Skip to main content
Journal of Central South University Medical Sciences logoLink to Journal of Central South University Medical Sciences
. 2022 Jun 28;47(6):780–785. [Article in Chinese] doi: 10.11817/j.issn.1672-7347.2022.210556

维生素D/维生素D受体、自噬与感染

Vitamin D/vitamin D receptor, autophagy, and infection

侯 宇 1,2, 李 景辉 1,, 邓 超 1
Editor: 郭 征
PMCID: PMC10930018  PMID: 35837778

Abstract

维生素D在钙磷代谢中起重要作用,同时具有调节机体免疫功能、心血管功能及角质形成细胞增殖和分化的能力。维生素D的大部分功能是通过与维生素D受体(vitamin receptor,VDR)结合后实现的,VDR信号通路与其他细胞内信号通路相互作用,从而调节骨代谢、炎症反应、免疫反应、细胞周期进程和凋亡。细胞自噬在酵母、植物和哺乳动物中是一种基本的应激反应,对维持细胞和器官的最佳功能状态起至关重要的作用。维生素D/VDR通过诱导和调节自噬发挥抗感染的作用。

Keywords: 维生素D, 维生素D受体, 自噬, 感染


维生素D缺乏与钙磷代谢障碍、内分泌代谢疾病(如糖尿病)、癌症、高血压、感染和自身免疫性疾病等多种疾病相关[1]。维生素D的大部分功能需要与细胞质或细胞膜的维生素D受体(vitamin D receptor,VDR)结合后实现。细胞自噬是真核生物中细胞内物质周转的重要过程,是细胞抵抗病原体入侵的最原始的方式。

1. 维生素DVDR

维生素D及其代谢产物是一种重要的类固醇激素,与人体健康关系最密切的是维生素D3。维生素D3可以从饮食中获得,也可以通过紫外线介导由皮肤合成。紫外线促进7-脱氢胆固醇转化为维生素D3,然后维生素D3在肝和肾中依次羟基化,形成25-羟基维生素D3[25(OH)D3]和活性化合物1, 25二羟基维生素D3[1, 25(OH)2D3,以下简称VD]。维生素D3还可以在激活的巨噬细胞、小胶质细胞、角质形成细胞以及甲状旁腺、乳腺、结肠中完成活化[2],这是VD发挥多种生理调节功能的基础。

VD在靶细胞中与VDR结合发挥生理作用。除了分布在参与钙磷代谢调节的脏器外,VDR还广泛存在于皮肤成纤维细胞、皮肤角质形成细胞、免疫细胞等细胞中[3]。VDR以VDR/VDR同型二聚体或VDR/视黄醇X受体(retinoid X receptor,RXR)异型二聚体的形式与靶向细胞DNA结合,调节特定基因转录,从而作用于调节骨和钙稳态、炎症、细胞介导免疫、细胞周期和凋亡[4]等多种信号通路。VDR的变异可能导致其对VD的响应减弱,使VD的抗炎作用受到抑制[5],同时VDR的多态性还与多种传染性疾病及癌症有关[6-8]

2. 自 噬

自噬参与多种生理过程,包括细胞的分化和发育、异常结构的降解,并且可以调节先天性和适应性免疫[9]。根据待降解物转运到溶酶体的方式,自噬可分为巨自噬、微自噬和分子介导的自噬[10],其中巨自噬是自噬对环境和细胞生理活动进行调控的主要方式,有助于细胞在应激条件下存活[11]。自噬又可分为选择性和非选择性两类。基础自噬或者在饥饿供能的情况下发生的自噬通常是非选择性的,有维持细胞内环境稳态的作用[12];而在线粒体受损、蛋白质错误折叠、细菌或病毒感染等情况下激活的自噬则为选择性自噬[13]。选择性自噬通常由特定受体介导,目前所知的最主要5种受体为p62(SQSTM1)、NBR1、NDP52、OPTN和NIX,它们可以特异地与降解底物结合并诱导自噬发展[14]。自噬对机体抵抗病毒、细菌等病原微生物的入侵起到了非常重要的作用。病原菌感染时损伤相关分子模式(damage-associated molecular patterns,DAMP)和病原相关分子模式(pathogen-associated molecular pattern,PAMP)可通过Toll样受体(Toll-like receptors,TLR)4或TLR9激活核因子NF-κB、MAPK等信号通路,直接调控自噬相关蛋白质的表达,或通过蛋白激酶B/哺乳动物雷帕霉素靶蛋白(Akt/mTOR)通路激活自噬[15]。为了避免被宿主免疫系统清除,病原体也发展出各种防卫机制。例如福氏志贺氏菌有2种III型分泌系统效应蛋白 质——VirA和IcsB,它们可通过不同机制间接阻断自噬识别以避免被清除[16]。李斯特菌可以显著诱导巨噬细胞发生线粒体自噬反应以维持自身的存活[17]

