Abstract
目的
宫颈癌是全球女性生殖系统中最常见的恶性肿瘤,治疗后的宫颈癌患者复发率高,严重威胁妇女的生命健康。目前尚未见有关宫颈癌复发风险预测的研究报道。本研究基于宫颈癌复发的影响因素,建立宫颈癌复发风险预测模型,为宫颈癌复发防治提供科学依据。
方法
选择1992年1月至2005年12月湖南省肿瘤医院收治的4 358例宫颈癌患者为研究对象,随访宫颈癌患者治疗后的复发情况。对其可能的影响因素进行单因素分析,将单因素分析有统计学意义或单因素分析无统计学意义但专业上认为可能有意义的变量纳入多元Cox回归分析,建立宫颈癌复发风险预测模型,预测模型通过列线图展示。采用受试者工作特征(receiver operating characteristic,ROC)曲线、一致性曲线和临床决策曲线对模型进行评价。
结果
单因素分析显示:不同年龄、初潮年龄、生产次数、流产次数、临床分期和治疗方式的宫颈癌患者复发率比较,差异均有统计学意义(均P<0.05)。多因素Cox回归分析显示: RR=-0.489×(年龄≥55岁)+0.481×(初潮年龄>15岁)+0.459×(流产次数≥3)+0.416×(临床II期)+0.613×(临床III/IV期)+0.366×(治疗方式为手术+化学治疗)+0.015×(治疗方式为单纯化学治疗)。本研究构建的宫颈癌复发Cox风险预测模型曲线下面积为0.736(95% CI:0.684~0.789),最佳预测阈值为0.857,灵敏度为0.576,特异度为0.810。从临床决策曲线看净获益值较高,有效性良好。
结论
患者年龄、初潮年龄、流产次数、临床分期和治疗方式是影响宫颈癌复发的独立因素,本研究构建的宫颈癌复发Cox比例风险模型可较好地预测宫颈癌复发的风险。
Keywords: 宫颈癌复发, 影响因素, 风险预测模型, Cox回归
Abstract
Objective
Cervical cancer is the most common malignant tumor in the female reproductive system worldwide. The recurrence rate for the treated cervical cancer patients is high, which seriously threatens women’s lives and health. At present, the risk prediction study of cervical cancer has not been reported. Based on the influencing factors of cervical cancer recurrence, we aim to establish a risk prediction model of cervical cancer recurrence to provide a scientific basis for the prevention and treatment of cervical cancer recurrence.
Methods
A total of 4 358 cervical cancer patients admitted to the Hunan Cancer Hospital from January 1992 to December 2005 were selected as research subjects, and the recurrence of cervical cancer patients after treatment was followed up. Univariate analysis was used to analyze the possible influencing factors. Variables that were significant in univariate analysis or those that were not significant in univariate analysis but may be considered significant were included in multivariate Cox regression analysis to establish a cervical cancer recurrence risk prediction model. Line graphs was used to show the model and it was evaluated by using receiver operating characteristic (ROC) curves, calibration plots, and decision curve analysis.
Results
Univariate analysis showed that the recurrence rates of cervical cancer patients with different age, age of menarche, parity, miscarriage, clinical stage, and treatment method were significantly different (all P<0.05). Multivariate Cox regression analysis showed that RR=-0.489×(age≥55 years old)+0.481×(age at menarche >15 years old)+0.459×(number of miscarriages≥3)+0.416×(clinical stage II)+0.613×(clinical stage III/IV)+0.366×(the treatment method was surgery + chemotherapy) + 0.015×(the treatment method was chemotherapy alone). The area under the ROC curve (AUC) of the Cox risk prediction model for cervical cancer recurrence constructed was 0.736 (95% CI 0.684 to 0.789), the best prediction threshold was 0.857, the sensitivity was 0.576, and the specificity was 0.810. The accuracy of the Cox risk model constructed by this model was good. From the clinical decision curve, the net benefit value was high and the validity was good.
Conclusion
Patient age, age at menarche, miscarriages, clinical stages, and treatment methods are independent factors affecting cervical cancer recurrence. The Cox proportional hazards prediction model for cervical cancer recurrence constructed in this study can be better used for predicting the risk of cervical cancer recurrence.
