Skip to main content
Journal of Central South University Medical Sciences logoLink to Journal of Central South University Medical Sciences
. 2021 Jun 28;46(6):615–619. [Article in Chinese] doi: 10.11817/j.issn.1672-7347.2021.200515

基于周围型肺癌高剂量率无均整滤过器模式下的2种动态适形弧计划比较

Comparison of 2 dynamic conformal arc plans based on high-dose rate flattening filter free beams for peripheral lung cancer

ZHANG Jiyong 1,2, PENG Xun 1,
Editor: 彭 敏宁
PMCID: PMC10930192  PMID: 34275930

Abstract

Objective

To compare 2 dynamic conformal arc plans based on the high dose rate flattening filter free (FFF) beams, and to evaluate the dosimetric differences.

Methods

A total of 20 patients with early peripheral non-small cell lung cancer were selected, and 2 dynamic conformal arc plans were designed in the Eclipse 10.0 treatment planning system (TPS). One of them was based on tumor-center (T-DCA), and the other was based on iso-center (Iso-DCA). Both plans were created by using the Truebeam linear accelerator, based on 6 MV FFF photons with a dose rate at 1 400 monitor unit (MU)/min. All patients received the prescribed dose of 4 800 cGy in 4 fractions (1 200 cGy/fraction). Target coverage and organ at risk limits were planned and designed according to the Radiation Therapy Oncology Group (RTOG) Criteria, and were compared between the T-DCA and the Iso-DCA plans.

Results

There was no significant difference in the target coverage between the T-DCA and Iso-DCA plans (P>0.05). Conformal index and homogeneity index had no significant differences (both P>0.05), but the percentage of the maximum dose in any direction 2 cm away from the planned target area (D 2 cm) and the ratio of the volume wrapped by the isodose line of 50% prescription dose to the volume of the planned target area (R 50%) showed significant differences (both P<0.05). The MU of the Iso-DCA plan was increased by 21% compared with that of the T-DCA plan. Except the maximum dose of spinal cord and esophagus, there was no significant difference in the other dosimetric parameters of the organs at risk between the T-DCA and the Iso-DCA plans (all P>0.05).

Conclusion

The dose fall-off of Iso-DCA plan is better than T-DCA plan, but the T-DCA plan is consistently superior in sparing dose to spinal cord and esophagus, and the T-DCA plan has fewer MU.

Keywords: high dose rate flattening filter free beams, peripheral lung cancer, dynamic conformal arc, stereotactic body radiotherapy


目前,肺癌仍是世界上发病率和病死率最高的恶性肿瘤,同时也是男性发病率和病死率最高的[1],其中原发性肺癌最常见,而非小细胞肺癌占原发性肺癌的75%~80%[2]。对于早期周围型非小细胞肺癌患者,手术治疗仍然是首选的治疗方案[3-5]。然而,有一部分患者因高龄等原因不能或不愿进行手术治疗,体部立体定向放射治疗(stereotactic body radiotherapy,SBRT)就成为了这类患者的标准治疗方法[6-7]。本研究对比了2种基于不同中心的动态适形弧SBRT计划,并评价其在剂量学上的差异,以期为肺癌患者的放射治疗(以下简称放疗)提供剂量依据。

1. 对象与方法

1.1. 对象

选取2016年5月至2018年6月在汕头大学医学院附属肿瘤医院放疗科治疗的周围型非小细胞肺癌患者20例,其中男15例、女5例,年龄57~87(中位数68)岁。患者的计划靶区(planning target volume,PTV)为18.28~68.46(平均33.67) cm3。患者均无放疗禁忌证。