3. VD/VDR、自噬与感染性疾病

自噬在激活宿主免疫的同时限制过度的炎症反应,是机体调节免疫和炎症反应的关键机制[18-19]。VD/VDR信号通路通过激活与先天免疫相关基因的转录而发挥抑制感染的作用[20]。VD/VDR可以诱导和调节自噬,进而发挥抗感染的作用。其中,VD/VDR-抗菌肽轴与自噬的相互作用是目前研究的热点[21]。抗菌肽是一种抗菌蛋白(antimicrobial proteins,AMPs),除了可以直接杀灭病原体,还可以调节机体免疫和炎症反应[22]。已有研究[23]表明抗菌肽可通过介导BECN1ATG5等自噬基因的转录来激活自噬,但具体机制有待进一步阐明。VD/VDR还可通过增加细胞质中游离钙的水平,增加BECN1的作用,抑制mTOR,促进自噬体成熟等途径激活自噬[24]。另外,VD通过降低NF-κB、TNF-α或IFN-γ水平来减少自噬,VDR可增加p19INK4D的水平,使细胞免于自噬诱导的死亡[25]。因此,VD/VDR信号通路对自噬的调节是双向的。

3.1. VD/VDR、自噬与细菌感染

VD/VDR-抗菌肽轴在结核分枝杆菌(mycobacterium tuberculosis,Mtb)感染中调节自噬中的作用已得到广泛研究。生理浓度的VD或激活的VDR可诱导抗菌肽的合成,激活被Mtb感染的单核细胞的自噬,促进胞内Mtb吞噬体的成熟,进而清除Mtb[26-27]。VD可促进感染Mtb的单核细胞IL-12的转录和IFN-γ的生成[28]。IFN-γ是辅助T细胞(Th)亚型Th1获得性免疫应答中的重要细胞因子,它单独或与CD40配体联合[29]可增强VDR介导的人单核细胞/巨噬细胞的抗菌效应。人巨噬细胞中IL-12和IL-18结合后,可以诱导抗菌肽生成和激活自噬,抑制巨噬细胞和肺上皮细胞内分枝杆菌的生长[30]。因此,功能性VDR信号通过调节被Mtb感染的单核细胞的自噬、吞噬体-溶酶体融合和细胞因子的产生,将适应性免疫应答和固有免疫应答联系起来。

此外,人们还发现抗菌肽可通过内吞过程被内化进入溶酶体,从而增强人巨噬细胞对金黄色葡萄球菌的杀菌活性[31]。VD可通过上调VDR和抗菌肽的表达抑制幽门螺杆菌的感染[32]。在感染沙门菌的肠道上皮细胞中,VD/VDR可通过上调ATG16的表达激活自噬,同时抑制炎症因子IL-1β的表达[33]

3.2. VD/VDR、自噬与病毒感染

获得性免疫途径尚未建立的时候,自噬是机体清除病毒的主要方式。细胞被病毒感染后,自噬通过模式识别受体(pathogen recognition receptors,PRR)触发先天免疫反应,诱导干扰素的产生,并攻击病毒[34]。自噬降解病毒之后将病毒抗原呈递给T淋巴细胞,激活机体适应性免疫。然而,某些病毒经过进化已经获得了“劫持”自噬的能力,在特定情况下可以在自噬体内继续进行复制,如黄病毒进入细胞后可利用内质网衍生的自噬体膜进行病毒复制[35]。病毒还可以通过激活自噬来保护自身免受宿主免疫系统的识别和清除[36]。甲型流感病毒(influenza A virus,IAV)通过增加膜蛋白血凝素(hemagglutinin,HA)和M2的合成间接刺激自噬[37],但其M2可阻断自噬体和溶酶体的融合[38],抑制溶酶体成熟。

