Abstract
尽管目前手术水平和影像学检查方法有了长足的进步,吻合口漏仍然是肠外科手术后的主要并发症,发病率和病死率都很高,并且吻合口漏已经成为威胁患者术后生命安全、预后效果和生活质量的严重并发症之一。吻合口漏的发生涉及多种病理、生理因素的改变,并受机体肠道微生物群、炎症和免疫系统的影响。术前患者肠道准备会改变肠道内微生物种群的种类和数量,术中的吻合方式和出血量等多种因素也与吻合口漏的发生密切相关。此外,吻合口漏的出现与结直肠癌患者术后肿瘤的局部复发存在关联性,术中进行的保护性造口能够降低吻合口漏的发生率,联合术前调整患者的营养基础状态和控制炎症因子对避免术后发生吻合口漏具有重要意义。
Keywords: 结直肠癌, 吻合口漏, 局部复发, 肠道微生物群, 吻合口愈合, 炎症, 预后, 危险因素, 转移性造口
Abstract
Despite the considerable progress in surgical level and imaging examination methods, anastomotic leakage is still the major complication after intestinal surgery with high incidence rate and mortality rate. Moreover, anastomotic leakage has become one of the serious complications threatening the postoperative life safety, prognosis and quality of life. The occurrence of anastomotic leakage involves the changes of a variety of pathophysiological factors, and is affected by intestinal microbiota, inflammation and immune system. Preoperative intestinal preparation will change the type and number of microbial population in the intestine. Intraoperative anastomotic mode and bleeding volume are also closely related to the occurrence of anastomotic leakage. In addition, the occurrence of anastomotic leakage is associated with local recurrence of colorectal cancer after surgery. Intraoperative protective stoma is confirmed to reduce the incidence of anastomotic leakage. Combined preoperative adjustment of nutritional status and inflammatory factors is important for avoiding anastomotic leakage after surgery.
Keywords: colorectal cancer, anastomotic leakage, local recurrence, gut microbiome, anastomotic healing, inflammation, prognosis, risk factor, diverting stoma
吻合口漏(anastomotic leakage,AL)是结直肠癌患者术后最具危险性的并发症之一,根据手术部位(直肠或结肠)、患者术前生理状态、有无其他基础危险因素等差异,AL波动在1%~30%(国内报道AL发生率为5%~10%,国外报道发生率为4%~25%)[1]。目前虽然在外科手术技巧(腹腔镜及机器人手术的应用)和围手术期护理方面有了长足的改进,但由于AL的高发病率和致死率,AL仍然是结直肠外科医生最担心的严重术后并发症[2]。研究[3-4]显示:与结直肠癌术后AL密切相关的是较高的病死率和局部复发率以及医疗资源的消耗和治疗费用的提升,并且AL的出现直接影响术后恢复过程,与结直肠癌患者较差的生存预后有关。术前单纯使用腹腔内引流或简单的肠道清洁准备对预防AL的效果不佳,因此有必要深入了解结直肠癌术后AL的发生及愈合机制,在此基础上制订个性化的预防策略,不断优化结直肠癌患者术后的护理及治疗方案,从而有效降低AL的发生率。众所周知,肿瘤的局部复发是导致结直肠癌患者术后预后结局差的主要危险因素,并且已经了解到AL与肿瘤局部复发有着密切的联系,因此本文特别关注AL与肿瘤局部复发之间存在的作用网络,可为改善临床预后提供新的治疗策略。
1. AL的定义及流行病学分析
1.1. AL的概念及目前研究现状
目前AL还没有统一的标准定义,在97项研究中,出现了56种不同的AL定义[5]。国际直肠癌研究小组(International Rectal Cancer Research Group,ISGRC)则将AL描述为管道或者空腔脏器吻合口连接处的管壁塌陷,引起肠道内外空间之间相互连通的解剖缺陷和病损状态[6],此外在ISGRC的建议中吻合口附近的盆腔脓肿也被视为AL[7],这是以解剖生理为基础的形象阐述,但对实际的临床诊断作用不大。外科医生更多地依靠典型临床症状(如腹膜刺激征)的出现及相关实验室和影像学的检查结果来判断AL的存在与否。在生命体征稳定的患者中,检测AL的影像学检查可经口服药物、直肠或静脉注射药物开展,之后可以与计算机断层扫描(computed tomography,CT)图像相对比,指导后续的治疗方案[8]。研究[9]报道CT诊断AL的敏感性为60%~100%,因此CT报告阴性时并不能完全排除AL的存在。通常在术后第5天,AL患者会出现发热和C反应蛋白、白细胞计数及降钙素原的升高,此时常伴有腹膜刺激征或肠麻痹的表现[3]。有别于治疗方式的不同,ISGRC依据临床和放射学的特征,将AL分为3个等级,即A级、B级和C级:A级为患者术后常无特殊临床症状和体征,起病比较隐匿,仅在行造口还纳前行影像学检查或肠镜检查前发现AL的存在,可能带来的不良影响是延长造口闭合的时间,对患者的整体治疗效果及预后无影响;B级为患者常出现不典型或较局限的腹膜炎临床表现,外科医生可以依据此类症状诊断AL的存在,对这类患者仅需进行抗感染及局部通畅引流治疗,一般不需急诊手术干预;C级为患者常表现出较明显的腹膜刺激征和其他腹腔内感染的征象,病情危重,通常需要行急诊手术控制感染,术后可能导致患者总体生存时间缩短[7]。此外,外科医生需要重新明确AL的定义并规范诊断标准,这对加快AL的研究(包括发生机制的探索)及促进治疗策略的改进至关重要。目前对AL研究的最终目的是降低病死率并改善临床预后,早期诊断AL的发生并给予适当处理有助于降低局部复发率,这是由于AL可能会导致辅助化学治疗(以下简称化疗)时间的推迟或完全不化疗,从而影响综合治疗效益,因此早期的诊断对于改善预后至关重要。
1.2. AL相关的流行病学分析
在不同的人种、国家和地区中,AL的发生率差异较大,这可能是由于AL的非标准化定义和治疗方案以及临床变量的差异所致[10]。根据诊断标准和随访时间的不同,AL的平均发病率约为11%[11],并且越低位的肠管吻合(尤其是结肠肛管部位的吻合)术后AL发病率越高,为10%~20%,相反越高位的小肠AL的发病率越低,为1%~2%[12]。在丹麦进行的一项包括9 333名患者的全国性研究[13]中,结肠癌术后AL发生率为6.4%,另外对84项研究报告的系统回顾和荟萃分析显示直肠癌术后AL发病率为11%[14]。也有研究[15]报道AL可使术后病死率从1.6%提高到12.0%。在一项对纳入78 434例结直肠癌术后患者的系统性回顾研究[16]中,AL的出现增加了局部复发风险[危险比(risk ratio,RR)为1.90;95%可信区间(95% CI)为1.48~2.44],并能减少患者总体生存时间(RR为1.36;95% CI为1.24~1.50)。大部分AL在术后2周之内被诊断出来[17],其中大部分早期AL在术后第6天内出现,另有12%的患者在术后30 d甚至更晚的时间被诊断[18]。有73%的AL出现在吻合口后壁上[19],这可能与肠管后壁容易发生供血不足和承受的腔内压力较大有关。Gessler等[20]评估了600名因结直肠癌或良性息肉等实行结直肠切除吻合术的患者,术后AL发病率为10%,平均在术后第8.8天被诊断,有73%的被明确诊断的患者行腹部CT检查,其中25%的患者结果呈阴性。在另一项对1 772例结直肠癌患者的前瞻性研究[21]中发现:在诊断AL的患者中,5年总体生存率为44.3%,而无AL的患者为64%。AL是影响预后结局的独立危险因素。
2. 诱发AL的危险因素
2.1. 炎症因素