Keywords: cervical cancer recurrence, influencing factors, risk prediction model, Cox regression
宫颈癌居生殖道恶性肿瘤之首,严重威胁女性的生命健康[1]。根据2020年全球癌症统计报告,全球每年约有604 127例宫颈癌新发病例,341 831例死于该疾病,分别占妇女癌症发病及死亡总数的6.5%和7.7%[2]。在中国,2020年宫颈癌发病例数和死亡例数分别为11万和5.9万[3],而2018年为10.6万和4.8万[4]。由此可见,近年来我国宫颈癌的新发与死亡病例并未得到控制,且仍有上升趋势,给家庭和社会带来沉重的经济负担。
目前宫颈癌确诊后的治疗方案多以手术为主,放射治疗(以下简称放疗)和化学治疗(以下简称化疗)为辅[5]。但治疗后宫颈癌复发率高,据报道有6.4%~21.1%的宫颈癌患者在治疗后出现肿瘤复发[6-9]。宫颈癌复发会破坏患者的淋巴组织及周围脏器,甚至引发严重的并发症,增加治疗的难度[10]。以往研究报道,宫颈癌复发患者的5年生存率仅为10%左右[11],且大部分患者在复发后的半年至1年内死亡,生存2年以上的患者较为少见[12]。因此,如何预防和降低宫颈癌复发成为临床实践的巨大挑战。目前,国内外未有宫颈癌复发风险预测模型的报道。本研究探索构建宫颈癌复发Cox风险预测模型,以期筛选影响宫颈癌复发的重要因素,为宫颈癌复发防治提供参考依据,也为宫颈癌复发高危人群筛查提供一种适宜的工具。
1. 对象与方法
1.1. 对象
选择1992年1月至2005年12月湖南省肿瘤医院 (以下简称我院)收治的4 358例宫颈癌患者作为研究对象。纳入标准:1)按照诊断标准,经临床病理学确诊为宫颈癌;2)在我院接受规范化的宫颈癌治疗;3)患者能够独立记录病情或协助完成调查。排除标准:1)有认知和沟通障碍;2)合并其他恶性或重症疾病,如严重的心力衰竭、肾衰竭等;3)患者和家属不配合完成调查;4)在我院接受规范化的宫颈癌治疗时,已经复发的患者。
1.2. 方法
首先对纳入的宫颈癌患者进行基线调查,由湖南省肿瘤防治研究办公室的医生通过面对面的访谈、电话或查阅医院电子病历系统等方式收集患者的基本情况并负责填写问卷,包括患者基本资料(年龄、初潮年龄、绝经情况、怀孕次数、生产次数和流产次数),临床和病理特征(主诉时间、临床分期、病理类型、分化程度)及治疗方式(手术、放疗、化疗)。患者的复发情况由医生通过电话、邮件进行随访,患者出院后每3~6个月随访1次,之后每年随访1次,随访次数不限。
1.3. 统计学处理
使用Microsoft Office Excel 2010建立数据库并进行数据录入,计量资料采用均数±标准差( ±s)描述,计数资料采用构成比描述。单因素分析采用χ2或t检验,将单因素分析有意义或单因素分析无意义但专业上认为可能有意义的变量纳入多因素分析,多因素Cox回归分析采用R软件处理,构建宫颈癌复发的风险预测模型。模型采用列线图展示,模型区分度采用受试者工作特征(receiver operating characteristic,ROC)曲线进行评价,模型准确度评价采用一致性曲线图(calibration plot),模型有效性评价采用临床决策曲线分析(decision curve analysis,DCA)。以P<0.05为差异有统计学意义。
2. 结 果
2.1. 患者的一般情况
在4 358例宫颈癌患者中,372例复发。4 358例患者的年龄为20~91(46.46±10.25)岁。年龄<55岁的有3 416人(78.4%);初潮年龄≤15岁的有2 589人(61.0%);怀孕次数≥3的有3 447人(79.1%);生产次数≥3的有2 318人(53.2%);大部分患者有流产史,流产次数1~2、≥3的患者分别有1 806人(41.4%)和728人(16.7%);未绝经患者有2 894人(66.4%);主诉时间以3~12个月为主,有2 006人(46.0%);临床分期以I期为主,有1 936人(93.0%);患者的病理类型中鳞癌占绝大多数,有3 864人(92.2%);分化程度为中分化的患者有3 332人(83.7%);治疗方式上,单纯放疗占绝大多数,有1 545人(35.5%)(表1)。
表1.
研究对象的一般情况和宫颈癌复发影响因素的单因素分析
Table 1 General information of research subjects and univariate analysis of influencing factors for cervical cancer recurrence
变量 | 总体(n=4 358) | 未复发(n=3 986) | 复发(n=372) | χ2/t | P |
---|---|---|---|---|---|
年龄/岁 | 46.46±10.25 | 46.57±10.30 | 45.34±9.67 | 2.205 | 0.028 |
年龄分组/[例(%)] | 11.105 | 0.001 | |||
<55岁 | 3 416(78.4) | 3 099(77.8) | 315(84.7) | ||
≥55岁 | 942(21.6) | 883(22.2) | 57(15.3) | ||
初潮年龄/[例(%)]* | 16.138 | <0.001 | |||
≤15 | 2 589(61.0) | 2 333(60.2) | 256(69.9) | ||
>15 | 1 652(39.0) | 1 542(39.8) | 110(30.1) | ||
怀孕次数/[例(%)] | 1.071 | 0.303 | |||