VD/VDR具有提高机体固有免疫的作用,VD诱导抗菌肽CAMP/LL37的表达是抗病毒过程的关键。在甲型流感病毒感染的人肺上皮细胞A549中,VD可使被病毒抑制的自噬融合恢复,并通过VDR信号途径减少细胞凋亡[39]。用VD预处理A549后,A549对人鼻病毒(human rhinovims,HRV)-16产生短暂抵抗,并抑制HRV-16诱导的细胞间黏附分子-1(intercelluar adhesion molecule,ICAM-1)和血小板活化因子受体(platelet-activating factor receptor,PAFR)的表达,ICAM-1为鼻病毒的细胞受体,PAFR是与肺炎链球菌黏附到呼吸道上皮细胞有关的G蛋白偶联受体。这些效应与NF-κB抑制蛋白(inhibitor of nuclear factor kappa-B,IκB)α和抗菌肽LL-37的表达增加有关[40]。同时,VD/VDR可促进抗炎细胞因子产生,避免过度炎症反应[41]

新型冠状病毒肺炎(COVID-19)暴发以来已经造成了巨大的危害和经济损失,引发COVID-19的冠状病毒已被国际病毒分类委员会命名为严重急性呼吸综合征冠状病毒2(severe acute respiratory syndrome coronavirus 2,SARS-CoV-2)。SARS-CoV-2通过血管紧张素转换酶2(angiotensin convert enzyme 2,ACE2)受体进入II型肺上皮细胞和巨噬细胞,随后将病毒RNA释放到细胞质中,产生病毒蛋白质,并启动病毒复制、转录。病毒感染致使细胞ACE2受体下调,ACEII的生成增多[42],血浆中过高水平的ACEII将导致急性呼吸窘迫综合征(acute respiratory distress syndrome,ARDS)及心肺损伤[43]。此外,病毒感染使促炎细胞因子生成增多,诱导肺部中性粒细胞和巨噬细胞的募集,甚至发生细胞因子风暴,引起肺上皮细胞凋亡、肺水肿、ARDS和多器官衰竭,最终导致患者死亡[44]

到目前为止,尚无直接的体外或者动物实验证据可以证明自噬与SARS-CoV-2感染相关,但既往研究[45]发现:病毒会在宿主细胞中形成双膜囊泡(double-membrane vesicle,DMVs),然后进行复制。与哺乳动物自噬体相似,DMVs可能来源于内质网和其他细胞膜[46],提示冠状病毒与宿主自噬途径之间可能存在相互作用。在某些类型的细胞中,冠状病毒可能通过非典型的自噬途径进行复制[47-48]。自噬在冠状病毒感染中起至关重要的作用,已经成为COVID-19治疗的一个新的靶点。目前,氯喹和羟基氯喹因其通过提高溶酶体的pH值抑制自噬过程的作用而受到广泛的关注,并且许多国家都单独或联合使用氯喹/羟基氯喹作为首选治疗[49]。大环内酯类抗生素如阿奇霉素,也因其具有自噬抑制作用[50],常与氯喹/羟基氯喹联合治疗COVID-19。尽管氯喹/羟基氯喹在体外实验中有抑制作用,但其无论是单用或联合阿奇霉素使用,在临床试验中均未显示出对控制SARS-CoV-2感染有益[51-52]。而使用上述药物带来的不良反应,短期内也难以评估,针对自噬的靶向药物,尚需要更多的研究数据。

VD/VDR可以抑制TNF/NF-κB和IFN-γ信号通路[53],并减少IL-6等促炎细胞因子的产生[54]。VD还可以通过VDR通路抑制肾素基因的表达,从而调节肾素-血管紧张素-醛固酮系统的活性,改善LPS引起的ARDS[55]。但尚未有关于利用VD/VDR调控自噬增强细胞对COVID-19清除的研究报道,这可能成为关于COVID治疗的研究新方向。