1.2. 4D-CT扫描和靶区勾画

患者均采用仰卧位,颈肩热塑膜固定,平静自由呼吸。在Brilliance Big Bore 4D-CT模拟定位机(Philips Medical Systems,the Netherlands)上结合瓦里安RPM(real-time position management)系统进行CT扫描,扫描层厚为0.3 cm,获得患者10个呼吸时相的CT影像。将患者的CT影像导入Eclipse v10.0治疗计划系统,分别在10个呼吸时相上勾画肿瘤靶区(grass target volume,GTV),并在患者自由呼吸的CT图像集上合成一个内靶区(internal target volume,ITV),ITV均匀外扩0.5 cm的边界获得PTV。按美国放射治疗肿瘤学组(Radiation Therapy Oncology Group,RTOG)标准[7-9],勾画肺、胸壁、皮肤、支气管、食管、心脏、主动脉、脊髓等危及器官。

1.3. 计划设计

采用Eclipse v10.0治疗计划系统对20例患者分别设计基于肿瘤中心的动态适形弧(base tumor-center dynamic conformal arc,T-DCA)和基于身体等中心的动态适形弧(base iso-center dynamic conformal arc,Iso-DCA)的2种治疗计划,计划均使用Truebeam直线加速器无均整滤过器模式6 MV X射线,剂量率为1 400机器跳数(monitor unit,MU)/min。处方剂量为4 800 cGy,每次1 200 cGy,照射4次。采用各向异性分析算法(anisotropic analytical algorithm,AAA)进行剂量计算,计算网格精度为0.2 cm。根据RTOG标准,T-DCA和Iso-DCA计划均按95%的PTV接受 4 800 cGy的处方剂量进行剂量归一化处理。周围型肺癌的特点是GTV位于体侧接近胸壁的位置,设计T-DCA计划时,射野中心放置在肿瘤中心,为了防止碰到治疗床,照射弧度为顺时针330°~180°(图1A);设计Iso-DCA计划时,射野中心放置在患者身体的中心位置,分6段弧按顺时针旋转1周,其中5段弧为59°,1段弧为58°,分别为181°~239°,240°~299°,300°~359°,0°~59°,60°~119°和120°~179°(图1B)。所有计划的准直器角度均为30°,治疗床均为0°(水平位)。

图1.

图1

T-DCA(A)Iso-DCA(B)计划的剂量和射野分布

Figure 1 Dose distribution and field arrangement of the T-DCA (A) and the Iso-DCA (B) plans

1.4. 计划评价

靶区剂量覆盖评价:V 90%V 95%V 105%分别表示90%、95%和105%的处方剂量覆盖靶区体积的百分数。适形指数(conformity index,CI)越接近1,表示靶区剂量越适形[7];均匀指数(homogeneity index,HI)越接近0,表示靶区剂量越均匀[10]D 2 cm表示距离PTV 2 cm处任意方向的最大剂量的百分数,R 50%表示50%处方剂量的等剂量线所包绕的体积与PTV体积的比值,MU表示照射的总剂量值。危及器官剂量学评价:由于脊髓、心脏、支气管、食管、皮肤、主动脉、胸壁等危及器官属于串行组织,评价指标为最大受照射剂量(D max)和绝对体积(Vx Gy);肺为并行组织,评价指标为V 5 GyV 10 GyV 20 GyD mean,其中V 5 GyV 10 GyV 20 Gy分别表示5、10和20 Gy剂量照射肺体积占全肺体积的百分数,D mean表示肺组织接受照射剂量的平均值。

1.5. 统计学处理

采用SPSS 19.0统计学软件进行数据分析,计量资料以均数±标准差( x¯ ±s)表示。采用配对t检验比较T-DCA和Iso-DCA计划的各项剂量学参数,P<0.05为差异有统计学意义。

2. 结 果

2.1. 靶区剂量覆盖评价

T-DCA和Iso-DCA计划均满足RTOG对靶区剂量覆盖的要求,且差异无统计学意义(P>0.05)。CI和HI的差异也无统计学意义(均P>0.05),但是D2 cm、R50%和MU的差异均有统计学意义(均P<0.05,表1)。

表1.