越来越多的研究[22-23]表明炎症是一种致癌因素,此外炎症还与术后并发症的发生概率及严重程度有关,如中性粒细胞-淋巴细胞比值(neutrophil-lymphocyte ratio,NLR)在多种恶性肿瘤中被证实与预后和术后并发症相关,NLR越高,预后越差,术后并发症包括AL的发生概率越大。在临床中可以观察到AL发生时常常伴随着炎症指标的升高,从侧面反映出炎症是引起AL的重要因素,但其中具体的作用机制仍不清楚。其中,缺氧环境已经被证实在多种器官中可以诱发炎症反应,肠道内由于存在兼性厌氧菌亚群,对缺氧环境有更强的适应性,其中肠黏膜细胞释放的缺氧诱导因子(hypoxia inducible factor,HIF)在氧气不足的条件下会转移进入细胞核内并与DNA结合,激发细胞炎症和免疫反应[24]。另外一种潜在的机制是缺氧诱发核因子κB(nuclear factor-κB,NF-κB)磷酸化并启动细胞内信号转导途径,此时缺氧作为刺激信号增强了炎症反应,而炎症期反应性增多的中性粒细胞依靠糖酵解过程以维持能量供给,更加重了细胞内的缺氧程度,并进一步导致肠壁AL的发病。通过调节肠道内的微生物群落的组成和数量,可以改变炎症反应的强弱程度,其中的机制可能涉及脂蛋白-肿瘤坏死因子α(tumor necrosis factor α,TNF-α)-白介素-10 (interleukin-10,IL10)信号途径[25]。但临床应用抗生素预防性抗炎治疗仍未能有效减少AL的发生,这表明AL的发生涉及多种因素,并且作用机制错综复杂,单一的依靠消炎或者微生物治疗方法不能获得可靠的预防效果。宿主炎症调节基因的多态性参与了AL的进展已经在临床研究中得到了验证,但具体的作用机制仍有待探索。最近的一项研究[26]表明前列腺素H合成酶2(prostaglandin H synthase 2,PTGS2)单核苷酸多态性的基因纯合性与AL的发病风险增加有关,可能的原因是PTGS2基因多态性与环氧合酶-2(cyclooxygenase-2,COX-2)的表达降低相关,而COX-2诱导的产物前列腺素E2(prostaglandin E2,PGE2)表达增加对结直肠癌术后吻合口的愈合至关重要,当使用COX-2抑制剂时AL的发病率升高,这可能是影响了吻合口部位的血管形成所致,但这项研究没有区分结肠和直肠切除的类别。另外一项研究[27]则显示PTGS2所致的AL发病率约为3%,未来需要更多研究集中在探索炎症基因多态性与AL发病之间的相关性及其详细的作用机制。
2.2. 手术因素
手术中多种操作条件的改变是AL发生的独立危险因素。首先是术中出血量的影响,其次是术中手吻合或者器械吻合的影响,也包括单层缝合和双层缝合的差别,手术时间超过4 h也是一个重要的危险因素[28]。围手术期输血是指在手术期间及术后2 d内的同种异体输血,输血与否由手术医生和麻醉师共同决定[29],术中失血过多后由于输血和由此带来的免疫抑制作用增加了AL发生的概率,有研究[30]报道围手术期输血患者发生AL的概率为22.2%,相反未输血者发生AL的概率为1.2%,这在临床上带来了一种更为保守的输血治疗方法。另外,术中发生的吻合口缺血与AL密切相关,在吻合技术上一方面可以充分游离脾曲肠管,另一方面可以对肠系膜下动静脉进行高位结扎以实现无张力吻合,但高位结扎肠系膜下动脉也可能导致吻合口血供减少以及增加损伤腹下神经丛的风险[31]。此外,与外科医生相关的经验及专业性也是影响AL发病率的重要手术因素。急诊手术或肠道准备不佳(合并梗阻)的患者相比于完善肠道准备的择期手术患者具有更高的AL发病率[32],这可能是由于不完善的肠道准备增加了术后吻合口愈合的难度,尤其是更易引起吻合处的感染而导致吻合口延迟愈合甚至不愈合。目前,即使处在比较复杂的肠道准备和术前营养状态下,外科医生也趋向于实行根治性切除和一期吻合,这是更加明确的手术方式,原因在于延迟手术和二次手术会延长患者的衰弱期时间,并会带来更多的术后并发症[33]。外科医生更多地会根据局部或全身性感染的严重程度或者考虑患者的基础状态以及是否合并慢性心肺疾病、肝功能不全等做出最适合的选择,对不能进行一期切除吻合的患者实施肠造口转流术也是可以接受的。在对外科医生手术技巧的预测方面,已经开发出的分析方法是序贯概率比测试[34],这一方法的预测依赖于高质量的统计数据和对吻合口数目、永久性造口比例等因素的调整,其结果也可以定义手术操作水平超过平均标准的外科医生。此外手术时选择的吻合口位置直接影响了吻合口的血液供应及术中吻合的困难程度,是导致AL发生的重要危险因素之一[35]。当吻合口位置较低(腹膜返折以下)尤其是距肛缘6 cm以内时出现AL的概率较大[36]。此外,与腹膜外吻合术相比,腹膜内吻合术具有更低的渗漏率,一项前瞻性研究[36]显示腹膜外吻合发生AL的概率为6.6%,而腹膜内吻合的风险仅为1.5%,这些数据凸显了外科医生在进行肠管缝合后AL发生率存在差异。术中吻合口黏膜的外观可作为判断AL发生风险的依据,Sujatha-Bhaskar等[37]发现当吻合口黏膜存在缺血或充血征象时,AL的发病风险增加,因此作者建议对术中存在黏膜缺血的吻合口可以进行翻修。手部缝合和吻合器缝合技术在AL发病率上是否存在差异尚不明确,Choy等[38]的回顾性研究中发现:就结直肠吻合术而言,手部缝合和器械缝合在AL的发病率上没有明显差异。
2.3. 患者基础因素
基础因素是指患者本身术前具有的生理相关条件,包括年龄[39]、性别[40]、过度饮酒或吸烟[41]、体重指数[39]、营养不良(低蛋白血症或近期体重明显下 降)[42]、贫血[43]、术前放射治疗(以下简称放疗)和化疗病史(尤其是在放疗周期结束后的第11~17天内手术者)[44]、美国麻醉师协会(American Society of Anes-thesiologists,ASA)评分[43]、围手术期内使用皮质类固醇药物[45]、术前肠道微生物种群组成等,此外患者合并有缺血性心脏病及糖尿病性脊髓炎也是重要的危险因素[46]。其中患者年龄较大或者为男性肥胖患者,以及术前存在营养不良或者贫血状态时均可以增加术后AL的发病率,这些生理条件会导致吻合口血供不足或缺乏促进愈合的必需营养物质,此外在这些条件下吻合口上的微生物组成增加会导致高度协调和连续的吻合口愈合过程发生紊乱[47],因此会导致吻合口愈合延迟或不愈合。同样的道理,术前患者有放化疗病史或者合并心脏肺部疾患、肾疾病以及糖尿病时加重了术后吻合口愈合的负担,导致AL发病率升高。这提示外科医生在进行消化道吻合术前,应该尽可能地纠正可变危险因素,以此降低AL的发病率。最近Jacobson等[48]的研究支持了一种假设,即局部感染引起吻合口附近肠道微生物群紊乱,伴随的是胶原酶活性增加,导致正常吻合口愈合过程受阻。患者术前的肠道微生物群落是一个复杂的生态系统,包括多种细菌、真菌和病毒,主要存在于在结直肠肠道内并参与维持宿主正常的生理状态的平衡[49]。随着近些年在基因组学、蛋白质组学和代谢组学上研究技术的进步,研究者[50]发现肠道内的细菌可以交换遗传物质并与宿主生存条件相适应,且肠道内微生物群落在不同个体间存在差异。对于不同种族或者生活在不同国家、地区以及不同饮食习惯的患者来讲,术前通过静脉注射抗生素不加区别地消灭肠道内微生物可能不会获得益处。在一项研究[51]中发现:对结直肠癌患者使用标准推荐的静脉注射抗生素方案不能降低粪大肠杆菌或其他胶原降解菌的基质金属蛋白酶9(matrix metalloproteinases 9,MMP9)活性,而在大鼠体内发现局部应用抗生素而不是使用推荐的全身注射方案可以消除粪肠球菌,并能预防AL的发生[52]。Jacobson等[48]通过构建大鼠模型,证实与全身静脉使用抗生素相比,以粪肠球菌为靶点的局部抗生素灌肠治疗显著降低了胶原酶活性和AL的发病率。因此,术前口服抗生素局部作用于肠道组织可以防止AL的发生,并被建议作为术前预防措施的一部分[53]。未来应用新技术可以实现对肠道微生物从术前到术后整个过程变化的监测,并可以将其视作预后标志物,实现对AL的早期诊断和制订个性化的手术治疗方案[54],以期改善结直肠癌患者的预后。AL中发生炎症和感染后通常需要全身应用抗生素或者手术干预,在这种情况下肠道内的常居微生物群改变为病理性的微生物群,抑制了全身免疫系统行使其正常的功能[55],这反过来会进一步诱导炎症反应和肿瘤脱落细胞在吻合口处的定植,从而加重AL带来的不良影响。
3. 预防AL的措施
研究[56]表明:术前基本一致的全身应用抗生素用于肠道准备并不适合所有患者,未来基于基因测序技术制订的预防策略只作用于特殊的病原微生物,可保护肠道内有益微生物的生存环境。这正体现在利用微生物基因组学的技术开发的非细菌性抗病毒药物等其他肠道制剂上,此外还包括特定的肠内营养补充剂,这对于改善患者术前营养不良的状态及维持肠道内生物群落的平衡至关重要[57]。目前由于患者年龄的老化及复杂的外科病情不尽相同,多数临床医生仍然是在经验性知识的基础上制订术前肠道准备的具体实施方案,但确切的作用机制仍不清晰[58]。可以了解的是,通过全肠道冲洗进行的通便清洁和使用抗生素进行的肠道净化是清除肠道有害成分的关键方法,Arabi等[59]则提出了黏膜上残留的细菌应该成为肠道准备的作用靶点,并通过细菌培养和电子显微镜观察证实了口服抗生素在预防效果上优于静脉注射。研究[51]表明粪肠球菌和铜绿假单胞菌是在使用抗生素的条件下也很难从肠道内清除的病原微生物,它们具有产生胶原酶(一种可以分解已经愈合吻合口组织的蛋白质)的能力,并增加胶原蛋白降解活性和激活组织MMP9,这在AL的发生中起着关键的致病作用。胶原酶产生菌在吻合口组织中的常居微生物群结构组成和功能被破坏时进入吻合口并分泌大量胶原酶,因此最有效的肠道准备是建立在精准作用于胶原酶产生菌靶点上,而不是“一刀切”式的消灭肠道内所有微生物群。也有研究[60]认为在微创手术时代,口服抗生素也显得并不重要,因为微创手术的伤口损伤有限,且对微生物群的干扰很小。但想要真正验证这一观点,则需要进行高分辨率的微生物分析以及大样本量的患者参与测试所有可能出现的方案变化,这项实验成本高且需要持续的时间观察。已经有研究[61]显示:保存正常的微生物群有利于促进吻合口的愈合,医师们更应该了解哪些微生物需要被保护以促进愈合,没有必要为了防止感染而全部消灭它们。随着外科学技术的不断发展,可以依靠最新的微生物测序技术来调整临床思维,以实现使用最科学的方法进行肠道准备,从而减少术后AL发病率、术后再住院率,改善患者预后结果。
4. AL与肿瘤局部复发和总体生存率的关系