4. 结 语

尽管不断地有新的抗生素被开发以对抗细菌耐药,但目前耐药菌感染仍然是世界范围内的巨大威胁,其相关的发病率及病死率均很高。自噬作为细胞最古老的自稳系统,在机体抵抗病原体入侵、调节固有免疫和获得性免疫方面有重要地位。VD/VDR通路在免疫系统中十分活跃,但补充VD以抗感染的临床研究结果一直存在争议[56],可能因为不同的病原体具有不同的对抗机体免疫系统的机制,或不同的个体免疫系统对同一病原体的反应不同。若VD/VDR信号通路调节自噬的具体机制得以阐明,可能成为后抗生素时代个体化治疗抗感染的新方向。

基金资助

海南省自然科学基金(819MS139)。

This work was supported by the Natural Science Foundation of Hainan Province, China (819MS139).

利益冲突声明

作者声称无任何利益冲突。

作者贡献

侯宇、李景辉 论文构想、撰写、修改;邓超 论文修改。所有作者阅读并同意最终的文本。

原文网址

http://xbyxb.csu.edu.cn/xbwk/fileup/PDF/202206780.pdf

参考文献

  • 1. Martens PJ, Gysemans C, Verstuyf A, et al. Vitamin D’s effect on immune function[J]. Nutrients, 2020, 12(5): 1248. 10.3390/nu12051248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2. Prietl B, Treiber G, Pieber T, et al. Vitamin D and immune function[J]. Nutrients, 2013, 5(7): 2502-2521. 10.3390/nu5072502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3. Wang YJ, Zhu JG, DeLuca HF. Where is the vitamin D receptor?[J]. Arch Biochem Biophys, 2012, 523(1): 123-133. 10.1016/j.abb.2012.04.001. [DOI] [PubMed] [Google Scholar]
  • 4. Rosen CJ, Adams JS, Bikle DD, et al. The nonskeletal effects of vitamin D: an Endocrine Society scientific statement[J]. Endocr Rev, 2012, 33(3): 456-492. 10.1210/er.2012-1000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5. Piotrowska A, Wierzbicka J, Żmijewski MA. Vitamin D in the skin physiology and pathology[J]. Acta Biochim Pol, 2016, 63(1): 17-29. 10.18388/abp.2015_1104. [DOI] [PubMed] [Google Scholar]
  • 6. Apayd M, Beysel S, Eyerci N, et al. The VDR gene FokI polymorphism is associated with gestational diabetes mellitus in Turkish women[J]. BMC Med Genet, 2019, 20(1): 82. 10.1186/s12881-019-0820-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7. Chen HM, Zhu J. Vitamin D receptor rs2228570 polymorphism and susceptibility to ovarian cancer: an updated meta-analysis[J]. J Obstet Gynaecol Res, 2018, 44(3): 556-565. 10.1111/jog.13534. [DOI] [PubMed] [Google Scholar]
  • 8. Chakravarti A, Bharara T, Kapoor N, et al. Levels of 25-hydroxy vitamin D3 and vitamin D receptor polymorphism in severe dengue cases from new Delhi[J]. Trop Med Infect Dis, 2020, 5(2): 72. 10.3390/tropicalmed5020072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9. Byun S, Lee E, Lee KW. Therapeutic implications of autophagy inducers in immunological disorders, infection, and cancer[J]. Int J Mol Sci, 2017, 18(9): 1959. 10.3390/ijms18091959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10. Kaur J, Debnath J. Autophagy at the crossroads of catabolism and anabolism[J]. Nat Rev Mol Cell Biol, 2015, 16(8): 461-472. 10.1038/nrm4024. [DOI] [PubMed] [Google Scholar]
  • 11. Alizadeh J, Shojaei S, Sepanjnia A, et al. Simultaneous detection of autophagy and epithelial to mesenchymal transition in the non-small cell lung cancer cells[J]. Methods Mol Biol, 2019, 1854: 87-103. 10.1007/7651_2017_84. [DOI] [PubMed] [Google Scholar]
  • 12. McAlinden KD, Deshpande DA, Ghavami S, et al. Autophagy activation in asthma airways remodeling[J]. Am J Respir Cell Mol Biol, 2019, 60(5): 541-553. 10.1165/rcmb.2018-0169OC. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13. Randow F, Youle RJ. Self and nonself: how autophagy targets mitochondria and bacteria[J]. Cell Host Microbe, 2014, 15(4): 403-411. 10.1016/j.chom.2014.03.012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14. Rogov V, Dötsch V, Johansen T, et al. Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy[J]. Mol Cell, 2014, 53(2): 167-178. 10.1016/j.molcel.2013.12.014. [DOI] [PubMed] [Google Scholar]
