ, et al. Prevention of atrial fibrillation by using sarcoplasmic reticulum calcium ATPase pump overexpression in a rabbit model of rapid atrial pacing[J]. Med Sci Monit, 2017, 23: 3952-3960. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52. Jiao L, Li M, Shao Y, et al. LncRNA-ZFAS1 induces mitochondria-mediated apoptosis by causing cytosolic Ca(2+) overload in myocardial infarction mice model[J]. Cell Death Dis, 2019, 10(12): 942. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53. Cai B, Zhang Y, Zhao Y, et al. Long noncoding RNA-DACH1 (Dachshund Homolog 1) regulates cardiac function by inhibiting SERCA2a (Sarcoplasmic Reticulum Calcium ATPase 2a)[J]. Hypertension, 2019, 74(4): 833-842. [DOI] [PubMed] [Google Scholar]
- 54. Wang LY, Shen H, Yang Q, et al. LncRNA-LINC00472 contributes to the pathogenesis of atrial fibrillation (Af) by reducing expression of JP2 and RyR2 via miR-24[J]. Biomed Pharmacother, 2019, 120: 109364. [DOI] [PubMed] [Google Scholar]
- 55. Gould PA, Yii M, McLean C, et al. Evidence for increased atrial sympathetic innervation in persistent human atrial fibrillation[J]. Pacing Clin Electrophysiol, 2006, 29(8): 821-829. [DOI] [PubMed] [Google Scholar]
- 56. Yuzong W, Hou Y. GW25-e1171 analysis of long non-coding RNA expression patterns in cardiac fat pads of canine with atrial fibrillation[J]. J Am Coll Cardiol, 2014, 64(16): C30. [Google Scholar]
- 57. Dubový P, Klusáková I, Hradilová-Svíženská I, et al. Expression of regeneration-associated proteins in primary sensory neurons and regenerating axons after nerve injury―an overview[J]. Anat Rec (Hoboken), 2018, 301(10): 1618-1627. [DOI] [PubMed] [Google Scholar]
- 58. 刘东路, 王曦敏, 李展, 等. LncRNA056298通过影响生长相关蛋白43的表达介导射频消融犬的神经重构[J]. 山东大学学报(医学版), 2020, 58(5): 27-37. [Google Scholar]; LIU Donglu, WANG Ximin, LI Zhan, et al. LncRNA056298 mediates neural remodeling in dogs with radiofrequency ablation by affecting the expression of growth-associated protein 43[J]. Journal of Shandong University. Medical Edition, 2020, 58(5): 27-37. [Google Scholar]
- 59. Zhao JB, Zhu N, Lei YH, et al. Modulative effects of lncRNA TCONS_00202959 on autonomic neural function and myocardial functions in atrial fibrillation rat model[J]. Eur Rev Med Pharmacol Sci, 2018, 22(24): 8891-8897. [DOI] [PubMed] [Google Scholar]