T-DCAIso-DCA计划各项剂量学参数

Table 1 Dosimetric parameters of the T-DCA and the Iso-DCA plans

计划 V 90%/% V 95%/% V 105%/% 适形指数 均匀指数 D 2 cm/% R 50% 机器跳数
P 1.000 0.594 0.264 0.316 0.334 <0.001 0.003 <0.001
T-DCA 100.00±0.00 99.62±0.29 73.16±4.19 1.44±0.14 0.16±0.03 79.61±4.73 7.29±0.90 1 850.67±74.15
Iso-DCA 100.00±0.00 99.70±0.23 67.50±10.55 1.37±0.07 0.14±0.02 59.28±7.19 5.66±0.44 2 239.00±103.61

2.2. 危及器官剂量学评价

在T-DCA和Iso-DCA计划各危及器官的剂量学参数中,除脊髓和食管的D max外(分别P=0.002和P=0.003),其余差异均无统计学意义(均P>0.05,表2)。

表2.

T-DCAIso-DCA计划各危及器官剂量学参数

Table 2 Dosimetric parameters of the T-DCA and the Iso-DCA plans for the organs at risk

计划 胸壁
V 5 Gy/%* V 10 Gy/%* V 20 Gy/%* D mean/cGy D max/cGy V 30 Gy/mL†
P 0.060 0.608 0.449 0.390 0.667 0.197
T-DCA 11.83±3.27 9.11±2.77 5.24±1.54 315.28±95.32 4 628.75±1 070.22 17.57±9.87
Iso-DCA 18.50±6.99 10.04±3.30 4.49±1.76 368.85±110.73 4 303.30±1 443.15 10.05±8.93
计划 皮肤 心脏 主动脉
D max/cGy V 33.2 Gy/mL† D max/cGy V 28 Gy/mL† D max/cGy V 43 Gy/mL†
T-DCA 3 125.55±1 377.48 1.07±2.07 2 496.52±2 076.19 4.25±2.49 1 657.67±723.08 0.00±0.00
Iso-DCA 2 630.00±1 717.96 0.80±1.54 3 201.32±1 797.59 6.69±2.24 2 190.95±824.98 0.00±0.00
P 0.594 0.788 0.544 0.816 0.614 1.000
计划 食管 脊髓 支气管
D max/cGy V 18.8 Gy/mL† D max/cGy V 13.6 Gy/mL† D max/cGy V 15.6 Gy/mL†
T-DCA 573.22±312.12 0.00±0.00 456.68±248.91 0.00±0.00 2 410.27±1 266.57 0.87±0.75
Iso-DCA 1 412.75±418.00 0.00±0.00 970.62±213.22 0.00±0.00 2 817.55±1 344.54 2.84±1.66
P 0.003 1.000 0.002 1.000 0.766 0.262

*相对体积,†绝对体积。

3. 讨 论

近年来,SBRT在肺癌治疗上取得了较快的发展和良好的治疗效果。目前,基于常规模式的SBRT计划报道较多[11-14],剂量率最高通常为600 MU/min。对于4次4 800 cGy这种大剂量照射方式,用常规模式治疗,照射时间为8~9 min,加上摆位和图像验证的时间,患者会感觉时间太长而不舒服,将增加患者的摆位误差,从而给治疗带来很多不利因素。研究[15]表明:患者治疗时间如果超过15 min,GTV的位移将会发生很大变化。高剂量率无均整滤过器模式的SBRT计划将大幅缩短患者的照射时间,其6 MV X射线最高剂量率可达1 400 MU/min。无均整滤过器模式与常规模式比较,还具有散射少、半影小、适合治疗小体积靶区等优点[16]