0~2 | 911(20.9) | 841(21.1) | 70(18.8) | ||
≥3 | 3 447(79.1) | 3 145(78.9) | 302(81.2) |
变量 | 总体(n=4 358) | 未复发(n=3 986) | 复发(n=372) | χ2/t | P |
---|---|---|---|---|---|
生产次数/[例(%)] | 7.955 | 0.005 | |||
0~2 | 2 040(46.8) | 1 843(46.2) | 197(53.0) | ||
≥3 | 2 318(53.2) | 2 143(53.8) | 175(47.0) | ||
流产次数/[例(%)] | 11.800 | 0.003 | |||
0 | 1 824(41.9) | 1 694(42.5) | 130(34.9) | ||
1~2 | 1 806(41.4) | 1 646(41.3) | 160(43.1) | ||
≥3 | 728(16.7) | 646(16.2) | 82(22.0) | ||
绝经情况/[例(%)] | 1.059 | 0.303 | |||
未绝经 | 2 894(66.4) | 2 638(66.2) | 256(68.8) | ||
已绝经 | 1 464(33.6) | 1 348(33.8) | 116(31.2) | ||
主诉时间/[例(%)] | 2.074 | 0.354 | |||
<3个月 | 1 951(44.8) | 1 797(45.1) | 154(41.4) | ||
3~12个月 | 2 006(46.0) | 1 822(45.7) | 184(49.5) | ||
>12个月 | 401(9.2) | 367(9.2) | 34(9.1) | ||
临床分期/[例(%)]† | 7.197 | 0.027 | |||
I | 1 936(46.6) | 1 798(47.2) | 138(39.8) | ||
II | 1 694(40.8) | 1 536(40.3) | 158(45.5) | ||
III/IV | 524(12.6) | 473(12.5) | 51(14.7) | ||
病理类型/[例(%)]‡ | 1.919 | 0.383 | |||
鳞癌 | 3 864(92.2) | 3 530(92.2) | 334(91.8) | ||
腺癌 | 261(6.2) | 240( 6.3) | 21(5.8) | ||
其他类型 | 68(1.6) | 59( 1.5) | 9(2.4) | ||
分化程度/[例(%)]§ | 1.357 | 0.507 | |||
高分化 | 479(12.0) | 440(12.1) | 39(11.2) | ||
中分化 | 3 332(83.7) | 3 041(83.7) | 291(83.4) | ||
低分化/未分化 | 172(4.3) | 153(4.2) | 19(5.4) | ||
治疗方式/[例(%)]¶ | 62.910 | <0.001 | |||
单纯手术 | 262(6.0) | 253(6.3) | 9(2.4) | ||
手术+放疗 | 1 308(30.1) | 1 220(30.7) | 88(23.6) | ||
手术+化疗 | 119(2.7) | 99(2.5) | 20(5.4) | ||
手术+同步放化疗 | 547(12.6) | 486(12.2) | 61(16.4) | ||
单纯放疗 | 1 545(35.5) | 1 432(36.0) | 113(30.4) | ||
同步放化疗 | 526(12.1) | 456(11.5) | 70(18.8) | ||
单纯化疗 | 44(1.0) | 33(0.8) | 11(3.0) |
*117例缺失;†204例缺失;‡165例缺失;§375例缺失;¶7例缺失。
2.2. 复发的单因素分析
不同年龄、初潮年龄、生产次数、流产次数、临床分期和治疗方式的宫颈癌患者复发率比较,差异均有统计学意义(均P<0.05)。而不同怀孕次数、绝经情况、主诉时间、病理类型和分化程度患者的宫颈癌复发率比较,差异均无统计学意义(均P>0.05,表1)。
2.3. 宫颈癌患者复发的Cox风险预测模型
2.3.1. 回归方程
以是否复发(未复发=0,复发=1),进一步将变量(赋值见表2)纳入Cox风险预测模型,结果显示:年龄≥55岁、初潮年龄>15岁、流产次数≥3、临床II期、临床III/IV期、治疗方式为手术+化疗及单纯化疗与宫颈癌复发相关(P<0.05)。回归方程为RR=-0.489×(年龄≥55岁)+0.481×(初潮年龄>15岁)+0.459×(流产次数≥3)+0.416×(临床II期)+0.613×(临床III/IV期)+0.366×(治疗方式为手术+化疗)+0.015×(治疗方式为单纯化疗)(表3)。
表2.
变量赋值情况
Table 2 Variable assignment
指标 | 赋值说明 |
---|---|
年龄 | 1=<55岁,2=≥55岁 |
初潮年龄 | 1=≤15岁,2=>15岁 |
生产次数 | 1=0~2,2=≥3 |
流产次数 | 1=0,2=1~2,3=≥3 |
临床分期 | 1= I期,2=II期,3=III/IV期 |
病理类型 | 1=鳞癌,2=腺癌,3=其他类型 |
分化程度 | 1=高分化,2=中分化,3=低/未分化 |
治疗方式 | 1=单纯手术,2=手术+放疗,3=手术+化疗,4=手术+同步放化疗,5=单纯放疗,6=同步放化疗,7=单纯化疗 |
是否复发 | 1=复发,0=未复发 |
表3.
