Skip to main content
Journal of Central South University Medical Sciences logoLink to Journal of Central South University Medical Sciences
. 2021 Oct 28;46(10):1090–1095. [Article in Chinese] doi: 10.11817/j.issn.1672-7347.2021.200240

首发精神分裂症及临床高危人群脑神经生化代谢物异常

Abnormal neurobiochemical metabolites in the first- episode schizophrenia and clinical high-risk population

OUYANG Lijun 1,1, ZHENG Wenxiao 1, MA Xiaoqian 1, YUAN Liu 1, HE Ying 1,, CHEN Xiaogang 1,
Editor: 彭 敏宁
PMCID: PMC10930238  PMID: 34911838

Abstract

Objective

To explore the metabolite characteristics in medial prefrontal cortex (mPFC) by 1H magnetic resonance spectroscopy (1H-MRS) in the first-episode schizophrenia (FES) and clinical high-risk (CHR) people.

Methods

A total of 46 patients with the first-episode schizophrenia (FES), 49 people with clinical high risk (CHR), 61 people with genetic high risk (GHR), and 58 healthy controls (HC) were enrolled. The levels of N-acetylaspartylglutamate+N-acetylaspartate (tNAA), choline-containing compounds (Cho) and myo-inositol (MI), glutamate+glutamine (Glx) in medial prefrontal cortex were measured by single-voxel 1H-MRS. The clinical symptoms were evaluated in the FES group and the CHR group. Continuous performance test (CPT) were carried out to assess the visual and auditory accuracy and reaction time in the 4 groups.

Results

There were significant differences in Glx, tNAA, and MI concentrations among 4 groups (all P<0.05). Compared with the HC group, the FES group showed lower level of MI and Glx. The levels of Glx and tNAA in the CHR group were significantly lower than those in the GHR group (all P<0.05). The visual and auditory accuracies of CPT in the FES group were significantly lower than those in the HC group (P<0.05). In the FES group, Glx was negatively correlated with the reaction time of vision (r=-0.41, P=0.05).

Conclusion

The decreased levels of MI and Glx in the FES patients suggest that there may be glial functional damage and glutamatergic transmitter dysfunction in the early stage of the disease. The compensatory increase of metabolites may be a protective factor for schizophrenia in the genetic individuals.

Keywords: first-episode schizophrenia, high-risk population, magnetic resonance spectroscopy


精神分裂症(schizophrenia,SCZ)是一种多起病于青少年、病理机制复杂的精神疾病,主要表现为认知、情感、行为和意志等精神活动障碍。该病在人群中的终身患病率约为1%,是全球十大致残原因之一[1]。根据精神障碍发育假说,SCZ患者在疾病早期甚至发病前就已存在脑功能的改变、代谢异常[2]及认知功能损害。内侧前额叶是与情绪、动机、学习、注意力调控和行为决策等高级认知功能相关的关键脑区。质子磁共振波谱(1H magnetic resonance spectroscopy,1H-MRS)能够对脑内多种代谢物进行无创性检测,在分子水平反映脑组织代谢、神经递质、神经元、神经胶质细胞功能等。近年1H-MRS已被广泛应用于SCZ脑损害、脑代谢的研究[3-4],不仅SCZ患者存在内侧前额叶代谢物水平的改变[5],而且在首发SCZ(first-episode schizophrenia,FES)患者[6]、临床高危(clinical high risk,CHR)人群[7]、遗传高危(genetic high risk,GHR)人群[8]中也存在类似的改变。但目前这些研究群体单一,且存在药物、病程等多种混杂因素的影响。

本研究通过比较FES患者及CHR、GHR和健康对照者内侧前额叶基线代谢物N-乙酰天门冬酰胺复合物[N-acetylaspartylglutamate (NAAG)+N-acetylaspartate (NAA)=total NAA,tNAA]、胆碱(choline,Cho)、肌醇(myo-inositol,MI)、谷氨酸类复合物[glutamate (Glu)+glutamine (Gln)=Glx]水平,探索SCZ早期不同阶段神经生化物质特点,为SCZ的病理机制研究提供依据。

