Abstract
目的
溃疡性结肠炎(ulcerative colitis,UC)是一种肠道慢性、易复发的非特异性炎症,肠上皮修复障碍是其重要的生物学特点,促进肠上皮愈合达到内镜下黏膜愈合是UC的最终治疗目标。Yes相关蛋白(Yes-associated protein,YAP)是影响器官发育、组织生长及肿瘤发生的重要辅助转录因子,近年来越来越多的研究关注YAP在肠黏膜修复中的作用,这对于靶向治疗UC及预防相关并发症的发生具有重要意义。本研究探究YAP调控肠黏膜上皮细胞增殖、修复及肠炎相关肿瘤(colitis associated cancer,CAC)发生的分子机制。
方法
使用3%葡聚糖硫酸钠盐(dextran sulfate sodium salt,DSS)连续诱导5 d构建小鼠急性肠炎模型。构建YAP过表达(YAPWT)及阴性对照(NC)的慢病毒载体,分别腹腔注射入DSS小鼠体内,于DSS诱导5 d及撤除DSS后正常饮水的5 d(5+5 d)脊椎脱臼处死小鼠,取结肠测量其长度,选择近肛管1~2 cm肠管行免疫组织化学、蛋白质印迹法分析。构建YAP过表达的肠上皮细胞系及信号转导与转录激活因子3(signal transducer and activator of transcription 3,STAT3)小干扰RNA(si-STAT3),用蛋白质印迹法探究YAP对STAT3的调控方式;用功能学细胞计数试剂盒-8(cell counting kit-8,CCK-8)和划痕实验研究YAP调控STAT3在肠上皮细胞增殖中的作用;通过蛋白质免疫共沉淀探究YAP与STAT3的相互作用。
结果
DSS炎症诱导导致YAP在肠上皮细胞中表达显著降低,相对于NC小鼠,过表达YAP促进了小鼠在DSS炎症损伤后肠黏膜的修复,表现为肠上皮的结构更为完整,黏膜中炎性细胞的数量减少。蛋白质印迹法、功能学实验及免疫共沉淀结果表明:细胞核中的YAP在DSS撤除后的2 h显著高表达,同时伴随STAT3及磷酸化STAT3(phosphorylated-STAT3,p-STAT3)高表达;YAP过表达上调STAT3、p-STAT3及其转录靶基因细胞-骨髓细胞瘤病毒癌基因(cellular-myelocytomatosis viral oncogene,c-Myc)和G1/S-特异性周期蛋白-D1(cell cycle protein D1,Cyclin D1)的表达,且促进肠上皮细胞的增殖及伤口“愈合”。然而,在过表达YAP的基础上沉默STAT3则c-Myc及Cyclin D1表达降低,细胞增殖能力被逆转。蛋白质免疫共沉淀结果表明YAP和STAT3可以在细胞核内直接结合,促进STAT3的转录表达。在CAC发生过程中,过表达YAP细胞质磷酸化突变体下调STAT3的表达,抑制CAC的发生。
结论
YAP通过激活STAT3调控肠上皮细胞增殖,促进DSS急性炎症小鼠的肠黏膜修复,YAP可作为UC肠黏膜修复的重要治疗靶点。然而,长期、过度的YAP激活可导致CAC的发生。
Keywords: 葡聚糖硫酸钠盐肠炎, 黏膜修复, Yes相关蛋白, 信号转导与转录激活因子3, 肠炎相关肿瘤
Abstract
Objective
Ulcerative colitis (UC) is a chronic, relapsing inflammation of the colon. Impaired epithelial repair is an important biological features of UC. Accelerating intestinal epithelial repair to achieve endoscopic mucosal healing has become a key goal in UC. Yes-associated protein (YAP) is a key transcriptional coactivator that regulates organ size, tissue growth and tumorigenesis. Growing studies have focused on the role of YAP in intestinal epithelial regeneration. This study explore the molecular mechanism for the role YAP in modulating colonic epithelial proliferation, repair, and the development of colitis associated cancer.
Methods
We constructed the acute colitis mouse model through successive 5 days of 3% dextran sulfate sodium salt (DSS) induction. Then YAP-overexpressed mouse model was constructed by intraperitoneal injection the YAP overexpressed and negative control lentivirus into DSS mice. On the 5th day of DSS induction and the 5th day of normal drinking water after removing DSS (5+5 d), the mice were killed by spinal dislocation. The colon was taken to measure the length, and the bowel 1-2 cm near the anal canal was selected for immunohistochemical and Western blotting. We used YAP over-expressed colonic epithelial cells and small interfering signal transducer and activator of transcription 3 (STAT3) RNA to probe the regulation of YAP on STAT3, using cell counting kit-8 and scratch assays to explore the role of YAP on colonic epithelial cell proliferation. Finally, we conducted co-immunoprecipitation to test the relationship between YAP and STAT3.