研究[62]报道结直肠癌术后的局部复发率为1%~23%,且肿瘤的局部复发是导致结直肠癌患者术后预后效果差的重要原因之一[63],最近的研究[64]证明AL会增加局部复发的风险,并由此导致总体生存率或无病生存时间下降,因此有必要充分了解两者之间存在的相关性,并在此基础上制订治疗策略以降低肿瘤复发。近些年来,新辅助化疗和术后辅助化疗方面的进步改善了局部晚期结直肠癌的预后,氟尿嘧啶和加用奥沙利铂的卡培他滨化疗方案都显示出一定的疗效,即使是将其应用于全直肠系膜切除(total mesorectal excision,TME)的患者中[65]。TME的理念是由于直肠系膜是肿瘤复发最常见的部位,为了降低局部复发率故而提出TME的手术原则。但应用新辅助化疗或TME术后患者AL的发生率相对增加,并对短期预后产生不良影响[66]。Karim等[67]在荟萃分析中发现结直肠癌术后发生AL的患者肿瘤局部复发的概率增加近50%,5年无病生存率和总体生存率分别下降6%和9%,其中发生AL的分组中有更多III期结直肠癌患者,但在没有发生AL的分组中存在更为晚期的患者。已有的研究[68]表明肠腔内含有肿瘤细胞,并且肿瘤穿孔后预后很差,因此假设的机制是AL发生时可以使肿瘤细胞从肠腔内逃逸,这些细胞是原发性肿瘤细胞的克隆,可以潜在地经吻合口组织定植在其他器官或腹膜腔中,导致肿瘤复发并缩短生存时间。AL患者延迟甚至不进行术后辅助化疗,未能从辅助化疗药物中获益也是导致生存率差的原因之一[69]。另外需要注意的是,AL会增加术后腹腔和盆腔的感染,在感染过程中升高的炎症标志物[白细胞介素1(IL-1)、MMPs、TNF-α、血管内皮生长因子]提升了癌细胞增殖、迁移的能力和化疗药物的抵抗性[70],并且伴随感染升高的炎症因子水平[如白细胞介素-6(IL-6)、C反应蛋白(C-reactive protein,CRP)]也已经被证明与术后患者总体生存时间成反比[71]。Wang等[64]的研究也支持这种观点,认为尽管术中会常规冲洗残端,但仍会有游离癌细胞残留在肠腔内和大肠黏膜上,当发生AL时这些细胞可能会植入局部环境而导致肿瘤复发。此外还有一种异时癌变的假设理论可解释肿瘤局部复发率增高的现象[72],Umeto等[73]发现当原发癌症附近的肿瘤微环境发生改变时,如果切除后此处吻合口发生AL,可以导致遗传不稳定性并诱发吻合口附近的肿瘤再生长,这是一种理论的假设,仍有待更多的研究探索。总之,包含足够样本量的多项荟萃分析[74-75]结果表明:AL的出现意味着局部复发的风险更大,总体生存率和肿瘤特异生存率更差,这提示结直肠外科医生在术中应尽量减少AL的发生,此外对出现AL的患者进行密切的随访也是很有必要,在考虑患者身体耐受的情况下给予适当的辅助治疗将有助于术后患者获得最大的生存效益。
5. 针对AL预防和治疗的新见解
已经有许多研究[76-77]报道了如何有效避免术后AL的发生以及出现AL时的有效治疗方法,对AL的早期诊断和治疗是获得最佳疗效的关键,如Yang等[78]通过比较337例行腹腔镜下低位直肠癌切除术后是否放置结肠内或盆腔引流对术后AL发病率的影响,并没有发现结肠内和会阴引流会降低AL的发生率,但这种方法降低了再手术率。这项研究是建立在多个样本基础之上的前瞻性研究,数据结果具有统计学意义,并且给出了一个全新的认识,因为在多数外科医生的意识中通畅引流是避免术后AL发生的一个有效措施,并且可以作为早期发现AL的方法,在吻合口附近放置引流管或者在结肠和盆腔内引流仍然是目前普遍的做法。Balciscueta等[79]指出,在腹腔镜直肠癌切除术中吻合器的扣动次数也是AL发生的独立危险因素,相比于一次完整切割直肠,两次使用切割器增加了AL的发病风险(OR=2.44,P<0.01)。此外,如何早期诊断并预防AL成为研究的热点,术中识别高危AL患者并给予防治措施成为其中的关键。吲哚青绿荧光血管造影(indocyanine green-fluorescence angiography,ICG-FA)是一种能被成像系统检测到并可以早期发现吻合口供血不足的检测技术,通过ICG-FA显示血液灌注不良后,可以将横断线转移到血液灌注良好的部位,并在此处进行吻合[80]。相关的研究[81]结果显示ICG的应用可以预测高危患者术中AL的发生,支持了这一新方法的临床使用。Jafari等[82]报道:在机器人辅助直肠癌前切除术后使用ICG-FA可以将AL发病率从18%降低至6%。Shen等[83]则评估了使用ICG-FA与低位直肠前切除术后AL发生的关系,显示术中使用ICG-FA降低了AL的发生率,也减少了其他并发症的发生。其中,预防吻合口缺血是防止低位直肠前切除术后腹膜外吻合发生AL的关键[84],使用ICG-FA降低了再次手术率。进一步的研究应该立足于探索如何有效刺激吻合口附近新生血管生成,如可以尝试通过局部注射血管内皮生长因子(vascular endothelial growth factor,VEGF),判断是否有助于减少AL的发生[85]。Makanyengo等[86]提出了组织氧合条件影响吻合口愈合的观点,发现高氧环境和轻度高碳酸血症均可以增加胃肠氧分压,并能促进吻合口愈合,但作者没有充分的证据证明组织氧合改变是否对肠道菌群产生影响。近年来间充质细胞(mesenchymal cells,MSCs)用于降低结直肠癌术后AL发病率的新方法被广泛地研究,这源于MSCs可以逆转缺血过程的特性。其中骨髓MSCs和脂肪源性干细胞(adipose-derived stem cells,ASCs)已经在动物体内展开实验[63],结果显示MSCs可以降低由于肠管吻合处缝合不足或过度结扎中断肠系膜血管导致的高危患者发生AL的风险[87]。ASCs具有更有效的促进血管生成以及促进组织愈合和重塑的能力[88],此外ASCs具备更好的增殖和分化潜能且易于在微创手术中获得[89],因此在预防结直肠癌患者术后AL上具有广阔的临床应用前景。消化道管壁中的黏膜下层是成纤维细胞的来源处,它提供的胶原纤维在吻合口愈合中具有重要意义,并且胃肠道黏膜层包含体内最多的组织巨噬细胞,长期缺失或存在功能紊乱的巨噬细胞将对吻合口愈合产生不利影响[90]。最近的一项研究[91]报道了M1和M2型巨噬细胞调控的细胞因子分泌及胶原蛋白酶活性对吻合口的愈合起关键作用,对M1和M2型巨噬细胞极化的调节可能成为AL治疗的重要环节。此外Hyoju等[92]证实无机聚磷酸盐(inorganic polyphosphate,polyP)可以增强肠道黏膜上皮的屏障功能,并下调炎症相关基因在肠黏膜细胞内的表达,对胶原酶产生菌具有生长抑制的作用,因此向准备行肠吻合术的患者提供polyP可能是预防术后发生AL的一种新方法。最近也有研究[93]提出对高危患者实行虚拟回肠造口术(virtual ileostomy,VI),VI是指利用橡皮带或者血管吊带穿过肠系膜窗后将回肠末端的一段固定在腹壁下,如果没有发生AL,则在术后10~15 d内移除吊带,相反发生AL时可以将它转化为分流造口[94]。有研究[95]称这种方法降低了AL再手术的次数,有助于术后恢复并改善生活质量,相比较于传统的转流造口术所诱发的并发症(如造口黏膜坏死及回缩、皮肤黏膜分离、瘤旁疝和脓肿等),这种方法更容易被患者接受。Baloyiannis等[96]证实VI术后AL的发病率为2.1%,低于传统转流造口术报道的发病率,对于不需要真正造口患者,IV缩短了住院时间,减轻了术后疼痛[97],符合增强术后恢复的原则(enhanced recovery after surgery,ERAS)。对实行VI的患者应在术后及时监测,根据临床体征、实验室和影像学检查结果识别早期AL,在适当的时候将VI转换为回肠造口术。但上述研究是基于小样本量的回顾性分析,且没有统一定义术后AL的标准,因此得出的结论可能受多种因素的影响导致VI还没有被广泛采用,未来需要更大样本量、更好实验设计的前瞻性研究来规范VI技术,这有助于制订更有效的预防和治疗AL的策略。
6. 结 语
肿瘤复发是降低总体生存时间的主要原因,AL是引起癌症局部复发的独立危险因素,但相关的研究[16]也表明AL的发生与肿瘤患者的远处复发没有明显的相关性。研究结果还表明外科医生手术技能与AL的发生率之间存在密切的联系,且腹膜外吻合的AL发生率和病死率远高于腹膜内吻合。在动物模型中展开的实验[98]确立了诱发AL的危险因素和早期诊断原则,当研究者将这些结果与临床外科中的表现进行比较时,可以基本确定结直肠癌患者术后AL的管理标准,并在此数据基础上通过建立AL的时间序列分析法对外科医生的术前、术中及术后表现进行监测,这有益于降低结直肠癌患者AL的发病率。总之,早期AL的出现意味着缝合手术的失败,导致吻合口立即裂开,而诱发晚期AL更多的原因是患者本身生理状况和吻合口组织的脆弱性。导致目前AL发病率及病死率仍较高的原因是术前对高危患者的预测识别还不够精准,并且在术后发生AL后明确诊断的时间太晚[99]。目前还没有一种最佳的方法治疗AL和伴随而来的高发病率及病死率,但随着对可变危险因素的进一步研究和改进,对围手术期结直肠癌患者的护理将得到最佳优化。腹腔单纯引流和机械性肠道准备已经被证实对预防AL无效,在临床中可以予以放弃。肠道微生物群是随后研究AL的重点领域,未来的治疗应该建立在准确测定AL患者的微生物组分,以明确诱发AL的危险菌种,并制订术前口服抗生素方案用于靶向治疗,这有益于降低AL的发病率及延长结直肠癌患者的预后生存时间。
利益冲突声明
作者声称无任何利益冲突。
原文网址
http://xbyxb.csu.edu.cn/xbwk/fileup/PDF/2021091031.pdf
参考文献
- 1. Vallance A, Wexner S, Berho M, et al. A collaborative review of the current concepts and challenges of anastomotic leaks in colorectal surgery[J]. Colorectal Dis, 2017, 19(1): 1-12. [DOI] [PubMed] [Google Scholar]
- 2. Basilico V, Griffa B, Radaelli F, et al. Anastomotic leakage following colorectal resection for cancer: How to define, manage and treat it[J]. Minerva Chir, 2014, 69(5): 245-252. [PubMed] [Google Scholar]
- 3. Boccola MA, Lin J, Rozen WM, et al. Reducing anastomotic leakage in oncologic colorectal surgery: an evidence-based review[J]. Anticancer Res, 2010, 30(2): 601-607. [PubMed] [Google Scholar]
