Skip to main content
Journal of Central South University Medical Sciences logoLink to Journal of Central South University Medical Sciences
. 2021 May 28;46(5):475–480. [Article in Chinese] doi: 10.11817/j.issn.1672-7347.2021.200093

ArcCHECK-3DVH系统在体部立体定向放射治疗剂量验证中的应用

Dosimetric verification of stereotactic body radiotherapy treatment plan via ArcCHECK-3DVH system

CHENG Shulin 1,2, SHAN Dongyong 1,, CAO Ke 1, BIN Shizhen 1, ZHANG Junjun 1, TANG Tian 1
Editor: 彭 敏宁
PMCID: PMC10930212  PMID: 34148883

Abstract

目的

研究ArcCHECK-3DVH系统在无均整滤过器(flattening filter free,FFF)模式下体部立体定向放射治疗(stereotactic body radiotherapy,SBRT)剂量验证中的应用。

方法

将57例患者的SBRT计划导入ArcCHECK模体重新计算剂量,采用γ分析法比较治疗计划系统(treatment planning system,TPS)的计算剂量与ArcCHECK系统的实测剂量的差异;再采用3DVH软件重建靶区和危及器官的三维剂量分布,将重建剂量与TPS中计算的剂量比较,验证靶区及危及器官的γ通过率、剂量和体积偏差。

结果

当阈值标准为(3%,3 mm,10%)即测量点满足计划值与测量值偏差<3%,以该点为中心,3 mm为半径的平面及球体内存在相近值的点占比阈值设置为10%时,SBRT计划的ArcCHECK系统γ相对剂量通过率和绝对剂量通过率的均值均大于95%;当阈值标准为更严格的(2%,2 mm,10%)时,SBRT计划的ArcCHECK系统γ相对剂量通过率和绝对剂量通过率的均值均在93%左右。3DVH中靶区和危及器官的γ通过率均大于97%,剂量和体积偏差均在±5%以内。

结论

ArcCHECK-3DVH系统可提供更全面的剂量分布信息,能够科学评估SBRT计划,对指导临床治疗具有重要的意义。

Keywords: ArcCHECK-3DVH系统, 体部立体定向放射治疗, 剂量验证


放射治疗(以下简称放疗)已经成为肿瘤重要的局部治疗手段,在临床中得到广泛应用,而以体部立体定向放射治疗(stereotactic body radiotherapy,SBRT)为主的放疗是无法耐受手术或不愿意接受手术的肿瘤患者的有效治疗手段之一[1-2]。SBRT是基于对小体积肿瘤的精确定位,并使用集束单次大剂量照射的放疗技术[3]。SBRT能很好地保证靶区剂量适形度并且使其边缘剂量梯度下降较大,从而达到肿瘤调强放疗效果,同时更好地保护靶区周围的正常组织。SBRT通常分次数较少,单次剂量较大,剂量率高,具有很高的等效生物剂量特性,但其计划执行过程的可靠性受机架旋转的稳定性、旋转速度、剂量率稳定性、多叶光栅叶片到位的准确性等多因素影响。为保证SBRT计划能够可靠执行,治疗前需要进行严格的治疗计划剂量验证。ArcCHECK系统已成为现代放疗过程中剂量测量与质量控制的重要工具,主要应用于适形调强三维剂量验证,其半导体探头特性及其在容积旋转调强放疗(volumetric modulated arc therapy,VMAT)和SBRT剂量验证中应用的可靠性已被研究[4-5]证实。ArcCHECK系统γ分析仅提供在选定的测试条件下有多少测试点能够通过,并不能提供物理师和临床医师感兴趣区(region of interest,ROI)治疗前后的相应剂量偏差。研究[6]表明单纯γ通过率与ROI绝对百分剂量差异之间仅存在弱相关性,即便获得的γ通过率较高,在某些较为敏感的解剖结构处仍可能出现较大的剂量偏差。ArcCHECK配套3DVH软件可获得基于患者CT扫描影像的三维剂量分布,通过测量治疗计划执行时的剂量,采用剂量微扰算法,测量引导的重建剂量来预测患者体内的三维剂量分布,并且能很好地预测真实的投照剂量,评估ROI剂量偏差相关性,在直方图上直接展示测量效果。关于ArcCHECK-3DVH系统在常规适形调强放疗计划剂量验证的应用已有研究[7-11],但在无均整滤过器(flattening filter free,FFF)模式下SBRT计划剂量验证中的应用较少,Tyagi等[12]研究证实了ArcCHECK-3DVH系统在医科达系统下SBRT计划剂量验证应用中的可靠性,比较了靶区和危及器官剂量和体积偏差。本研究先用ArcCHECK系统对Truebeam加速器FFF模式下SBRT计划进行γ通过率验证,再用3DVH软件验证靶区及危及器官的γ通过率、剂量和体积的偏差,旨在寻找一种新的更可靠的SBRT剂量验证的方法。