宫颈癌患者复发影响因素的Cox比例风险回归分析
Table 3 Cox proportional hazards regression analysis of the influencing factors for recurrence in patients with cervical cancer
自变量 | b | Wald χ2 | HR(95% CI) | ||
---|---|---|---|---|---|
年龄(以<55岁为参照) | |||||
≥55岁 | -0.489 | 0.166 | 8.649 | 0.003 | 0.613(0.443,0.849) |
初潮年龄(以≤15岁为参照) | |||||
>15岁 | 0.481 | 0.124 | 15.073 | <0.001 | 0.618(0.485,0.788) |
生产次数(以0~2为参照) | |||||
≥3 | -0.096 | 0.127 | 0.569 | 0.450 | 0.909(0.708,1.165) |
流产次数(以0为参照) | |||||
1~2 | 0.147 | 0.128 | 1.324 | 0.250 | 1.159(0.902,1.489) |
≥3 | 0.459 | 0.152 | 9.141 | 0.002 | 1.582(1.175,2.130) |
临床分期(以I期为参照) | |||||
II期 | 0.416 | 0.178 | 5.437 | 0.020 | 1.516(1.069,2.150) |
III/IV期 | 0.613 | 0.230 | 7.096 | 0.008 | 1.846(1.176,2.898) |
病理类型(以鳞癌为参照) | |||||
腺癌 | -0.263 | 0.266 | 0.972 | 0.324 | 0.769(0.456,1.296) |
其他类型 | 0.586 | 0.510 | 1.321 | 0.250 | 1.798(0.661,4.886) |
分化程度(以高分化为参照) | |||||
中分化 | 0.043 | 0.181 | 0.056 | 0.812 | 1.044(0.732,1.489) |
低分化/未分化 | 0.354 | 0.300 | 1.322 | 0.250 | 1.412(0.784,2.542) |
治疗方式(以单纯手术为参照) | |||||
手术+放疗 | 0.466 | 0.461 | 1.026 | 0.311 | 1.594(0.646,3.933) |
手术+化疗 | 0.366 | 0.514 | 7.061 | 0.008 | 3.920(1.431,10.736) |
手术+同步放化疗 | 0.784 | 0.471 | 2.776 | 0.096 | 2.191(0.871,5.512) |
单纯放疗 | 0.345 | 0.484 | 0.508 | 0.476 | 1.412(0.547,3.648) |
同步放化疗 | 0.915 | 0.491 | 3.472 | 0.062 | 2.497(0.954,6.537) |
单纯化疗 | 1.517 | 0.623 | 5.925 | 0.015 | 4.561(1.344,15.478) |
2.3.2. Cox风险预测模型
图1.
宫颈癌复发的Cox风险预测模型列线图
Figure 1 Nomogram of Cox risk prediction model for cervical cancer recurrence
2.3.2.1. 区分度评价
列线图构建12个月复发风险预测模型ROC曲线下面积(the area under the ROC curve,AUC)为0.736(95% CI:0.684~0.789),最佳预测阈值为0.857,灵敏度为0.576,特异度为0.810(图2)。不同随访时间的AUC和波动范围见图3。
图2.
宫颈癌复发的Cox风险模型ROC曲线
Figure 2 ROC curve of Cox risk model for cervical cancer recurrence
图3.
宫颈癌复发的Cox风险模型的时间依赖性AUC联合曲线
Figure 3 Time-dependent AUC combined curve of Cox risk model for cervical cancer recurrence
AUC: Area under ROC curve. Solid line is AUC with different follow-up time, and dashed line on both sides is 95% CI of AUC for different follow-up time.
2.3.2.2. 校准度评价
本研究构建的宫颈癌复发 Cox风险预测模型:当事件发生率<85%时,模型高估风险;当事件发生率为85%~89%时,模型低估风险;当事件发生率为90%~94%时,模型高估风险;当事件发生率为95%~100%时,模型低估风险。而当事件发生率在85%、89%、95%左右时,模型预测和观察值完全一致,从整体上看,该预测模型的校准度良好(图4)。
图4.
宫颈癌患者复发的Cox风险模型校准曲线
Figure 4 Calibration curve of Cox risk model for recurrence of cervical cancer patients
The diagonal line in the figure is the reference line, and the predicted value is the actual value; the black dot line is the fitting curve, namely the event incidence. The blue line is a 95% CI.