- 4. Kulu Y, Tarantio I, Warschkow R, et al. Anastomotic leakage is associated with impaired overall and disease-free survival after curative rectal cancer resection: A propensity score analysis[J]. Ann Surg Oncol, 2015, 22(6): 2059-2067. [DOI] [PubMed] [Google Scholar]
- 5. Bruce J, Krukowski ZH, Al-Khairy G, et al. Systematic review of the definition and measurement of anastomotic leak after gastrointestinal surgery[J]. Br J Surg, 2001, 88(9): 1157-1168. [DOI] [PubMed] [Google Scholar]
- 6. Buscail E, Blondeau V, Adam JP, et al. Surgery for rectal cancer after high-dose radiotherapy for prostate cancer: is sphincter preservation relevant?[J]. Colorectal Dis, 2015, 17(11): 973-979. [DOI] [PubMed] [Google Scholar]
- 7. Rahbari NN, Weitz J, Hohenberger W, et al. Definition and grading of anastomotic leakage following anterior resection of the rectum: A proposal by the International Study Group of Rectal Cancer[J]. Surgery, 2010, 147(3): 339-351. [DOI] [PubMed] [Google Scholar]
- 8. Lynn ET, Chen J, Wilck EJ, et al. Radiographic findings of anastomotic leaks[J]. Am Surg, 2013, 79(2): 194-197. [PubMed] [Google Scholar]
- 9. Kornmann V, Ramshorst BV, Smits AB, et al. Beware of false-negative CT scan for anastomotic leakage after colonic surgery[J]. Int J Colorectal Dis, 2014, 29(4): 445-451. [DOI] [PubMed] [Google Scholar]
- 10. Cong ZJ, Hu LH, Bian ZQ, et al. Systematic review of anastomotic leakage rate according to an international grading system following anterior resection for rectal cancer[J]. PLoS One, 2013, 8(9): e75519. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11. Meyer J, Naiken S, Christou N, et al. Reducing anastomotic leak in colorectal surgery: The old dogmas and the new challenges[J]. World J Gastroenterol, 2019, 25(34): 5017-5025. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12. Park JS, Choi GS, Kim SH, et al. Multicenter analysis of risk factors for anastomotic leakage after laparoscopic rectal cancer excision: the Korean laparoscopic colorectal surgery study group[J]. Ann Surg, 2013, 257(4): 665-671. [DOI] [PubMed] [Google Scholar]
- 13. Krarup PM, Jorgensen LN, Andreasen AH, et al. A nationwide study on anastomotic leakage after colonic cancer surgery[J]. Colorectal Dis, 2012, 14(10): 661-667. [DOI] [PubMed] [Google Scholar]
- 14. Paun BC, Cassie S, Maclean AR, et al. Postoperative complications following surgery for rectal cancer[J]. Ann Surg, 2010, 251(5): 807-818. [DOI] [PubMed] [Google Scholar]
- 15. Alves A, Panis Y, Trancart D, et al. Factors associated with clinically significant anastomotic leakage after large bowel resection: multivariate analysis of 707 patients[J]. World J Surg, 2002, 26(4): 499-502. [DOI] [PubMed] [Google Scholar]
- 16. Ha GW, Kim JH, Lee MR. Oncologic impact of anastomotic leakage following colorectal cancer surgery: A systematic review and meta-analysis[J]. Ann Surg Oncol, 2017, 24(11): 3289-3299. [DOI] [PubMed] [Google Scholar]
- 17. Hyman N, Manchester TL, Osler T, et al. Anastomotic leaks after intestinal anastomosis: it's later than you think[J]. Ann Surg, 2007, 245(2): 254-258. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18. Morks AN, Ploeg RJ, Hofker HS, et al. Late anastomotic leakage in colorectal surgery: a significant problem[J]. Colorectal Dis, 2013, 15(5): e271-e275. [DOI] [PubMed] [Google Scholar]
- 19. Borstlap W, Musters GD, Stassen L, et al. Vacuum-assisted early transanal closure of leaking low colorectal anastomoses: the CLEAN study[J]. Surg Endosc, 2018, 32(1): 315-327. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20. Gessler B, Eriksson O, Diagnosis Angenete E., treatment , and consequences of anastomotic leakage in colorectal surgery[J]. Int J Colorectal Dis, 2017, 32(4): 549-556. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21. Walker KG, Bell SW, Rickard M, et al. Anastomotic leakage is predictive of diminished survival after potentially curative resection for colorectal cancer[J]. Ann Surg, 2004, 240(2): 255-259. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22. Lin JK, Yueh TC, Chang SC, et al. The influence of fecal diversion and anastomotic leakage on survival after resection of rectal cancer[J]. J Gastrointest Surg, 2011, 15(12): 2251-2261. [DOI] [PubMed] [Google Scholar]