1. 对象及方法

1.1. 对象

研究对象为2015年6月至2018年12月在中南大学湘雅二医院门诊收治的61例GHR人群(为SCZ患者的一级亲属且自身无精神疾病病史)、49例CHR[经过精神病风险综合征定式访谈(the structured interview for prodromal syndromes,SIPS)确定符合前驱期综合征诊断标准(criteria of prodromal syndromes,COPS),未接受过药物治疗]、46例FES患者[符合《美国精神障碍诊断与统计手册第5版》(DSM-V)SCZ诊断标准,未接受过药物治疗]。同时招募56例健康对照者(家族中近3代未出现精神疾病患者且自身无精神疾病病史的自愿参加者)。所有组别的共同入组标准:1)年龄13~35岁,右利手;2)无明显智能障碍(IQ≥80分);3)自愿签署知情同意书并且具有依从性。排除标准:1)患有脑器质性疾病、严重躯体疾病;2)精神发育迟滞;3)有精神活性物质滥用史。本研究经中南大学湘雅二医院医学伦理委员会批准[审批号:(2018)伦审[科]第(009)号]。

1.2. 方法

1.2.1. 临床症状评估

采用阳性和阴性症状量表(Positive and Negative Syndrome Scale,PANSS)评估FES患者入组时临床症状,采用精神病前驱症状量表(the Scale of Prodromal Symptoms,SOPS)评估CHR人群入组时临床症状。使用持续性操作测验(continuous performance test,CPT)评估4组的视觉和听觉的反应时间和正确率。

1.2.2. 1H-MRS检查方法

在参与研究的24 h内,使用德国Siemens Skyra 3.0T超导型MRI成像系统测定被试者的脑内代谢物含量,操作由一名医学影像科的高年资医师和一名专业技师共同完成。所有MRI扫描均在同一机器上进行。给被试者配备泡沫垫,以减少其头部运动和扫描仪噪音。T1加权像为定位像[重复时间(repetition time,TR)=2 530 ms,回声时间(echo time,TE)=2.33 ms,视野(field of vision,FOV)=256×256],1H-MRS采用单体素点分辨波谱成像(point-resolved spectroscopy,PRESS)技术(TR=3 000 ms,TE=30 ms,激励次数=80),选取内侧前额叶为感兴趣区(region of interest,ROI),大小为20 mm×20 mm×20 mm,内侧前额叶定位及LCModel拟合波谱曲线见图1。在汕头大学医学院第二附属医院使用LCModel软件包(版本6.3-1B,LCMODEL Inc. CA)对Glx、tNAA、MI、Cho进行定量分析,以未抑制水作为内参照,计算Glx、tNAA、MI、Cho的绝对含量,并校正内侧前额叶中的脑脊液含量。所有分析均根据LCModel手册(http://s-provencher.com/pages/lcm-manual.shtml)进行。

图1.

图1

内侧前额叶定位(A)LCModel拟合波谱曲线(B)

Figure 1 Location of medial prefrontal cortex voxel (A) and the curve of LCModel fitted MRS data (B)

1.3. 统计学处理

采用SPSS 20.0统计学软件进行数据分析。计量资料以均数±标准差( x¯ ±s)表示,4组间人口学连续变量的比较采用单因素方差分析(ANOVA),分类变量采用χ2检验。CPT得分经过z转换后,方差齐的数据采用单因素方差分析及LSD-t检验,方差不齐的采用非参数比较Kruskal-Wallis检验。4组人群内侧前额叶中各代谢物水平的比较采用协方差分析,将受教育年限设定为协变量以减少其对代谢物水平的影响,并采用Bonferroni法对多重比较进行矫正。对正态分布的代谢物与临床症状评分及视觉和听觉功能相关性分析采用Pearson相关分析,对不符合正态分布的采用Spearman相关分析,以P<0.05为差异有统计学意义。

2. 结 果

2.1. 人口学资料比较

4组性别、年龄差异均无统计学意义(均P>0.05),但受教育年限差异有统计学意义(P<0.01),健康对照组的受教育年限明显高于其他3组。人口学特征见表1

表1.

4组人群一般资料比较

Table 1 Comparison of general data among 4 groups

组别 n 年龄/岁 性别(男/女) 受教育年限 病程/月 PANSS评分 SOPS评分
阳性 阴性 阳性 阴性
FES组 46 20.46±4.94 31/15 11.30±2.34** 12.5±24.2 22.65±7.14 22.59±8.13
CHR组 49 19.16±4.60 27/22 10.98±2.41** 10.96±5.32 11.39±6.34
GHR组 61 19.97±4.83 30/31 11.95±3.59**
HC组 56 20.96±3.29 33/23 13.79±2.46
F/χ2 1.539 3.706 10.654
P 0.206 0.295 0.005

FES:首发精神分裂症;CHR:临床高危;GHR:遗传高危;HC:健康对照;PANSS:阳性与阴性症状量表;SOPS:精神病前驱症状量表。与HC组比较,**P<0.01。

2.2. CPT结果比较

4组的视觉及听觉正确率差异均有统计学意义(均P<0.05),而视觉及听觉反应时间差异均无统计学意义(均P>0.05),其中FES组及CHR组的视觉正确率明显低于HC组,FES组的听觉正确率明显低于HC组,GHR组的听觉正确率明显高于FES组(均P<0.05,表2)。

表2.