2.3.2.3. 有效性评价
列线图模型的宫颈癌1年复发决策曲线见图5。从图5可见,本研究构建的宫颈癌复发的Cox风险模型净获益值较高,模型有效性良好。
图5.
宫颈癌复发的Cox风险模型的临床决策曲线
Figure 5 Clinical decision curve of Cox risk model for cervical cancer recurrence
The black dashed line indicates the net gain of the prediction model using the nomogram.
3. 讨 论
宫颈癌患者治疗后,常面临肿瘤复发的困境。宫颈癌复发临床表现特异性差,部分或早期复发的患者可无任何症状[8]。宫颈癌复发的诊断主要根据临床特征、实验室及影像学检查,由于患者症状缺乏特异性,因此容易延误治疗,导致患者预后变差[13]。分析和识别宫颈癌患者治疗后复发的影响因素,构建宫颈癌复发风险预测模型,对临床上早期识别和筛选复发患者,减小医疗负担有重大意义。
本研究发现患者年龄对宫颈癌复发影响较大。目前国内外文献对于年龄是否为宫颈癌复发的独立危险因素仍有争议,一部分研究[8, 14-15]报道年龄是宫颈癌复发的独立因素。年纪较小的女性宫颈癌发病率有增长趋势[16-17],其原因可能与年轻女性免疫系统不成熟及性传播有关,年轻宫颈癌患者的病理类型、临床特征等与老年宫颈癌患者存在差异[18],年轻宫颈癌患者有较高的病理类型,较差的分化水平[19]。另一部分研究[15, 20]认为年龄与宫颈癌复发无关,叶元等[21]对23例复发宫颈癌和401例未复发的宫颈癌患者进行回顾性研究,未发现年龄是宫颈癌复发的危险因素。
目前关于初潮年龄与宫颈癌复发的研究较少,本研究发现初潮年龄是影响宫颈癌复发的独立因素。刘慧强等[22]通过对378例宫颈癌患者分析后发现初潮年龄是宫颈癌的独立危险因素,初潮年龄越早,宫颈癌的发病风险越高。可能的原因是激素水平的作用,月经初潮意味着女性进入青春期,初潮年龄越早意味受雌激素影响的时间越长,雌激素可以促进内膜腺体和间质增生,更容易推动宫颈癌的发生、发展,导致宫颈癌的不良预后[23]。这提示具有以上特征的患者是临床上制订治疗方案时应该重点关注的人群。
本研究还发现多次流产可增加宫颈癌复发的风险(HR=1.582,95% CI:1.175~2.130),与先前报道的关于流产史和宫颈癌预后不良关系的研究[24]基本一致。段伟等[25]研究认为,反复的人工流产可促使宫颈癌的发生、发展,流产史是宫颈癌预后的危险因素。进一步分析原因为:多次流产对女性子宫颈造成损伤,导致宫颈过渡区鳞状上皮化生,为HPV感染提供了一定机会,同时多次流产导致患者的免疫功能下降[26]。因此,流产与宫颈癌复发密切相关,应避免人工流产,减少女性医源性或机械性损伤,预防和减少宫颈癌的复发。
在众多的危险因素中,临床分期被认为是宫颈癌复发最常见的因素,是反映疾病进展程度的重要指标,分期越晚则肿瘤恶性程度越高。本研究结果显示临床分期为宫颈癌治疗后复发的重要危险因素。Benedet等[27]研究报道宫颈癌的复发率随着临床分期的升高而升高,IB期至IIA期宫颈癌的复发率从10%升高到20%。这可能是由于临床分期越晚的患者,癌变范围越大,发生周围浸润的概率就越高,外周侵犯和淋巴结转移的可能性越高,即使患者接受系统的治疗,也不能降低复发的风险[7, 28-29]。因此,临床分期越早,治疗效果越好。
本研究多因素Cox回归分析显示宫颈癌的复发与治疗方式显著相关。治疗方式中手术+化疗(HR=3.920,95% CI:1.431~10.736)和单纯化疗(HR=4.561,95% CI:1.344~15.478)患者的复发风险高于单纯手术的患者,与下述研究报道不一致。Mabuchi等[30]研究报道接受手术治疗的宫颈癌患者预后优于接受化疗或姑息治疗的患者,化疗和姑息治疗的生存率几乎相同,并提出只有手术切除或放疗才能延长复发性宫颈癌患者的生存期。手术被认为是早期宫颈癌的主要治疗方法,多项研究[31-32]提出对于存在不良预后因素的宫颈癌患者应该给予辅助治疗。近年来,越来越多新辅助化疗被应用到临床实践当中,新辅助化疗可增加手术成功率,有效改善宫颈癌患者的预后,降低患者治疗后的复发风险[33-35]。
本研究基于宫颈癌患者数据,构建了宫颈癌复发风险预测模型,为预防宫颈癌复发提供了参考依据,有助于临床上采取针对性预防措施。该模型的AUC为0.736(95% CI:0.684~0.789),预测价值较高,即可以较为准确地将测试患者是否复发区分开来。另外,该模型准确度良好,净获益值较高,有效性良好。但由于条件所限,本研究建立的风险预测模型尚存在不足,首先是所纳入的预测指标较少,其次是缺乏生物标志物的相关指标。高华等[36]基于乳腺癌患者血清CA153、特异性组织多肽抗原等肿瘤标志物建立的logistic回归模型,AUC高达0.805,模型准确性良好。孙克娜等[37]在宫颈癌的诊断预测模型中纳入宫颈癌患者血清差异性蛋白,对宫颈癌组和健康组的诊断准确性为88.24%。可见,预测模型中除纳入患者的人口学特征、临床特征等因素外,还可以纳入包括患者生物学特征在内的更多指标,并结合临床实践进行综合分析,进一步提高模型的准确性。
综上所述,患者年龄、初潮年龄、流产次数、临床分期和治疗方式是影响宫颈癌复发的独立因素;本研究构建的宫颈癌复发Cox比例风险预测模型为宫颈癌复发高危人群筛查提供了一种适宜的工具。
基金资助
国家自然科学基金(82003313)。
This work was supported by the National Natural Science Foundation of China (82003313).