- 23. Tu XP, Qiu QH, Chen LS, et al. Preoperative neutrophil-to-lymphocyte ratio is an independent prognostic marker in patients with laryngeal squamous cell carcinoma[J]. BMC Cancer, 2015, 15(1): 743. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24. Robinson A, Keely S, Karhausen J, et al. Mucosal protection by hypoxia-inducible factor prolyl hydroxylase inhibition[J]. Gastroenterology, 2008, 134(1): 145-155. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25. Souza DG, Fagundes CT, Amaral FA, et al. The required role of endogenously produced lipoxin A4 and annexin-1 for the production of IL-10 and inflammatory hyporesponsiveness in mice[J]. J Immunol, 2007, 179(12): 8533-8543. [DOI] [PubMed] [Google Scholar]
- 26. Reisinger KW, Schellekens D, Bosmans J, et al. Cyclo-oxygenase-2 is essential for colorectal anastomotic healing[J]. Ann Surg, 2016, 265(3): 547-554. [DOI] [PubMed] [Google Scholar]
- 27. Ulrich CM, Whitton J. PTGS2(COX-2)-765G>C promoter variant reduces risk of colorectal adenoma among nonusers of nonsteroidal anti-inflammatory drugs[J]. Cancer Epidemiol Biomarkers Prev, 2005, 14(3): 616-619. [DOI] [PubMed] [Google Scholar]
- 28. Konishi T, Watanabe T, Kishimoto J, et al. Risk factors for anastomotic leakage after surgery for colorectal cancer: Results of prospective surveillance[J]. J Am Coll Surg, 2006, 202(3): 439-444. [DOI] [PubMed] [Google Scholar]
- 29. Yamashita K, Sakuramoto S, Kikuchi S, et al. Transfusion alert for patients with curable cancer[J]. World J Surg, 2007, 31(12): 2315-2322. [DOI] [PubMed] [Google Scholar]
- 30. Katoh H, Yamashita K, Wang G, et al. Anastomotic leakage contributes to the risk for systemic recurrence in stage II colorectal cancer[J]. J Gastrointest Surg, 2011, 15(1): 120-129. [DOI] [PubMed] [Google Scholar]
- 31. Singh D, Luo J, Liu XT, et al. The long-term survival benefits of high and low ligation of inferior mesenteric artery in colorectal cancer surgery: A review and meta-analysis[J]. Medicine, 2017, 96(47): e8520. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32. Yeh CY, Tang R. Pelvic drainage and other risk factors for leakage after elective anterior resection in rectal cancer patients: a prospective study of 978 patients[J]. Ann Surg, 2005, 242(1): 9-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33. Gooszen AW, Tollenaar R, Geelkerken RH, et al. Prospective study of primary anastomosis following sigmoid resection for suspected acute complicated diverticular disease[J]. Br J Surg, 2010, 89(2): 246-246. [DOI] [PubMed] [Google Scholar]
- 34. David S, Olivia G, Robin K, et al. Risk-adjusted sequential probability ratio tests: applications to Bristol, Shipman and adult cardiac surgery[J]. Int J Qual Health Care, 2003, 15(1): 7-13. [DOI] [PubMed] [Google Scholar]
- 35. Snijders HS, Wouters M, Leersum NV, et al. Meta-analysis of the risk for anastomotic leakage, the postoperative mortality caused by leakage in relation to the overall postoperative mortality[J]. Eur J Surg Oncol, 2012, 38(11): 1013-1019. [DOI] [PubMed] [Google Scholar]
- 36. Platell C, Barwood N, Dorfmann G, et al. The incidence of anastomotic leaks in patients undergoing colorectal surgery[J]. Colorectal Dis, 2010, 9(1): 71-79. [DOI] [PubMed] [Google Scholar]
- 37. Sujatha-Bhaskar S, Jafari MD, Hanna M, et al. An endoscopic mucosal grading system is predictive of leak in stapled rectal anastomoses[J]. Surg Endosc, 2017, 32(4): 1769-1775. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38. Choy P, Bissett IP, Docherty JG, et al. Stapled versus handsewn methods for ileocolic anastomoses[J]. Cochrane Database Syst Rev, 2007, 7(3): CD004320. [DOI] [PubMed] [Google Scholar]
- 39. Trencheva K, Morrissey KP, Wells M, et al. Identifying important predictors for anastomotic leak after colon and rectal resection: prospective study on 616 patients[J]. Ann Surg, 2013, 257(6): 108-113. [DOI] [PubMed] [Google Scholar]
- 40. Parneix M, Laurent LC, Rullier E, et al. Risk factors for anastomotic leakage after resection of rectal cancer[J]. Br J Surg, 1998, 85(3): 355-358. [DOI] [PubMed] [Google Scholar]
- 41. Sørensen LT, Jørgensen T, Kirkeby LT, et al. Smoking and alcohol abuse are major risk factors for anastomotic leakage in colorectal surgery[J]. Br J Surg, 1999, 86(7): 927-931. [DOI] [PubMed] [Google Scholar]