1. 资料与方法

1.1. CT图像资料

选取2017年1月至2019年7月在中南大学湘雅三医院肿瘤放疗中心治疗的57例SBRT患者,其中肺癌患者29例,肝癌患者28例,年龄37~84(中位数59)岁。计划靶区(planning target volume,PTV)等效直径为3.0~10.1(5.5±1.7) cm,PTV体积为14.6~546.0(117.6±110.0) cm3。患者均取仰卧位,体膜固定,采用西门子大孔径CT进行扫描,扫描层厚1 mm,将扫描获得的CT图像上传至治疗计划系统(treatment planning system,TPS)中。根据MRI和PET相关影像资料进行靶区勾画,处方剂量的等效生物剂量≥100 Gy,治疗次数≤5。SBRT计划设计选用Truebearn加速器FFF模式下6MV X射线。采用铅门跟随的VMAT技术,剂量率选用1 400 MU/min。

1.2. 仪器与软件

Truebeam加速器为美国Varian公司产品,TPS(Eclipse11.0版本)为美国Varian公司产品,UNIDOSE剂量仪为德国PTW公司产品,ArcCHECK系统(软件版本6.2)和3DVH(软件版本3.2)为美国Sun Nuclear公司产品。ArcCHECK系统有效测量射野面积为21 cm×21 cm,探头共计1 386个,探头间距为1 cm,探头尺寸0.8 mm×0.8 mm,灵敏体积为0.019 mm3,探测器呈螺旋几何分布。独特的圆柱形螺旋设计使其能对误差机制进行分析,能测量相关的机架角度、叶片到位精度、绝对剂量。圆柱形矩阵可从射线角度显示整个旋转照射的剂量分布,可以测量合成剂量与任意弧段剂量,提供全面的剂量验证分析。3DVH软件可以分析靶区和危及器官的γ通过率及TPS理论计算结果和系统实测重建结果的差异,这种差异包括患者每个体层和整体的剂量和体积的差异。

1.3. 仪器校准

在用ArcCHECK系统采集数据前,除对加速器进行机械几何参数检测与校准,包括加速器辅助设备校准、等中心及指示装置检查、射野校准、剂量测量和控制系统检测外,还必须对本底、矩阵和绝对剂量进行校准。

1.4. 验证和分析方法

将CT扫描的ArcCHECK模体图像导入TPS中,按定位标记点确定中心。把SBRT计划(包括射野参数、等中心点位置、叶片的形状和剂量通量)移植到ArcCHECK的CT扫描模体中重新计算剂量,采用各向异性分析算法,计算网格精度为2 mm。把计算结果的RT Plan和RT Dose文件以DICOM格式导入SNC Patient Version 6.2.3软件,与实际模体测量得到的结果进行比较。用γ通过率分析TPS计算的剂量通量图与实测剂量通量图的差异。阈值标准分别选择(3%,3 mm,10%)和(2%,2 mm,10%),即测量点满足计划值与测量值偏差<3%或<2%,以该点为中心,3 mm或2 mm为半径的平面及球体内存在相近值的点占比阈值设置为10%。再将SBRT计划的RT Plan、RT Dose、RT structures和CT images文件导入3DVH软件中,并打开患者剂量测量结果的*.acml文件重新进行剂量计算(图1),分析靶区和危及器官的γ通过率,比较靶区和危及器官3DVH重新计算结果与TPS计算结果,得到剂量和体积的偏差(图2),公式为:偏差=(3DVH重新计算值-TPS计算值)/TPS计算值×100%。

图1.