利益冲突声明
作者声称无任何利益冲突。
作者贡献
李吉娜 论文撰写与修改;罗家有 研究选题构思、实施,论文撰写与修改;刘高明,颜仕鹏 样本和数据收集,论文撰写与修改。所有作者阅读并同意最终的文本。
原文网址
http://xbyxb.csu.edu.cn/xbwk/fileup/PDF/2022121711.pdf
参考文献
- 1. Saei Ghare Naz M, Kariman N, Ebadi A, et al. Educational interventions for cervical cancer screening behavior of women: a systematic review[J]. Asian Pac J Cancer Prev, 2018, 19(4): 875-884. 10.22034/APJCP.2018.19.4.875. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. 10.3322/caac.21660. [DOI] [PubMed] [Google Scholar]
- 3. 刘宗超, 李哲轩, 张阳, 等. 2020全球癌症统计报告解读[J]. 肿瘤综合治疗电子杂志, 2021, 7(2): 1-14. 10.12151/JMCM.2021.02-01. [DOI] [Google Scholar]; LIU Zongchao, LI Zhexuan, ZHANG Yang, et al. Interpretation on the report of global cancer statistics 2020[J]. Journal of Multidisciplinary Cancer Management (Electronic Version), 2021, 7(2): 1-14. 10.12151/JMCM.2021.02-01. [DOI] [Google Scholar]
- 4. 王宁, 刘硕, 杨雷, 等. 2018全球癌症统计报告解读[J]. 肿瘤综合治疗电子杂志, 2019, 5(1): 87-97. 10.12151/JMCM.2019.01-10. [DOI] [Google Scholar]; WANG Ning, LIU Shuo, YANG Lei, et al. Interpretation on the report of global cancer statistics 2018[J]. Journal of Multidisciplinary Cancer Management. Electronic Version, 2019, 5(1): 87-97. 10.12151/JMCM.2019.01-10. [DOI] [Google Scholar]
- 5. 李超, 姚莉, 宗玲, 等. 晚期宫颈癌治疗进展[J]. 安徽医科大学学报, 2021, 56(3): 501-504. 10.19405/j.cnki.issn1000-1492.2021.03.034. [DOI] [Google Scholar]; LI Chao, YAO Li, ZONG Ling, et al. Treatment advances in advanced cervical cancer[J]. Journal of Anhui Medical University, 2021, 56 (3): 501-504. 10.19405/j.cnki.issn1000-1492.2021.03.034. [DOI] [Google Scholar]
- 6. Elit L, Fyles AW, Devries MC, et al. Follow-up for women after treatment for cervical cancer: a systematic review[J]. Gynecol Oncol, 2009, 114(3): 528-535. 10.1016/j.ygyno.2009.06.001. [DOI] [PubMed] [Google Scholar]
- 7. Lee WM, Park SI, Kim BJ, et al. Clinicopathologic factors for central recurrence in patients with locally advanced bulky cervical cancer[J]. Eur J Obstet Gynecol Reprod Biol, 2012, 161(2): 219-223. 10.1016/j.ejogrb.2011.12.029. [DOI] [PubMed] [Google Scholar]
- 8. Taarnhøj GA, Christensen IJ, Lajer H, et al. Risk of recurrence, prognosis, and follow-up for Danish women with cervical cancer in 2005—2013: a national cohort study[J]. Cancer, 2018, 124(5): 943-951. 10.1002/cncr.31165. [DOI] [PubMed] [Google Scholar]
- 9. Colturato LF, Signorini Filho RC, Fernandes RC, et al. Lymph node micrometastases in initial stage cervical cancer and tumoral recurrence[J]. Int J Gynaecol Obstet, 2016, 133(1): 69-75. 10.1016/j.ijgo.2015.08.019. [DOI] [PubMed] [Google Scholar]
- 10. 何敏, 刘潇涵, 肖琳. 复发性宫颈癌诊治研究进展[J]. 现代医药卫生, 2018, 34(17): 2683-2687. 10.3969/j.issn.1009-5519.2018.17.024. 30173809 [DOI] [Google Scholar]; HE Min, LIU Xiaohan, XIAO Lin. Progress in the diagnosis and treatment of recurrent cervical cancer[J]. Modern Medicine and Health Care, 2018, 34(17): 2683-2687. 10.3969/j.issn.1009-5519.2018.17.024. [DOI] [Google Scholar]
- 11. Ramm K, Vergote IB, Kaern J, et al. Bleomycin-ifosfamide-Cis-platinum (BIP) in pelvic recurrence of previously irradiated cervical carcinoma: a second look[J]. Gynecol Oncol, 1992, 46(2): 203-207. 10.1016/0090-8258(92)90256-i. [DOI] [PubMed] [Google Scholar]
- 12. 杨凌云, 王红静, 贾西彪, 等. 35岁以下年轻宫颈癌患者临床病理特征及预后分析[J]. 广东医学, 2012, 33(18): 2802-2804. 10.13820/j.cnki.gdyx.2012.18.052. 21976406 [DOI] [Google Scholar]; YANG Lingyun, WANG Hongjing, JIA Xibiao, et al. Clinicopathological features and prognosis analysis of young cervical cancer patients under 35 years old[J]. Guangdong Medicine, 2012, 33(18): 2802-2804. 10.13820/j.cnki.gdyx.2012.18.052. [DOI] [Google Scholar]
- 13. 王永花, 张宽. 宫颈癌术后复发影响因素的研究进展[J]. 医学综述, 2021, 27(7): 1340-1344. 10.3969/j.issn.1006-2084.2021.07.017. [DOI] [Google Scholar]; WANG Yonghua, ZHANG Kuan. Research progress of influencing factors of recurrence after cervical cancer surgery[J]. Medical Recapitulate, 2021, 27(7): 1340-1344. 10.3969/j.issn.1006-2084.2021.07.017. [DOI] [Google Scholar]