- 42. Yamano T, Yoshimura M, Kobayashi M, et al. Malnutrition in rectal cancer patients receiving preoperative chem-oradiotherapy is common and associated with treatment tolerability and anastomotic leakage[J]. Int J Colorectal Dis, 2016, 31(4): 877-884. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43. Xu H, Kong F. Malnutrition-related factors increased the risk of anastomotic leak for rectal cancer patients undergoing surgery[J]. Biomed Res Int, 2020, 2020(6): 1-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44. Pettersson D, Cedermark B, Holm T, et al. Interim analysis of the Stockholm III trial of preoperative radiotherapy regimens for rectal cancer[J]. Br J Surg, 2010, 97(4): 580-587. [DOI] [PubMed] [Google Scholar]
- 45. Eriksen TF, Lassen CB, Genur I. Treatment with corti-costeroids and the risk of anastomotic leakage following lower gastrointestinal surgery: a literature survey[J]. Colorectal Dis, 2014, 16(5): O154-O160. [DOI] [PubMed] [Google Scholar]
- 46. Gaines S, Shao C, Hyman N, et al. Gut microbiome influences on anastomotic leak and recurrence rates following colorectal cancer surgery[J]. Br J Surg, 2018, 105(2): e131-e141. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 47. Kalan L, Loesche M, Hodkinson BP, et al. Redefining the chronic-wound microbiome: Fungal communities are pre-valent, dynamic, and associated with delayed healing[J]. Mbio, 2016, 7(5): e01058-16. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48. Jacobson RA, Wienholts K, Williamson AJ, et al. Enterococcus faecalis exploits the human fibrinolytic system to drive excess collagenolysis: implications in gut healing and identification of druggable targets[J]. Am J Physiol Gastrointest Liver Physiol, 2019, 318(1): G1-G9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49. Alfredo F, Carla LM, Angela Q, et al. Gut inflammation and immunity: What is the role of the human gut virome?[J]. Mediators Inflamm, 2015, 2015(7): 1-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 50. Soucy SM, Huang J, Gogarten JP. Horizontal gene transfer: building the web of life[J]. Nat Rev Genet, 2015, 16(8): 472-482. [DOI] [PubMed] [Google Scholar]
- 51. Shogan BD, Belogortseva N, Luong PM, et al. Collagen degradation and MMP9 activation by enterococcus faecalis contribute to intestinal anastomotic leak[J]. Sci Transl Med, 2015, 7(286): 286-313. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52. Shogan BD, Smith DP, Christley S, et al. Intestinal anastomotic injury alters spatially defined microbiome composition and function[J]. Microbiome, 2014, 2(1): 34-35. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53. Carmichael JC, Keller DS, Baldini G, et al. Clinical practice guideline for enhanced recovery after colon and rectal surgery from the American Society of Colon and Rectal Surgeons (ASCRS) and Society of American Gastrointestinal and Endoscopic Surgeons (SAGES)[J]. Surg Endosc, 2017, 31(9): 3412-3436. [DOI] [PubMed] [Google Scholar]
- 54. Wang WL, Xu SY, Ren ZG, et al. Application of metagenomics in the human gut microbiome[J]. World J. Gastroenterol, 2015, 21(3): 803-814. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 55. Iida N, Dzutsev A, Stewart CA, et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment[J]. Science, 2013, 342(6161): 967-970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 56. Slim K, Vicaut E, Launay-Savary MV, et al. Updated systematic review and meta-analysis of randomized clinical trials on the role of mechanical bowel preparation before colorectal surgery[J]. Ann Surg, 2009, 249(2): 203-209. [DOI] [PubMed] [Google Scholar]
- 57. Alverdy JC, Hyman N, Gilbert J, et al. Preparing the bowel for surgery: Learning from the past and planning for the future[J]. J Am Coll Surg, 2017, 225(2): 324-332. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 58. Guenaga KF, Matos D, Castro AA, et al. Mechanical bowel preparation for elective colorectal surgery[J]. Cochrane Database Syst Rev, 2003, 2003(1): 1-7. [DOI] [PubMed] [Google Scholar]
- 59. Arabi Y, Dimock F, Burdon DW, et al. Influence of bowel preparation and antimicrobials on colonic microflora[J]. Br J Surg, 1978, 65(8): 555-558. [DOI] [PubMed] [Google Scholar]
- 60. Ikeda A, Konishi T, Ueno M, et al. Randomized clinical trial of oral and intravenous versus intravenous antibiotic prophylaxis for laparoscopic colorectal resection[J]. Br J Surg, 2016, 103(12): 1608-1615. [DOI] [PubMed] [Google Scholar]