4CPT结果比较

Table 2 Comparison of results of continuous performance test among 4 groups

组别 n 视觉 听觉
反应时间/s 正确率/% 反应时间/s 正确率/%
FES组 46 885.24±82.02 91.42±7.54* 882.17±126.25 83.65±11.84*
CHR组 49 876.80±96.67 91.44±10.33* 874.20±57.61 87.68±8.27
GHR组 61 859.79±90.92 94.06±8.68 868.57±51.38 91.70±4.10†
HC组 56 845.69±63.51 95.77±4.76 881.73±127.70 90.33±12.43
F 2.273 3.743 0.233 6.538
P 0.081 0.012 0.873 <0.001

FES:首发精神分裂症;CHR:临床高危;GHR:遗传高危;HC:健康对照。与HC组比较,*P<0.05;与FES组比较,†P<0.05。

2.3. 内侧前额叶代谢物比较

协方差分析结果示:4组的Glx、tNAA、MI水平差异均有统计学意义(均P<0.05),而Cho水平差异无统计学意义(P>0.05,表3)。

表3.

4组内侧前额叶代谢物水平比较

Table 3 Comparison of metabolite levels in medial prefrontal cortex among 4 groups

组别 n Glx/U MI/U tNAA/U Cho/U
FES组 46 7.16±1.10* 4.04±0.45 6.30±0.52* 1.26±0.16
CHR组 49 7.64±1.00* 4.31±0.50† 6.33±0.52* 1.29±0.17
GHR组 61 8.37±1.19 4.46±0.52† 6.63±0.40 1.31±0.12
HC组 56 7.90±1.22 4.39±0.51† 6.57±0.52 1.30±0.14
F 10.057 6.018 4.563 1.700
P <0.001 0.001 0.004 0.168

FES:首发精神分裂症;CHR:临床高危;GHR:遗传高危;HC:健康对照;Glx:谷氨酸类复合物;MI:肌醇;tNAA:N-乙酰天门冬酰胺复合物;Cho:胆碱。与GHR组比较,*P<0.05;与FES组比较,†P<0.05。

进一步两两比较结果示:FES组的MI水平明显低于其他3组,差异均有统计学意义(均P<0.05)。FES组的Glx水平低于HC组及GHR组,另外,CHR组的Glx水平明显低于GHR组(均P<0.05)。FES组及CHR组的tNAA水平明显低于GHR组(均P<0.05)。4组的MI、Glx及tNAA水平比较均为GHR组>HC组>CHR组>FES组。

2.4. 内侧前额叶代谢物水平与临床症状及视觉和听觉功能的相关分析

除FES患者的Glx水平与视觉反应时间呈负相关(r=-0.41,P=0.05),其余患者各代谢物水平与临床症状量表评分及CPT的其余结果均无明显相关性(均 P>0.05)。

3. 讨 论

NAA是人脑中第二丰富的代谢物,存在于神经元和神经轴突内,通常用于反映神经元健康水平或活力,其水平降低提示神经元凋亡或能量代谢障碍[9]。本研究发现:FES组和CHR组的tNAA水平相对于GHR组降低,而相对于HC组差异虽无统计学意义,但仍存在低于HC组的趋势。提示SCZ早期阶段便已存在内侧前额叶神经元受损,并且这些损害改变在接近发病时进行性加重。内侧前额叶损伤常常表现为注意力、决策力、反应能力下降[10],CPT主要用于评估注意力和反应力[11]。本研究中CPT结果示FES组视觉及听觉正确率明显低于HC组,提示FES患者存在注意力损伤。结合FES组tNAA水平的下降,进一步说明FES组存在内侧前额叶受损,并且出现了注意力的下降。