- 14. Ruengkhachorn I, Therasakvichya S, Warnnissorn M, et al. Pathologic risk factors and oncologic outcomes in early-stage cervical cancer patients treated by radical hysterectomy and pelvic lymphadenectomy at a Thai university hospital: a 7 year retrospective review[J]. Asian Pac J Cancer Prev, 2015, 16(14): 5951-5956. 10.7314/apjcp.2015.16.14.5951. [DOI] [PubMed] [Google Scholar]
- 15. Wang J, Wang T, Yang YY, et al. Patient age, tumor appearance and tumor size are risk factors for early recurrence of cervical cancer[J]. Mol Clin Oncol, 2015, 3(2): 363-366. 10.3892/mco.2014.465. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16. 杨玲, 皇甫小梅, 张思维, 等. 中国20世纪70年代与90年代子宫颈癌死亡率及其变化趋势[J]. 中国医学科学院学报, 2003, 25(4): 386-390. [PubMed] [Google Scholar]; YANG Ling, HUANGPU Xiaomei, ZHANG Siwei, et al. Changes of mortality rate for cervical cancer during 1970’s and 1990’s periods in China[J]. Acta Academiae Medicinae Sinicae, 2003, 25(4): 386-390. [PubMed] [Google Scholar]
- 17. Chan PG, Sung HY, Sawaya GF. Changes in cervical cancer incidence after three decades of screening US women less than 30 years old[J]. Obstet Gynecol, 2003, 102(4): 765-773. 10.1016/s0029-7844(03)00696-3. [DOI] [PubMed] [Google Scholar]
- 18. 谢林利, 王彬, 闫田静, 等. 35岁以下年轻宫颈癌患者的临床病理特征以及危险因素分析[J]. 中国妇幼保健, 2016, 31(20): 4147-4148. 10.7620/zgfybj.j.issn.1001-4411.2016.20.18. [DOI] [Google Scholar]; XIE Linli, WANG Bin, YAN Tianjing, et al. Clinico-pathological characteristics and risk factor analysis of young cervical cancer patients under 35 years old [J]. Maternal and Child Health Care in China, 2016, 31 (20): 4147-4148. 10.7620/zgfybj.j.issn.1001-4411.2016.20.18. [DOI] [Google Scholar]
- 19. 苏钱法, 陈锡红. 年轻宫颈癌患者的临床病理学特征分析[J]. 深圳中西医结合杂志, 2020, 30(23): 85-87. 10.16458/j.cnki.1007-0893.2020.23.039. [DOI] [Google Scholar]; SU Qianfa, CHEN Xihong. Analysis of the clinicopathological characteristics of young cervical cancer patients [J]. Shenzhen Journal of Integrated Traditional Chinese and Western Medicine, 2020, 30(23): 85-87. 10.16458/j.cnki.1007-0893.2020.23.039. [DOI] [Google Scholar]
- 20. Li Y, Chen ZY, Wang X, et al. Clinical outcomes observation in stage IIB-IIIB cervical cancer treated by adjuvant surgery following concurrent chemoradiotherapy[J]. BMC Cancer, 2021, 21(1): 442. 10.1186/s12885-021-08146-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21. 叶元, 尹茳平, 李力, 等. 宫颈癌手术治疗后复发的临床病理因素分析[J]. 实用妇产科杂志, 2011, 27(7): 535-538. 10.3969/j.issn.1003-6946.2011.07.021. [DOI] [Google Scholar]; YE Yuan, YIN Jiangping, LI Li, et al. Analysis of the clinicopathological factors affecting the relapse of carcinoma of cervix after surgery[J]. Journal of Practical Obstetrics and Gynecology, 2011, 27(7): 535-538. 10.3969/j.issn.1003-6946.2011.07.021. [DOI] [Google Scholar]
- 22. 刘慧强. 我国宫颈癌流行病学特征和高危因素分析[J]. 中国妇幼保健, 2016, 31(6): 1258-1260. 10.7620/zgfybj.j.issn.1001-4411.2016.06.54. [DOI] [Google Scholar]; LIU Huiqiang. Analysis of the epidemiological characteristics and high-risk factors of cervical cancer in China[J]. Maternal and Child Health Care in China, 2016, 31(6): 1258-1260. 10.7620/zgfybj.j.issn.1001-4411.2016.06.54. [DOI] [Google Scholar]
- 23. 孙晓娟, 王健, 范淑英. 人工流产次数与高危型人乳头瘤病毒感染对宫颈癌发生的影响[J]. 中国综合临床, 2016, 32(12): 1066-1070. 10.3760/cma.j.issn.1008-6315.2016.12.003. [DOI] [Google Scholar]; SUN Xiaojuan, WANG Jian, FAN Shuying. Effect of the number of induced abortions and high-risk HPV infection on cervical carcinogenesis[J]. Clinical Medicine of China, 2016, 32(12): 1066-1070. 10.3760/cma.j.issn.1008-6315.2016.12.003. [DOI] [Google Scholar]
- 24. 王季青, 周春慧. 宫颈癌危险因素的流行病学调查分析[J]. 中外医学研究, 2014, 12(3): 79-80. 10.14033/j.cnki.cfmr.2014.03.089. [DOI] [Google Scholar]; WANG Jiqing, ZHOU Chunhui. Epidemiological investigation and analysis of the risk factors for cervical cancer [J]. Chinese and Foreign Medical Research, 2014, 12(3): 79-80. 10.14033/j.cnki.cfmr.2014.03.089.. [DOI] [Google Scholar]