- 61. Theofilos P, Kearney SM, Tatiana L, et al. Microbial symbionts accelerate wound healing via the neuropeptide hormone oxytocin[J]. PLoS One, 2013, 8(10): e78898. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 62. Mokhles S, Macbeth F, Farewell V, et al. Meta-analysis of colorectal cancer follow-up after potentially curative resection[J]. Br J Surg, 2016, 103(10): 1259-1268. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 63. Zimmermann MS, Wellner U, Laubert T, et al. Influence of anastomotic leak after elective colorectal cancer resection on survival and local recurrence: A propensity score analysis[J]. Dis Colon Rectum, 2019, 62(3): 286-293. [DOI] [PubMed] [Google Scholar]
- 64. Wang S, Liu J, Wang S, et al. Adverse effects of anastomotic leakage on local recurrence and survival after curative anterior resection for rectal cancer: A systematic review and meta-analysis[J]. World J Surg, 2017, 41(1): 277-284. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 65. Vangijn W, Putte H. Preoperative radiotherapy combined with total mesorectal excision for resectable rectal cancer: 12-year follow-up of the multicentre, randomised controlled TME trial[J]. Lancet Oncol, 2011, 12(6): 575-582. [DOI] [PubMed] [Google Scholar]
- 66. Arezzo A, Migliore M, Chiaro P, et al. The REAL (REctal Anastomotic Leak) score for prediction of anastomotic leak after rectal cancer surgery[J]. Tech Coloproctol, 2019, 23(7): 649-663. [DOI] [PubMed] [Google Scholar]
- 67. Karim A, Cubas V, Zaman S, et al. Anastomotic leak and cancer-specific outcomes after curative rectal cancer surgery: a systematic review and meta-analysis[J]. Tech Coloproctol, 2020, 24(23): 513-525. [DOI] [PubMed] [Google Scholar]
- 68. Slanetz CA. The effect of inadvertent intraoperative perforation on survival and recurrence in colorectal cancer[J]. Dis Colon Rectum, 1984, 27(12): 792-797. [DOI] [PubMed] [Google Scholar]
- 69. Guetz GD, Nicolas P, Perret GY, et al. Does delaying adjuvant chemotherapy after curative surgery for colorectal cancer impair survival? A meta-analysis[J]. Eur J Cancer, 2010, 46(6): 1049-1055. [DOI] [PubMed] [Google Scholar]
- 70. Yadi WU, Zhou BP. Inflammation a driving force speeds cancer metastasis[J]. Cell Cycle, 2009, 8(20): 3267-3273. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 71. Alonso S, Pascual M, Salvans S, et al. Postoperative intra-abdominal infection and colorectal cancer recurrence: A prospective matched cohort study of inflammatory and angiogenic responses as mechanisms involved in this association[J]. Eur J Surg Oncol, 2015, 41(2): 208-214. [DOI] [PubMed] [Google Scholar]
- 72. Costi R, Santi C, Bottarelli L, et al. Anastomotic recurrence of colon cancer: Genetic analysis challenges the widely held theories of cancerous cells' intraluminal implantation and metachronous carcinogenesis[J]. J Surg Oncol, 2016, 114(2): 228-236. [DOI] [PubMed] [Google Scholar]
- 73. Umeto H, Yoshida T, Araki K, et al. Appearance of epithelial and stromal genomic instability in background colorectal mucosa of sporadic colorectal cancer patients: relation to age and gender[J]. J Gastroenterol, 2009, 44(10): 1036-1045. [DOI] [PubMed] [Google Scholar]
- 74. Zeng J, Su G. High ligation of the inferior mesenteric artery during sigmoid colon and rectal cancer surgery increases the risk of anastomotic leakage: a meta-analysis[J]. World J Surg Oncol, 2018, 16(1): 157. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 75. Lu ZR, Rajendran N, Lynch AC, et al. Anastomotic leaks after restorative resections for rectal cancer compromise cancer outcomes and survival[J]. Dis Colon Rectum, 2016, 59(3): 236-244. [DOI] [PubMed] [Google Scholar]
- 76. Guel DA, Weksler B. Commentary: The search for the holy grail to prevent anastomotic leaks: Let's keep looking, it is not omentoplasty[J]. J Thorac Cardiovasc Surg, 2019, 159(5): 2106-2107. [DOI] [PubMed] [Google Scholar]
- 77. Palmer P, Egger M, Philips P, et al. Predictive preoperative and intraoperative factors of anastomotic leak in gastrectomy patients[J]. Am J Surg, 2019, 220(2): 376-380. [DOI] [PubMed] [Google Scholar]
- 78. Yang QQ, Tang CY. Mitigating the consequences of anastomotic leakage after laparoscopic rectal cancer resection[J]. Surg Innov, 2014, 22(4): 348-354. [DOI] [PubMed] [Google Scholar]
- 79. Balciscueta Z, Uribe N, Caubet L, et al. Impact of the number of stapler firings on anastomotic leakage in laparoscopic rectal surgery: a systematic review and meta-analysis[J]. Tech Coloproctol, 2020, 24(21): 919-925. [DOI] [PubMed] [Google Scholar]