  • 15. 张卉, 冯永文, 姚咏明. 自噬在脓毒症免疫反应中的潜在作用与意义[J]. 中华急诊医学杂志, 2019, 28(2): 131-134. 10.3760/cma.j.issn.1671-0282.2019.02.001. [DOI] [Google Scholar]; ZHANG Hui, FENG Yongwen, YAO Yongming. Potential role and significance of autophagy in immune response to sepsis[J]. Chinese Journal of Emergency Medicine, 2019, 28(2): 131-134. 10.3760/cma.j.issn.1671-0282.2019.02.001. [DOI] [Google Scholar]
  • 16. Liu W, Zhou Y, Peng T, et al. N ε-fatty acylation of multiple membrane-associated proteins by Shigella IcsB effector to modulate host function[J]. Nat Microbiol, 2018, 3(9): 996-1009. 10.1038/s41564-018-0215-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17. Zhang YF, Yao YK, Qiu XX, et al. Listeria hijacks host mitophagy through a novel mitophagy receptor to evade killing[J]. Nat Immunol, 2019, 20(4): 433-446. 10.1038/s41590-019-0324-2. [DOI] [PubMed] [Google Scholar]
  • 18. Levine B, Kroemer G. Biological functions of autophagy genes: a disease perspective[J]. Cell, 2019, 176(1/2): 11-42. 10.1016/j.cell.2018.09.048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19. Deretic V, Levine B. Autophagy balances inflammation in innate immunity[J]. Autophagy, 2018, 14(2): 243-251. 10.1080/15548627.2017.1402992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20. Ismailova A, White JH. Vitamin D, infections and immunity[J]. Rev Endocr Metab Disord, 2022, 23(2): 265-277. 10.1007/s11154-021-09679-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21. Chung C, Silwal P, Kim I, et al. Vitamin D-cathelicidin axis: at the crossroads between protective immunity and pathological inflammation during infection[J]. Immune Netw, 2020, 20(2): e12 (2020-02-11) [2021-06-15]. 10.4110/in.2020.20.e12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22. Mandal SM, Manna S, Mondal S, et al. Transcriptional regulation of human defense peptides: a new direction in infection control[J]. Biol Chem, 2018, 399(11): 1277-1284. 10.1515/hsz-2018-0182. [DOI] [PubMed] [Google Scholar]
  • 23. Shin DM, Yuk JM, Lee HM, et al. Mycobacterial lipoprotein activates autophagy via TLR2/1/CD14 and a functional vitamin D receptor signalling[J]. Cell Microbiol, 2010, 12(11): 1648-1665. 10.1111/j.1462-5822.2010.01497.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24. 刘蕾, 李景辉, 邓超, 等. 维生素D影响自噬的作用机制研究进展[J]. 中华危重病急救医学, 2018, 30(11): 1103-1106. 10.3760/cma.j.issn.2095-4352.2018.11.019. [DOI] [PubMed] [Google Scholar]; LIU Lei, LI Jinghui, DENG Chao, et al. Advances in the mechanism of vitamin D affecting autophagy[J]. Chinese Critical Care Medicine, 2018, 30(11): 1103-1106. 10.3760/cma.j.issn.2095-4352.2018.11.019. [DOI] [PubMed] [Google Scholar]
  • 25. Wu S,Sun J. Vitamin D,vitamin D receptor,and macroautophagy ininflammation and infection[J]. Discov Med, 2011, 11(59): 325-335. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3285235/. [PMC free article] [PubMed] [Google Scholar]
  • 26. Liu PT, Stenger S, Li HY, et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response[J]. Science, 2006, 311(5768): 1770-1773. 10.1126/science.1123933. [DOI] [PubMed] [Google Scholar]
  • 27. 万春辉, 杜先智. 维生素D诱导自噬对巨噬细胞清除结核分枝杆菌的作用[J]. 中国免疫学杂志, 2015, 31(4): 456-461. 10.3969/j.issn.1000-484X.2015.04.005. [DOI] [PubMed] [Google Scholar]; WAN Chunhui, DU Xianzhi. Role of vitamin D-induced autophagy in macrophages against Mycobacterium tuberculosis[J]. Chinese Journal of Immunology, 2015, 31(4): 456-461. 10.3969/j.issn.1000-484X.2015.04.005. [DOI] [Google Scholar]