本研究中的患者均是左侧周围型肺癌,为了避免在治疗过程中发生碰撞,设计了T-DCA和Tso-DCA的SBRT计划。T-DCA计划的设计较为简单,是将射野中心定位在肿瘤中心,起始角度设置为330°,顺时针旋转到180°终止,多叶准直器适形靶区后计算剂量。在不碰撞到患者的前提下把起始角度设置得尽量小于330°,对靶区的适形性、均匀性和靶区覆盖均是有利的,但是增加了心脏等危及器官的照射剂量,经过测试比较,起始角度设置为330°较为理想。相对于T-DCA计划,Iso-DCA计划设计过程要复杂得多,其射野的中心定位在患者的身体中心(肿瘤中心横切面),这种布野可以设置多段适形弧并且不会碰撞到患者,每段弧的多叶准直器均适形GTV,进行剂量计算后,再根据临床需要调整各段弧的权重,可以获得较为理想的靶区覆盖。另外,T-DCA和Iso-DCA计划的准直器角度均设置为30°,能有效避免多叶准直器叶片间的漏射投照在正常组织的同一位置,从而减少多叶准直器“凹凸槽效应”的影响[17-18]

T-DCA和Iso-DCA计划的靶区剂量覆盖均能满足RTOG标准的要求,从本研究结果可知,2种计划的适形性和均匀性差异均无统计学意义,但Iso-DCA计划因采用了多段适形弧布野,其适形性和均匀性均略优于T-DCA。在设计计划时,也可以针对T-DCA计划设置多段弧来改善剂量分布,但是在治疗过程中需要移动一次治疗床来避免碰撞,这样的操作对摆位水平和加速器的机械性能要求较高,如果摆位不好或加速器机械精度不高,就很难复位,导致治疗的误差增大。Iso-DCA计划治疗过程中不需要移动治疗床就可以实现多段适形弧治疗。D 2 cmR 50%是评价SBRT计划靶区外正常组织受照射剂量的重要参数,其值越小说明靶区外正常组织的受照射剂量跌落得越快,即正常组织受照射剂量越低[15]。Iso-DCA计划的D2 cm和R50%均小于T-DCA,也就是说Iso-DCA计划能更好地保护靶区周围的正常组织。Iso-DCA的MU较T-DCA增加了21%,意味着Iso-DCA计划的治疗时间长且机器损耗增加。治疗时间长会带来很多不确定因素,如患者舒适度下降、器官位移、靶区位移等,也降低了治疗效率和加速器的周转率。机器损耗增加会增加机器故障发生的频率。Iso-DCA计划中脊髓和食管的最大危及器官的受照射剂量较T-DCA分别增加了112.5%和146.8%,差异有统计学意义,这种差异与布野有密切关系。在Iso-DCA计划中还有一部分适形弧是从健侧肺方向照射过来的,这也会增加脊髓和食管的受照射剂量。

综上所述,T-DCA和Iso-DCA计划在靶区剂量覆盖方面均能满足RTOG标准的要求,在危及器官受照射剂量方面,T-DCA计划能更好地保护脊髓和食管。Iso-DCA计划靶区外的剂量跌落得更快,但是Iso-DCA计划的MU要比T-DCA计划多。临床可根据需要选择最为合适的计划。

基金资助

广东省医学科研基金(B2017025)。

This work was supported by the Medical Scientific Research Foundation of Guangdong Province, China (B2017025).