- 80. Boni L, Fingerhut A, Marzorati A, et al. Indocyanine green fluorescence angiography during laparoscopic low anterior resection: results of a case-matched study[J]. Surg Endosc, 2016, 31(4): 1-5. [DOI] [PubMed] [Google Scholar]
- 81. Jacqueline VDB, Jongen A, Melenhorst J, et al. Near-infrared fluorescence image-guidance in anastomotic colorectal cancer surgery and its relation to serum markers of anastomotic leakage: a clinical pilot study[J]. Surg Endosc, 2019, 33(11): 3766-3774. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 82. Jafari MD, Kang HL, Halabi WJ, et al. The use of indocyanine green fluorescence to assess anastomotic perfusion during robotic assisted laparoscopic rectal surgery[J]. Surg Endosc, 2013, 27(8): 3003-3008. [DOI] [PubMed] [Google Scholar]
- 83. Shen Y, Yang T, Yang J, et al. Intraoperative indocyanine green fluorescence angiography to prevent anastomotic leak after low anterior resection for rectal cancer: a meta‐analysis[J]. ANZ J Surg, 2020, 90(11): 809-816. [DOI] [PubMed] [Google Scholar]
- 84. Sparreboom CL, Vangroningen JT, Lingsma HF, et al. Different risk factors for early and late colorectal anastomotic leakage in a nationwide audit[J]. Dis Colon Rectum, 2018, 61(11): 1258-1266. [DOI] [PubMed] [Google Scholar]
- 85. Ishii M, Tanaka E, Imaizumi T, et al. Local VEGF administration enhances healing of colonic anastomoses in a rabbit model[J]. Eur Surg Res, 2009, 42(4): 249-257. [DOI] [PubMed] [Google Scholar]
- 86. Makanyengo SO, Carroll GM, Goggins BJ, et al. Systematic review on the influence of tissue oxygenation on gut microbiota and anastomotic healing[J]. J Surg Res, 2020, 249(5): 186-196. [DOI] [PubMed] [Google Scholar]
- 87. Adas G, Kemik O, Eryasar B, et al. Treatment of ischemic colonic anastomoses with systemic transplanted bone marrow derived mesenchymal stem cells[J]. Eur Rev Med Pharmacol, 2013, 17(17): 2275-2285. [PubMed] [Google Scholar]
- 88. Moon MH, Kim SY, Kim YJ, et al. Human adipose tissue-derived mesenchymal stem cells improve postnatal neovascularization in a mouse model of hindlimb ischemia[J]. Cell Physiol Biochem, 2006, 17(5/6): 279-290. [DOI] [PubMed] [Google Scholar]
- 89. Schubert T, Xhema D, Vériter S, et al. The enhanced performance of bone allografts using osteogenic-differentiated adipose-derived mesenchymal stem cells[J]. Biomaterials, 2011, 32(34): 8880-8891. [DOI] [PubMed] [Google Scholar]
- 90. Smith PD, Smythies LE, Shen R, et al. Intestinal macrophages and response to microbial encroachment[J]. Mucosal Immunol, 2011, 4(1): 31-42. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 91. Shi J, Wu Z, Li Z, et al. Roles of macrophage subtypes in bowel anastomotic healing and anastomotic leakage[J]. J Immunol Res, 2018, 2018(2): 1-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 92. Hyoju SK, Klabbers RE, Aaron M, et al. Oral polyphosphate suppresses bacterial collagenase production and prevents anastomotic leak due to Serratia marcescens and Pseudomonas aeruginosa [J]. Ann Surg, 2017, 267(6): 1112-1118. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 93. Gullà N, Trastulli S, Boselli C, et al. Ghost ileostomy after anterior resection for rectal cancer: a preliminary experience. [J]. Langenbecks Arch Surg, 2011, 396(7): 997-1007. [DOI] [PubMed] [Google Scholar]
- 94. Miccini M, Bonapasta SA, Gregori M, et al. Ghost ileostomy: real and potential advantages[J]. Am J Surg, 2010, 200(4): e55-e57. [DOI] [PubMed] [Google Scholar]
- 95. Hanna MH, Vinci A, Pigazzi A. Diverting ileostomy in colorectal surgery: when is it necessary?[J]. Langenbecks Arch Surg, 2015, 400(2): 145-52. [DOI] [PubMed] [Google Scholar]
- 96. Baloyiannis I, Perivoliotis K, Diamantis A, et al. Virtual ileostomy in elective colorectal surgery: a systematic review of the literature[J]. Tech Coloproctol, 2019, 24(1): 23-31. [DOI] [PubMed] [Google Scholar]
- 97. Ambe PC, Zirngibl H, Möslein G. Routine virtual ileostomy following restorative proctocolectomy for familial adeno-matous polyposis[J]. World J Surg, 2017, 42(6): 1867-1871. [DOI] [PubMed] [Google Scholar]
- 98. Drescher DG, Vogt J, Gabriel M, et al. Model of wound healing for esophagogastric anastomoses in rats[J]. Eur Surg Res, 2012, 48(4): 194-199. [DOI] [PubMed] [Google Scholar]
- 99. Karliczek A, Harlaar NJ, Zeebregts CJ, et al. Surgeons lack predictive accuracy for anastomotic leakage in gastrointestinal surgery[J]. Int J Colorectal Dis, 2009, 24(5): 569-576. [DOI] [PubMed] [Google Scholar]