谷氨酸是中枢神经系统的主要兴奋性神经递质,对大脑的发育及神经活动起关键作用。MI被认为是星形胶质细胞的标志物,MI水平降低表明存在星型胶质细胞受损、死亡或细胞密度降低[12],MI水平升高表明脑内存在胶质细胞的增生。星型胶质细胞在维持神经元的完整性及递质传递过程有重要作用[13]。在细胞培养液中移除星型胶质细胞,可使神经元发送谷氨酸能信号能力减弱,进一步加重神经元的损伤[14],在SCZ患者中也有类似发现[15]。本研究发现:与HC组比较,FES组的MI及Glx水平明显降低,表明谷氨酸下降可能继发于星形胶质细胞的改变,胶质细胞的完整性可能是保持谷氨酸水平和神经元正常的基础。但是既往的大部分针对SCZ患者的1H-MRS研究显示SCZ患者脑内的MI水平[16]和Glx水平升高[17-19],仅有少部分结果显示FES患者的海马[20]及慢性SCZ患者内侧前额叶[21]的Glx水平下降。这些研究结果不一致的原因可能与研究脑区不一致、样本本身的异质性及测量方法不同等有关。另外,本研究还发现FES患者的Glx水平与视觉反应时间呈负相关,进一步表明Glx参与了FES的病理生理过程,Glx水平越低,视觉反应时间越长,反应能力下降越明显。

本研究通过比较4组人群内侧前额叶Glx、MI、tNAA、Cho水平,发现4种代谢物的水平均为GHR组>HC组>CHR组>FES组,FES组及CHR组与GHR组相比,在Glx、tNAA水平上均显著降低。研究[22]表明GHR群体在2年内发展为精神疾病的风险为12%~15%,而CHR群体2年内的转化风险为20%~35%,明显高于GHR。这些研究表明CHR个体可能在生物学改变上更接近于SCZ,而GHR仅存在遗传负荷,并未表现出任何精神病理性症状,故更接近于健康人群。此外,通过对GHR群体随访,发现部分在基线期存在脑结构异常改变的个体,随着时间的推移脑结构逐渐趋向于正常[23],表明GHR人群存在患病的风险但也存在一定的补偿及保护机制。本研究中GHR组各代谢物水平均高于HC组,提示GHR群体也存在代偿性的脑内代谢物水平升高,从而起到降低发病风险的作用。

综上,通过比较4组人群的内侧前额叶的代谢物,发现SCZ早期不同阶段均存在脑内代谢物水平的异常改变。这一发现提示神经胶质细胞及神经元的功能损害、谷氨酸失调可能在疾病早期就已存在,并且随着时间的推移进行性加重,而星形胶质细胞数量或者功能的改变可能使SCZ患者出现脑内谷氨酸、神经元的变化,这也许是产生精神病理症状的生物学基础。与此同时,GHR人群脑内代谢物水平的普遍升高也可能是一种保护性的代偿反应。

基金资助

国家自然科学基金(81871056)。

This work was supported by the National Natural Science Foundation of China (81871056).