图1

剂量微扰算法重建的剂量平面

Figure 1 Dose plane reconstruction by planned dose perturbation method

图2.

图2

靶区和危及器官3DVH计算结果与治疗计划系统计算结果比较

Figure 2 Comparison of the results of target and organ at risk measured by ArcCHECK-3DVH system and treatment planning system

2. 结 果

2.1. SBRT计划ArcCHECK系统γ通过率

29例肺癌和28例肝癌患者的SBRT计划验证分析阈值条件为(3%,3 mm,10%)时,γ相对剂量通过率(98.06%±1.42%)与绝对剂量通过率(98.43%±1.26%)均在90%以上,平均通过率在95%以上,90%的验证计划通过率都在95%以上;选择更严格的阈值条件(2%,2 mm,10%)时,γ相对剂量通过率(93.12%±5.12%)与绝对剂量通过率(93.64%±3.62%)都在93%以上。所有SBRT计划γ通过率的验证结果均能满足临床治疗要求。

2.2. 靶区和危及器官剂量和体积参数比较

靶区和危及器官3DVH重新计算结果与TPS计算结果剂量和体积偏差见表1表2。靶区和危及器官γ通过率均大于97%,靶区PTV和计划肿瘤靶区(planning gross tumour volume,PGTV)的D 98%(98%体积所受到的照射剂量)、D 50%D 2%D mean偏差均值都在±2%以内。危及器官方面:肝和患侧肺的D 5 Gy(受照射剂量≥5 Gy的体积)、D 10 GyD 20 GyD 30 GyD mean的偏差均在±5%内,但大部分测量重建结果低于TPS计算结果;有8例患者的脊髓和1例患者的小肠的D max>5%(<10%),6例患者的心脏和5例患者的右肾的D mean>5%(<10%),其余危及器官的剂量和体积偏差均值都小于±5%。

表1.

肺癌SBRT计划3DVH剂量验证结果与TPS计算结果的比较(n=29 x¯ ±s)

Table 1 Comparison of results of dosimetric verification for lung cancer SBRT plan by 3DVH and treatment planning system (n=29, x¯ ±s)

ROI Parameters Value/% ROI Parameters Value/%
PTV D 98% 0.36±1.45 PGTV D 98% -0.28±2.00
D 50% 0.33±1.69 D 50% 0.06±1.58
D 2% 0.98±2.38 D 2% 0.63±2.02
D mean 0.35±1.75 D mean 0.03±1.69
γ 97.81±1.98 γ 99.07±2.09
Affected lung V 5 Gy -2.59±2.86 Spinal cord D mean -2.74±2.56
V 10 Gy -1.50±2.42 D max -2.54±3.14
V 20 Gy -1.13±1.67 γ 99.9±0.05
V 30 Gy 0.05±2.62 Heart D mean -2.73±3.70
D mean -1.50±1.76 γ 99.97±0.10
γ 99.89±0.21 Healthy lung D mean -1.13±1.09
Healthy lung γ 99.74±0.46

ROI: Region of interest; PTV: Planning target volume; PGTV: Planning gross tumor volume.

表2.