  • 28. Gough ME, Graviss EA, May EE. The dynamic immunomodulatory effects of vitamin D 3 during Mycobacterium infection[J]. Innate Immun, 2017, 23(6): 506-523. 10.1177/1753425917719143. [DOI] [PubMed] [Google Scholar]
  • 29. Klug-Micu GM, Stenger S, Sommer A, et al. CD40 ligand and interferon-γ induce an antimicrobial response against Mycobacterium tuberculosisin human monocytes[J]. Immunology, 2013, 139(1): 121-128. 10.1111/imm.12062. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30. Yang R, Yang EZ, Shen L, et al. IL-12+IL-18 cosignaling in human macrophages and lung epithelial cells activates cathelicidin and autophagy, inhibiting intracellular mycobacterial growth[J]. J Immunol, 2018, 200(7): 2405-2417. 10.4049/jimmunol.1701073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31. Tang X, Basavarajappa D, Haeggström JZ, et al. P2X7 receptor regulates internalization of antimicrobial peptide LL-37 by human macrophages that promotes intracellular pathogen clearance[J]. J Immunol, 2015, 195(3): 1191-1201. 10.4049/jimmunol.1402845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32. Zhou AN, Li L, Zhao GP, et al. Vitamin D3 inhibits Helicobacter pylori infection by activating the VitD3/VDR-CAMP pathway in mice[J]. Front Cell Infect Microbiol, 2020, 10: 566730. 10.3389/fcimb.2020.566730. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33. Huang FC. Vitamin D differentially regulates Salmonella-induced intestine epithelial autophagy and interleukin-1β expression[J]. World J Gastroenterol, 2016, 22(47): 10353-10363. 10.3748/wjg.v22.i47.10353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34. Deretic V, Saitoh T, Akira S. Autophagy in infection, inflammation and immunity[J]. Nat Rev Immunol, 2013, 13(10): 722-737. 10.1038/nri3532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35. Choi Y, Bowman JW, Jung JU. Autophagy during viral infection--a double-edged sword[J]. Nat Rev Microbiol, 2018, 16(6): 341-354. 10.1038/s41579-018-0003-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36. Yordy B, Iwasaki A. Autophagy in the control and pathogenesis of viral infection[J]. Curr Opin Virol, 2011, 1(3): 196-203. 10.1016/j.coviro.2011.05.016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37. Zhirnov OP, Klenk HD. Influenza A virus proteins NS1 and hemagglutinin along with M2 are involved in stimulation of autophagy in infected cells[J]. J Virol, 2013, 87(24): 13107-13114. 10.1128/JVI.02148-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38. Gannagé M, Dormann D, Albrecht R, et al. Matrix protein 2 of influenza A virus blocks autophagosome fusion with lysosomes[J]. Cell Host Microbe, 2009, 6(4): 367-380. 10.1016/j.chom.2009.09.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39. Godbole NM, Sinha RA, Tiwari S, et al. Analysis of influenza virus-induced perturbation in autophagic flux and its modulation during Vitamin D3 mediated anti-apoptotic signaling[J]. Virus Res, 2020, 282: 197936. 10.1016/j.virusres.2020.197936. [DOI] [PubMed] [Google Scholar]
  • 40. Greiller CL, Suri R, Jolliffe DA, et al. Vitamin D attenuates rhinovirus-induced expression of intercellular adhesion molecule-1 (ICAM-1) and platelet-activating factor receptor (PAFR) in respiratory epithelial cells[J]. J Steroid Biochem Mol Biol, 2019, 187: 152-159. 10.1016/j.jsbmb.2018.11.013. [DOI] [PubMed] [Google Scholar]