利益冲突声明

作者声称无任何利益冲突。

原文网址

http://xbyxb.csu.edu.cn/xbwk/fileup/PDF/2021101090.pdf

参考文献

  • 1. Saha S, Chant D, Welham J, et al. A systematic review of the prevalence of schizophrenia[J]. PLoS Med, 2005, 2(5): e141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2. Fatemi SH, Folsom TD. The neurodevelopmental hypothesis of schizophrenia, revisited[J]. Schizophr Bull, 2009, 35(3): 528-548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3. Steen RG, Hamer RM, Lieberman JA. Measurement of brain metabolites by 1H magnetic resonance spectroscopy in patients with schizophrenia: a systematic review and Meta-analysis[J]. Neuropsychopharmacology, 2005, 30(11): 1949-1962. [DOI] [PubMed] [Google Scholar]
  • 4. Duarte JMN, Xin LJ. Magnetic resonance spectroscopy in schizophrenia: evidence for glutamatergic dysfunction and impaired energy metabolism[J]. Neurochem Res, 2019, 44(1): 102-116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5. Merritt K, Egerton A, Kempton MJ, et al. Nature of glutamate alterations in schizophrenia: a Meta-analysis of proton magnetic resonance spectroscopy studies[J]. JAMA Psychiatry, 2016, 73(7): 665-674. [DOI] [PubMed] [Google Scholar]
  • 6. Wang AM, Pradhan S, Coughlin JM, et al. Assessing brain metabolism with 7-T proton magnetic resonance spectroscopy in patients with first-episode psychosis[J]. JAMA Psychiatry, 2019, 76(3): 314-323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7. Mondino M, Brunelin J, Saoud M. N-acetyl-aspartate level is decreased in the prefrontal cortex in subjects at-risk for schizophrenia[J]. Front Psychiatry, 2013, 4: 99. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8. Tibbo P, Hanstock C, Valiakalayil A, et al. 3-T proton MRS investigation of glutamate and glutamine in adolescents at high genetic risk for schizophrenia[J]. Am J Psychiatry, 2004, 161(6): 1116-1118. [DOI] [PubMed] [Google Scholar]
  • 9. Joe E, Medina LD, Ringman JM, et al. 1H MRS spectroscopy in preclinical autosomal dominant Alzheimer disease[J]. Brain Imaging Behav, 2019, 13(4): 925-932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10. Fuster JM. The prefrontal cortex in the neurology clinic[J]. Handb Clin Neurol, 2019, 163: 3-15. [DOI] [PubMed] [Google Scholar]
  • 11. Chen WJ, Hsiao CK, Hsiao LL, et al. Performance of the continuous performance test among community samples[J]. Schizophr Bull, 1998, 24(1): 163-174. [DOI] [PubMed] [Google Scholar]
  • 12. Malhi GS, Valenzuela M, Wen W, et al. Magnetic resonance spectroscopy and its applications in psychiatry[J]. Aust N Z J Psychiatry, 2002, 36(1): 31-43. [DOI] [PubMed] [Google Scholar]
  • 13. Xia M, Abazyan S, Jouroukhin Y, et al. Behavioral sequelae of astrocyte dysfunction: focus on animal models of schizophrenia[J]. Schizophr Res, 2016, 176(1): 72-82. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14. Sobieski C, Jiang XP, Crawford DC, et al. Loss of local astrocyte support disrupts action potential propagation and glutamate release synchrony from unmyelinated hippocampal axon terminals in vitro[J]. J Neurosci, 2015, 35(31): 11105-11117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15. Plitman E, de la Fuente-Sandoval C, Reyes-Madrigal F, et al. Elevated myo-inositol, choline, and glutamate levels in the associative striatum of antipsychotic-naive patients with first-episode psychosis: aproton magnetic resonance spectroscopy study with implications for glial dysfunction[J]. Schizophr Bull, 2016, 42(2): 415-424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16. Das TK, Dey A, Sabesan P, et al. Putative astroglial dysfunction in schizophrenia: a Meta-analysis of 1H-MRS studies of medial prefrontal myo-inositol[J]. Front Psychiatry, 2018, 9: 438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17. Wijtenburg SA, Yang SL, Fischer BA, et al. In vivo assessment of neurotransmitters and modulators with magnetic resonance spectroscopy: application to schizophrenia[J]. Neurosci Biobehav Rev, 2015, 51: 276-295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18. Marsman A, van den Heuvel MP, Klomp DW, et al. Glutamate in schizophrenia: a focused review and Meta-analysis of ¹H-MRS studies[J]. Schizophr Bull, 2013, 39(1): 120-129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19. Wang J, Tang Y, Zhang T, et al. Reduced γ-aminobutyric acid and glutamate+glutamine levels in drug-naïvepatients with first-episode schizophrenia but not in those at ultrahigh risk[J]. Neural Plast, 2016, 2016: 3915703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20. Rauchmann BS, Ghaseminejad F, Keeser D, et al. The impact of endurance training and table soccer on brain metabolites in schizophrenia[J]. Brain Imaging Behav, 2020, 14(2): 515-526. [DOI] [PubMed] [Google Scholar]
  • 21. Natsubori T, Inoue H, Abe O, et al. Reduced frontal glutamate+glutamine and N-acetylaspartate levels in patients with chronic schizophrenia but not in those at clinical high risk for psychosis or with first-episode schizophrenia[J]. Schizophr Bull, 2014, 40(5): 1128-1139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22. Cannon TD, Yu CH, Addington J, et al. An individualized risk calculator for research in prodromal psychosis[J]. Am J Psychiatry, 2016, 173(10): 980-988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23. Guo WB, Liu F, Yao DP, et al. Decreased default-mode network homogeneity in unaffected siblings of schizophrenia patients at rest[J]. Psychiatry Res, 2014, 224(3): 218-224. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Central South University Medical Sciences are provided here courtesy of Central South University

RESOURCES