肝癌SBRT计划3DVH剂量验证结果与TPS计算结果的比较(n=28 x¯ ±s)

Table 2 Comparison of results of dosimetric verification for liver cancer SBRT plan by 3DVH and treatment planning system (n=28, x¯ ±s)

ROI Parameters Value/% ROI Parameters Value/%
PTV D 98% -0.08±2.34 PGTV D 98% -0.11±1.78
D 50% 0.61±1.75 D 50% 0.13±1.64
D 2% 1.24±1.78 D 2% 1.09±1.83
D mean 0.54±1.70 D mean 0.29±1.69
γ 97.63±2.03 γ 98.13±2.28
Liver V 5 Gy -3.66±2.11 Small intestine D mean -0.90±3.58
V 10 Gy -2.51±2.66 D max -0.77±3.58
V 20 Gy -1.28±2.52 γ 99.09±0.02
V 30 Gy 0.70±2.63 Spinal cord D mean -1.45±1.80
∆Dmean -1.52±1.87 D max -1.11±3.54
γ 99.58±0.44 γ 99.90±0.02
Right kidney D mean -1.07±4.27 Right kidney γ 99.04±1.45

ROI: Region of interest; PTV: Planning target volume; PGTV: Planning gross tumor volume.

3. 讨 论

为降低周边正常组织器官的不良反应,SBRT对靶区剂量适形度、危及器官照射剂量和周边剂量跌落要求更高,因此剂量验证要求也更高。在本研究中,ArcCHECK系统剂量验证的比较阈值选择了(3%,3 mm,10%)及更严格的标准(2%,2,10%),采用γ通过率分析SBRT计划,其相对剂量通过率和绝对剂量通过率均能满足SBRT的临床要求。然而γ分析法剂量验证主要是对加速器的运行状态进行理想化的验证,而最终的治疗计划是应用在患者身上,患者肿瘤和危及器官实际的照射剂量还存在一定的未知数。γ通过率与临床解剖结构ROI剂量参数之间缺乏相关性,有些情况下即使γ通过率>95%也可能出现较大的剂量误差。Jin等[13]对鼻咽癌VMAT计划治疗前的剂量进行分析时也提出即便获得的γ通过率较高,在某些较为敏感的ROI仍可能出现较大的剂量偏差,从而对患者的治疗效果产生较大影响。Saito等[14]在对适形调强放疗计划进行质控时发现绝对百分剂量差异与γ通过率之间仅存在弱相关。基于剂量体积直方图重建患者剂量分布,提供了靶区和危及器官剂量和体积的信息,在剂量验证方面更具有临床相关性。Delta4系统基于剂量体积直方图在不同病种的常规调强计划评价和Compass系统基于剂量体积直方图在不同部位SBRT计划的剂量验证中的应用均被证实可靠[15-16]。本研究基于ArcCHECK-3DVH与TPS的计算结果,得出靶区和危及器官的γ通过率均大于97%,靶区剂量和体积偏差较小(均在±2%以内),危及器官剂量和体积偏差大(部分在±5%以内),均能满足SBRT的临床要求。SBRT需密切关注危及器官的放射性损伤,尤其是放射性肺损伤和放射性肝损伤。研究[17-18]报道肺或肝的V 5 GyV 10 GyV 20 GyD mean与放射性肺或肝损伤的发生密切相关,因此SBRT应密切关注肺和肝的受照射剂量和体积。本研究采用3DVH软件验证肺和肝V 5 GyV 10 GyV 20 GyD mean及γ通过率,验证结果均满足临床要求,表明3DVH剂量重建计算结果与TPS计算结果有很好的一致性。本研究出现误差较大的危及器官均是离靶区较远的器官,可能与铅门跟随和多叶光栅传递误差有关。邢晓汾等[19]研究发现剂量误差最大区域不是发生在中心层面,而是在中心层面以外射野边缘层面和剂量梯度较大的地方,与本研究结果一致。

目前对ArcCHECK-3DVH系统的剂量验证,特别是对多叶准直器运动误差、不同分辨率等情况下的验证均进行了分析[20]。但是ArcCHECK是一个均匀的有机玻璃模体,而人体各组织是非均匀的,模体测量的剂量与人体受照射剂量还是有一定的误差。在剂量重建时,ArcCHECK-3DVH未考虑非均匀介质的影响[21],在今后的研究工作中应予以考虑。SBRT计划受靶区剂量适形度、危及器官和周边剂量跌落要求的影响,一般情况下,小体积的危及器官或高剂量的部分容易产生较大偏差,但是多大的偏差能为临床接受也是今后需要研究的问题。