利益冲突声明

作者声称无任何利益冲突。

原文网址

http://xbyxb.csu.edu.cn/xbwk/fileup/PDF/202106615.pdf

参考文献

  • 1. Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012[J]. CA Cancer J Clin, 2015, 65(2): 87-108. [DOI] [PubMed] [Google Scholar]
  • 2. Yano T, Haro A, Shikada Y, et al. Non-small cell lung cancer in never smokers as a representative ‘non-smoking-associated lung cancer’: epidemiology and clinical features[J]. Int J Clin Oncol, 2011, 16(4): 287-293. [DOI] [PubMed] [Google Scholar]
  • 3. 张赫男, 刘云鹏. 局限期小细胞肺癌治疗的研究进展[J]. 中南大学学报(医学版), 2013, 38(8): 857-862. [DOI] [PubMed] [Google Scholar]; ZHANG Henan, LIU Yunpeng. Advances in study on the therapy for limited-stage small cell lung cancer[J]. Journal of Central South University. Medical Science, 2013, 38(8): 857-862. [DOI] [PubMed] [Google Scholar]
  • 4. Haridass A. Developments in stereotactic body radiotherapy[J]. Cancers (Basel), 2018, 10(12): E497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5. Lo H, Abel S, Finley G, et al. Surgical resection versus stereotactic body radiation therapy in early stage bronchopulmonary large cell neuroendocrine carcinoma[J]. Thorac Cancer, 2020, 11(2): 305-310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6. Navarria P, Ascolese AM, Mancosu P, et al. Volumetric modulated arc therapy with flattening filter free (FFF) beams for stereotactic body radiation therapy (SBRT) in patients with medically inoperable early stage non small cell lung cancer (NSCLC)[J]. Radiother Oncol, 2013, 107(3): 414-418. [DOI] [PubMed] [Google Scholar]
  • 7. Narayanasamy G, Desai D, Maraboyina S, et al. A dose falloff gradient study in RapidArc planning of lung stereotactic body radiation therapy[J]. J Med Phys, 2018, 43(3): 147-154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8. Pokhrel D, Halfman M, Sanford L. FFF-VMAT for SBRT of lung lesions: Improves dose coverage at tumor-lung interface compared to flattened beams[J]. J Appl Clin Med Phys, 2020, 21(1): 26-35. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9. Dickey M, Roa W, Drodge S, et al. A planning comparison of 3-dimensional conformal multiple static field, conformal arc, and volumetric modulated arc therapy for the delivery of stereotactic body radiotherapy for early stage lung cancer[J]. Med Dosim, 2015, 40(4): 347-351. [DOI] [PubMed] [Google Scholar]
  • 10. Weyh A, Konski A, Nalichowski A, et al. Lung SBRT: dosimetric and delivery comparison of RapidArc, TomoTherapy, and IMR[J]. J Appl Clin Med Phys, 2013, 14(4): 4065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11. Bokrantz R, Wedenberg M, Sandwall P. Dynamic conformal arcs for lung stereotactic body radiation therapy: a comparison with volumetric-modulated arc therapy[J]. J Appl Clin Med Phys, 2020, 21(1): 103-109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12. Al-Ward S, Wronski M, Ahmad SB, et al. The radiobiological impact of motion tracking of liver, pancreas and kidney SBRT tumors in a MR-linac[J]. Phys Med Biol, 2018, 63(21): 215022. [DOI] [PubMed] [Google Scholar]
  • 13. Miyakawa A, Shibamoto Y, Baba F, et al. Stereotactic body radiotherapy for stage I non-small-cell lung cancer using higher doses for larger tumors: results of the second study[J]. Radiat Oncol, 2017, 12(1): 152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14. Zheng DD, Zhu XF, Zhang QH, et al. Target dose conversion modeling from pencil beam (PB) to Monte Carlo (MC) for lung SBRT[J]. Radiat Oncol, 2016, 11: 83. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15. Zhang JY, Lu JY, Wu LL, et al. A dosimetric and treatment efficiency evaluation of stereotactic body radiation therapy for peripheral lung cancer using flattening filter free beams[J]. Oncotarget, 2016, 7(45): 73792-73799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16. Paynter D, Weston SJ, Cosgrove VP, et al. Beam characteristics of energy-matched flattening filter free beams[J]. Med Phys, 2014, 41(5): 052103. [DOI] [PubMed] [Google Scholar]
  • 17. Hernandez V, Vera-Sánchez JA, Vieillevigne L, et al. A new method for modelling the tongue-and-groove in treatment planning systems[J]. Phys Med Biol, 2018, 63(24): 245005. [DOI] [PubMed] [Google Scholar]
  • 18. Hernandez V, Vera-Sánchez JA, Vieillevigne L, et al. Commissioning of the tongue-and-groove modelling in treatment planning systems: from static fields to VMAT treatments[J]. Phys Med Biol, 2017, 62(16): 6688-6707. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Central South University Medical Sciences are provided here courtesy of Central South University

RESOURCES