- 25. 段伟, 李红霞, 胡海峰, 等. 人工流产次数与高危型人乳头瘤病毒感染和宫颈癌发生的关系研究[J]. 实用癌症杂志, 2018, 33(8): 1364-1367. 10.3969/j.issn.1001-5930.2018.08.044. [DOI] [Google Scholar]; DUAN Wei, LI Hongxia, HU Haifeng, et al. Study on the relationship between the number of artificial abortion and the high risk human papillomavirus infection and cervical cancer[J]. The Practical Journal of Cancer, 2018, 33(8): 1364-1367. 10.3969/j.issn.1001-5930.2018.08.044. [DOI] [Google Scholar]
- 26. 周权, 黄民主, 黄霜, 等. 中国已婚妇女宫颈癌发病影响因素Meta分析[J]. 中国癌症杂志, 2011, 21(2): 125-129. 10.3969/j.issn.1007-3969.2011.02.009. [DOI] [Google Scholar]; ZHOU Quan, HUANG Minzhu, HUANG Shuang, et al. Meta-analysis of the influential factors on cervical cancer among married women in China[J]. China Oncology, 2011, 21(2): 125-129. 10.3969/j.issn.1007-3969.2011.02.009. [DOI] [Google Scholar]
- 27. Benedet JL, Odicino F, Maisonneuve P, et al. Carcinoma of the cervix uteri[J]. Int J Gynaecol Obstet, 2003, 83(Suppl 1): 41-78. 10.1016/s0020-7292(03)90115-9. [DOI] [PubMed] [Google Scholar]
- 28. Adiga D, Eswaran S, Pandey D, et al. Molecular landscape of recurrent cervical cancer[J]. Crit Rev Oncol Hematol, 2021, 157: 103178. 10.1016/j.critrevonc.2020.103178. [DOI] [PubMed] [Google Scholar]
- 29. Rotman M, Sedlis A, Piedmonte MR, et al. A phase III randomized trial of postoperative pelvic irradiation in Stage IB cervical carcinoma with poor prognostic features: follow-up of a gynecologic oncology group study[J]. Int J Radiat Oncol Biol Phys, 2006, 65(1): 169-176. 10.1016/j.ijrobp.2005.10.019. [DOI] [PubMed] [Google Scholar]
- 30. Mabuchi S, Isohashi F, Yoshioka Y, et al. Prognostic factors for survival in patients with recurrent cervical cancer previously treated with radiotherapy[J]. Int J Gynecol Cancer, 2010, 20(5): 834-840. 10.1111/IGC.0b013e3181dcadd1. [DOI] [PubMed] [Google Scholar]
- 31. Wu Z, Peng X, Li JK, et al. Constitutive activation of nuclear factor κB contributes to cystic fibrosis transmembrane conductance regulator expression and promotes human cervical cancer progression and poor prognosis[J]. Int J Gynecol Cancer, 2013, 23(5): 906-915. 10.1097/IGC.0b013e318292da82. [DOI] [PubMed] [Google Scholar]
- 32. Chao A, Huang HJ, Lai CH. Human papillomavirus research on the prevention, diagnosis, and prognosis of cervical cancer in Taiwan[J]. Chang Gung Med J, 2012, 35(4): 297-308. 10.4103/2319-4170.106141. [DOI] [PubMed] [Google Scholar]
- 33. 赵惠杰. 新辅助化疗在宫颈癌临床治疗中的临床效果分析[J]. 医药论坛杂志, 2021, 42(17): 105-109. [Google Scholar]; ZHAO Huijie. Analysis of the clinical effect of neoadjuvant chemotherapy in the clinical treatment of cervical cancer[J]. Pharmaceutical Forum magazine, 2021, 42(17): 105-109. [Google Scholar]
- 34. Qiu JT, Abdullah NA, Chou HH, et al. Outcomes and prognosis of patients with recurrent cervical cancer after radical hysterectomy[J]. Gynecol Oncol, 2012, 127(3): 472-477. 10.1016/j.ygyno.2012.08.008. [DOI] [PubMed] [Google Scholar]
- 35. Peters WA, Liu PY, Barrett RJ, et al. Concurrent chemotherapy and pelvic radiation therapy compared with pelvic radiation therapy alone as adjuvant therapy after radical surgery in high-risk early-stage cancer of the cervix[J]. J Clin Oncol, 2000, 18(8): 1606-1613. 10.1200/JCO.2000.18.8.1606. [DOI] [PubMed] [Google Scholar]
- 36. 高华, 李玉柱, 韩龙才, 等. Logistic回归和ROC工作曲线评价联合检测血清CA153, TPS, CYFRA21-1在乳腺癌诊断中的临床价值[J]. 现代检验医学杂志, 2018, 33(3): 60-64. 10.3969/j.issn.1671-7414.2018.03.016. [DOI] [Google Scholar]; GAO Hua, LI Yuzhu, HAN Longcai, et al. Clinical value of logistic regression and ROC work curve evaluating serum CA153, TPS and Cyfra21-1 for diagnosis of breast cancer[J]. Journal of Modern Laboratory Medicine, 2018, 33(3): 60-64. 10.3969/j.issn.1671-7414.2018.03.016. [DOI] [Google Scholar]
- 37. 孙克娜, 许小雨, 朱小双, 等. WCX-MB联合MALDI-TOF MS技术建立宫颈癌诊断预测模型及初步验证[J]. 生物技术通讯, 2020, 31(5): 547-553. 10.3969/j.issn.1009-0002.2020.05.008. [DOI] [Google Scholar]; SUN Kena, XU Xiaoyu, ZHU Xiaoshuang, et al. Establishment and preliminary validation of a diagnostic prediction model for cervical cancer using WCX-MB and MALDI-TOF MS[J]. Letters in Biotechnology, 2020, 31(5): 547-553. 10.3969/j.issn.1009-0002.2020.05.008. [DOI] [Google Scholar]