总之,ArcCHECK-3DVH系统是一种实用可靠的SBRT剂量验证工具,可了解ROI的剂量分布,提供靶区和危及器官的γ通过率、剂量和体积参数,可以方便快捷地分析出靶区和危及器官的计算剂量和实际照射剂量的差异,是对ArcCHECK系统剂量验证的一个延伸,相比单纯γ通过率的剂量验证,ArcCHECK-3DVH系统的剂量验证对临床治疗更有指导意义。

基金资助

湖南省自然科学基金(2018JJ3791);湖南省卫生健康委科研项目(C2019174)。

This work was supported by the Natural Science Foundation of Hunan Province (2018JJ3791) and Scientific Research Project of Hunan Health Commission (C2019174), China.

利益冲突声明

作者声称无任何利益冲突。

原文网址

http://xbyxb.csu.edu.cn/xbwk/fileup/PDF/202105475.pdf

参考文献

  • 1. Chang JY, Bezjak A, Mornex F, et al. Stereotactic ablative radiotherapy for centrally located early stage non-small-cell lung cancer: what we have learned[J]. J Thorac Oncol, 2015, 10(4): 577-585. [DOI] [PubMed] [Google Scholar]
  • 2. Moore A, Cohen-Naftaly M, Tobar A, et al. Stereotactic body radiation therapy (SBRT) for definitive treatment and as a bridge to liver transplantation in early stage inoperable Hepatocellular carcinoma[J]. Radiat Oncol, 2017, 12(1): 163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3. Benedict SH, Yenice KM, Followill D, et al. Stereotactic body radiation therapy: the report of AAPM Task Group 101[J]. Med Phys, 2010, 37(8): 4078-4101. [DOI] [PubMed] [Google Scholar]
  • 4. 李成强, 李光俊, 冀传仙, 等. ArcCHECK半导体探头特性及在容积调强弧形治疗剂量验证应用研究[J]. 中华放射肿瘤学杂志, 2013, 22(3): 253-257. [Google Scholar]; LI Chengqiang, LI Guangjun, JI Chuanxian, et al. The characteristics and clinical application of the ArcCHECK diode array for volumetric-modulated arc therapy verification[J]. Chinese Journal of Radiation Oncology, 2013, 22(3): 253-257. [Google Scholar]
  • 5. 朱煜星, 单东勇, 宾石珍, 等. ArcCheck系统在TrueBeam加速器非均整模式下剂量验证中的应用[J]. 中南大学学报(医学版), 2018, 43(8): 864-868. [DOI] [PubMed] [Google Scholar]; ZHU Yuxing, SHAN Dongyong, Shizhen BIN, et al. Dosimetric verification of flattening filter free model based on TrueBeam accelerator using ArcCheck system[J]. Journal of Central South University. Medical Science, 2018, 43(8): 864-868. [DOI] [PubMed] [Google Scholar]
  • 6. Nelms BE, Zhen HM, Tomé WA. Per-beam, planar IMRT QA passing rates do not predict clinically relevant patient dose errors[J]. Med Phys, 2011, 38(2): 1037-1044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7. Song JY, Kim YH, JeongJU, et al. Dosimetric evaluation of MapCHECK 2 and 3DVH in the IMRT delivery quality assurance process[J]. Med Dosim, 2014, 39(2): 134-138. [DOI] [PubMed] [Google Scholar]
  • 8. Song JH, Shin HJ, Kay CS, et al. Dosimetric verification by using the ArcCHECK system and 3DVH software for various target sizes[J]. PLoS One, 2015, 10(3): e0119937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9. Low C, Toye W, Phung P, et al. Patient-specific quality assurance protocol for volumetric modulated arc therapy using dose volume histogram[J]. J Med Phys, 2018, 43(2): 112-118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10. 李定杰, 张有改, 薛莹, 等. 早期NSCLC无均整器模式VMAT计划剂量比较研究[J]. 中华放射肿瘤学杂志, 2017, 26(1): 53-56. [Google Scholar]; LI Dingjie, ZHANG Yougai, XUE Ying, et al. The comparison of plan dose and dose verification in volumetric modulated arc therapy for early stage non-small cell lung cancer with non-flattening filter[J]. Chinese Journal of Radiation Oncology, 2017, 26(1): 53-56. [Google Scholar]