Results
After DSS treatment, the expression of YAP was dramatically diminished in crypts. Compared with the empty control mice, overexpression of YAP drastically accelerated epithelial regeneration after DSS induced colitis, presenting with more intact of structural integrity in intestinal epithelium and a reduction in the number of inflammatory cells in the mucosa. Further Western blotting, functional experiment and co-immunoprecipitation analyses showed that the expression of YAP in nucleus was significantly increased by 2 h post DSS cessation, accompanied with up-regulated total protein levels of STAT3 and phosphorylated-STAT3 (p-STAT3). Overexpression of YAP enhanced the expression of STAT3, p-STAT3, and their transcriptional targets including c-Myc and Cyclin D1. In addition, it promoted the proliferation and the “wound healing” of colonic cells. However, these effects were reversed when silencing STAT3 on YAP-overexpressed FHC cells. Moreover, protein immunoprecipitation indicated that YAP could directly interact with STAT3 in the nucleus, up-regulatvng the expressvon of STAT3. Finally, during the process of CAC, overexpression of YAP mutant caused the down-regulated expression of STAT3 and inhibited the development and progress of CAC.
Conclusion
YAP activates STAT3 signaling in regulation of epithelial cell proliferation and promotes mucosal regeneration after DSS induced colitis, which may serve as a potential therapeutic target in UC. However, persistent and excessive YAP activation may promote CAC development.
Keywords: dextran sulfate sodium salt induced colitis, mucosal repair, Yes-associated protein, signal transducer and activator of transcription 3, colitis-associated cancer
溃疡性结肠炎(ulcerative colitis,UC)是肠道的非特异性易复发炎症,病因尚不明确,多与遗传易感、环境改变、免疫失调和微生物感染等相关[1]。UC好发于西方国家,近年来在既往低发地区(如亚洲)发病率明显增加[1]。UC常见的并发症包括肠穿孔、出血及结肠癌。肠炎相关肿瘤(colitis-associated cancer,CAC)的病变常表现为扁平、局灶且多焦点,内镜下难以发现,占UC患者死亡原因的10%~15%[2]。
UC具有两个重要的生物学特点:天然免疫调节紊乱和上皮修复功能障碍[3]。针对UC的治疗当前主要基于抑制炎症和调节免疫功能,但可供选择的药物有限,且个体疗效差异大。促进肠上皮修复,达到内镜下的黏膜愈合已成为UC治疗的关键[4]。因此,阐明UC黏膜修复机制,对于靶向治疗UC及预防相关并发症的发生具有重要意义。