  • 41. Charoenngam N, Holick MF. Immunologic effects of vitamin D on human health and disease[J]. Nutrients, 2020, 12(7): 2097. 10.3390/nu12072097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42. Goyal P, Choi JJ, Pinheiro LC, et al. Clinical characteristics of covid-19 in New York City[J]. N Engl J Med, 2020, 382(24): 2372-2374. 10.1056/NEJMc2010419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43. Mercola J, Grant WB, Wagner CL. Evidence regarding vitamin D and risk of COVID-19 and its severity[J]. Nutrients, 2020, 12(11): 3361. 10.3390/nu12113361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44. Berlin DA, Gulick RM, Martinez FJ. Severe COVID-19[J]. N Engl J Med, 2020, 383(25): 2451-2460. 10.1056/nejmcp2009575. [DOI] [PubMed] [Google Scholar]
  • 45. van den Worm SHE, Knoops K, Zevenhoven-Dobbe JC, et al. Development and RNA-synthesizing activity of coronavirus replication structures in the absence of protein synthesis[J]. J Virol, 2011, 85(11): 5669-5673. 10.1128/JVI.00403-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46. Axe EL, Walker SA, Manifava M, et al. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum[J]. J Cell Biol, 2008, 182(4): 685-701. 10.1083/jcb.200803137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47. Carmona-Gutierrez D, Bauer MA, Zimmermann A, et al. Digesting the crisis: autophagy and coronaviruses[J]. Microb Cell, 2020, 7(5): 119-128. 10.15698/mic2020.05.715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48. Miller K, McGrath ME, Hu ZQ, et al. Coronavirus interactions with the cellular autophagy machinery[J]. Autophagy, 2020, 16(12): 2131-2139. 10.1080/15548627.2020.1817280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49. Bonam SR, Muller S, Bayry J, et al. Autophagy as an emerging target for COVID-19: lessons from an old friend, chloroquine[J]. Autophagy, 2020, 16(12): 2260-2266. 10.1080/15548627.2020.1779467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50. Moriya S, Che XF, Komatsu S, et al. Macrolide antibiotics block autophagy flux and sensitize to bortezomib via endoplasmic Reticulum stress-mediated CHOP induction in myeloma cells[J]. Int J Oncol, 2013, 42(5): 1541-1550. 10.3892/ijo.2013.1870. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51. Geleris J, Sun YF, Platt J, et al. Observational study of hydroxychloroquine in hospitalized patients with covid-19[J]. N Engl J Med, 2020, 382(25): 2411-2418. 10.1056/nejmoa2012410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52. Magagnoli J, Narendran S, Pereira F, et al. Outcomes of hydroxychloroquine usage in United States veterans hospitalized with COVID-19[J]. medRxiv, 2020: 2020. 04. 16,. 20065920. 10.1101/2020.04.16.20065920. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53. Bilezikian JP, Bikle D, Hewison M, et al. Mechanisms in endocrinology: vitamin D and COVID-19[J]. Eur J Endocrinol, 2020, 183(5): R133-R147. 10.1530/EJE-20-0665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54. Silberstein M. Correlation between premorbid IL-6 levels and COVID-19 mortality: potential role for vitamin D[J]. Int Immunopharmacol, 2020, 88: 106995. 10.1016/j.intimp.2020.106995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55. Xu J, Yang JL, Chen J, et al. Vitamin D alleviates lipopolysaccharide‑induced acute lung injury via regulation of the renin‑angiotensin system[J]. Mol Med Rep, 2017, 16(5): 7432-7438. 10.3892/mmr.2017.7546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56. Kolloli A, Subbian S. Host-directed therapeutic strategies for tuberculosis[J]. Front Med (Lausanne), 2017, 4: 171. 10.3389/fmed.2017.00171. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Central South University Medical Sciences are provided here courtesy of Central South University

RESOURCES