  • 11. 冯瑞兴. ArcCHECK结合3DVH在容积旋转调强放疗剂量验证中的应用研究[J]. 中国医疗设备, 2018, 33(7): 37-40. [Google Scholar]; FENG Ruixing. Application of ArcCHECK combined with 3DVH in volumetric modulated arc therapy dose verification[J]. China Medical Devices, 2018, 33(7): 37-40. [Google Scholar]
  • 12. Tyagi N, Yang K, Yan D. Comparing measurement-derived (3DVH) and machine log file-derived dose reconstruction methods for VMAT QA in patient geometries[J]. J Appl Clin Med Phys, 2014, 15(4): 54-66. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13. Jin X, Yan H, Han C, et al. Correlation between gamma index passing rate and clinical dosimetric difference for pre-treatment 2D and 3D volumetric modulated arc therapy dosimetric verification[J]. Br J Radiol, 2015, 88(1047): 20140577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14. Saito M, Kadoya N, Sato K, et al. Comparison of DVH-based plan verification methods for VMAT: ArcCHECK-3DVH system and dynalog-based dose reconstruction[J]. J Appl Clin Med Phys, 2017, 18(4): 206-214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15. 刘礼东, 杨振, 邱小平, 等. 利用Delta4对放疗计划进行剂量体积直方图评价的可行性研究[J]. 中国医学物理学杂志, 2018, 35(1): 25-30. [Google Scholar]; LIU Lidong, YANG Zhen, QIU Xiaoping, et al. Feasibility of Delta4 for plan evaluation based on dose-volume histogram[J]. Chinese Journal of Medical Physics, 2018, 35(1): 25-30. [Google Scholar]
  • 16. Nakaguchi Y, Ono T, Maruyama M, et al. Validation of a method for in vivo 3D dose reconstruction in SBRT using a new transmission detector[J]. J Appl Clin Med Phys, 2017, 18(4): 69-75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17. Bongers EM, Botticella A, Palma DA, et al. Predictive parameters of symptomatic radiation pneumonitis following stereotactic or hypofractionated radiotherapy delivered using volumetric modulated arcs[J]. Radiother Oncol, 2013, 109(1): 95-99. [DOI] [PubMed] [Google Scholar]
  • 18. Jung J, Yoon SM, Kim SY, et al. Radiation-induced liver disease after stereotactic body radiotherapy for small hepatocellular carcinoma: clinical and dose-volumetric parameters[J]. Radiat Oncol, 2013, 8(1): 1-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19. 邢晓汾, 褚薛刚, 郑旭亮, 等. Compass(R)在食管癌IMRT三维剂量验证中应用研究[J]. 中华放射肿瘤学杂志, 2015, 24(3): 327-330. [Google Scholar]; XING Xiaofen, CHU Xuegang, ZHENG Xuliang, et al. A clinical application research of 3D dose verification for esophageal carcinoma intensity-modulated radiation therapy with Compass (R)[J]. Chinese Journal of Radiation Oncology, 2015, 24(3): 327-330. [Google Scholar]
  • 20. Infusino E, Mameli A, Conti R, et al. Initial experience of ArcCHECK and 3DVH software for RapidArc treatment plan verification[J]. Med Dosim, 2014, 39(3): 276-281. [DOI] [PubMed] [Google Scholar]
  • 21. Kadoya N, Saito M, Ogasawara M, et al. Evaluation of patient DVH-based QA metrics for prostate VMAT: correlation between accuracy of estimated 3D patient dose and magnitude of MLC misalignment[J]. J Appl Clin Med Phys, 2015, 16(3): 5251. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Central South University Medical Sciences are provided here courtesy of Central South University

RESOURCES