Yes相关蛋白(Yes-associated protein,YAP)是影响组织生长和器官大小非常重要的辅助转录因子[5]。在生理稳态条件下,YAP定位于隐窝基底部肠上皮细胞内,其活性主要取决于Hippo通路中大肿瘤抑制剂(large tumor suppressor,LATS)或Mst(mammalian STE20-like kinase)1激酶的磷酸化作用,活化的 LATS1/2在细胞质中磷酸化YAP S127位点导致YAP泛素化降解[6-7]。而当LATS或Mst激酶失活时,YAP可转运入细胞核,与转录因子转录增强相关结构域 (transcriptional enhanced associate domain,TEAD)家族、P73、Smad(small mother against decapentaplegic)等结合,转录调控靶基因表达,继而影响下游信号通路[8-9]。Zhou等[10]发现Mst1和Mst2激酶均缺失的小鼠肠上皮细胞相对野生型小鼠增殖明显,肠道干细胞标志物的表达显著增高。而对肠上皮条件性敲除YAP的小鼠进行3%葡聚糖硫酸钠盐(dextran sulfate sodium salt,DSS)炎症诱导,小鼠结肠的腺体结构及黏膜屏障功能恢复明显滞后[11]。同时,YAP可通过上调EGFR的配体Areg(amphiregulin)表达,促进放射性肠炎的黏膜修复[12]。由此可见,Hippo/YAP通路在调控肠上皮细胞增殖和修复的过程中发挥重要作用,激活YAP可促进肠上皮细胞的增殖、再生及损伤肠黏膜的修复。本研究运用DSS诱导小鼠模型模拟人体UC及炎症相关肠癌的发生,探究YAP在肠上皮修复中的作用及分子调控机制,为UC及其并发症的防治提供新的实践及理论依据。
1. 材料与方法
1.1. 细胞培养
人正常肠道上皮细胞系FHC购自美国ATCC公司,细胞用含10%胎牛血清的RPMI 1640培养基培养,并置于含5% CO2的37 ℃恒温箱中。制备细胞炎症模型:FHC细胞预先用无血清培养基培养过夜,之后用减血清培养基(2%)配制1% DSS分别处理0、4 h,然后更换为不含DSS的减血清培养基分别培养1、2、4 h。
1.2. 试剂和抗体
AOM (Azoxymethane)购自美国Sigma公司;DSS(MW 40 000~50 000 kD)购自美国MP公司;抗体YAP、磷酸化YAP-S127、信号转导与转录激活因子3(signal transducer and activator of transcription 3,STAT3)、磷酸化STAT3-Tyr705、Ki-67、细胞-骨髓细胞瘤病毒癌基因(cellular-myelocytomatosis viral oncogene,c-Myc)、G1/S-特异性周期蛋白-D1(cell cycle protein D1,Cyclin D1)、增殖细胞核抗原(proliferating cell nuclear antigen,PCNA)均购自美国CST公司;GAPDH和histon-H3购自美国Santa公司;TRIzol试剂购自北京宝日医生物技术有限公司;细胞核质分离试剂盒购自上海碧云天生物技术有限公司。
1.3. 质粒、siRNA及转染
YAP野生型过表达(YAPWT)及磷酸化突变体(YAPS112D)慢病毒购自上海吉凯基因医学科技股份有限公司,包装载体使用GV358,包含Ubi-MCS-3FLAG-SV40-EGFP-IRES-puromycin元件。人源YAP正向引物为5'-GAGGATCCCCGGGTACCGGTCGCC-ACCATGGATCCCGGGCAGCAGCCGC-3',反向引物为5'-TCCTTGTAGTCCATACCTAACCATGTAAGA-AAGCTTTC-3';鼠源YAP正向引物为5'-GAGGAT-CCCCGGGTACCGGTCGCCACCATGGAGCCCGCGC-AACAG-3',反向引物为5'-TCCTTGTAGTCCATAC-CTAACCACGTGAGAAAGCT-3'。YAP-S112D突变体即丝氨酸112号位点突变为天冬氨酸后插入GV358载体中构成重组慢病毒质粒。以上慢病毒及对照空载质粒转染细胞后使用2 μg/mL的嘌呤霉素进行筛选。SiRNA序列购自苏州吉玛基因股份有限公司,STAT3-siRNA序列为5'-CAGCACAACCUUCGAAG-AA-3',阴性对照序列为5'-UUCUCCGAACGUGUC-ACGU-3'。使用lipofectamine-3000对细胞进行慢病毒质粒或siRNA转染,转染效率通过荧光显微镜及蛋白质印迹法进行验证。
1.4. RNA提取及real-time RT-PCR
依据试剂使用说明书,用TRIzol试剂提取总RNA,用反转录试剂盒将RNA反转录为cDNA,用SYBR Green PCR预混试剂于ABI荧光定量PCR仪中检测各样本特定基因相对表达量。
1.5. 蛋白质提取
1×107个FHC细胞用PBS清洗3次后刮取收集,加入200 μL细胞质蛋白质提取试剂A和蛋白酶抑制剂的混合液冰浴10~15 min,加入10 μL细胞质蛋白质提取试剂B,涡旋震荡5 s,冰浴1 min,涡旋震荡5 s,于4 ℃下120 000 g离心10 min,吸取上清即为细胞质蛋白质。向细胞沉淀中加入50 μL细胞核蛋白质提取试剂,每隔5 min涡旋震荡30 s,持续30 min后于4 ℃下120 000 g离心10 min,所得上清即为细胞核蛋白质。
1.6. 蛋白质印迹法和蛋白质免疫共沉淀
蛋白质印迹法:等量的蛋白质样品上样至10%~12%的SDS-聚丙烯酰胺凝胶中,电泳45 min至1 h后电转,电转所得蛋白质条带用1꞉1 000一抗于4 ℃下孵育过夜,TBST清洗3次,用1꞉3 000二抗于室温孵育1~2 h,洗膜后用ECL发光液于室温孵育数分钟即可显影。
蛋白质免疫共沉淀:将细胞置于预冷的RIPA裂解缓冲液中,刮取细胞并转移至1.5 mL EP管中,于4 ℃下低速摇床晃动15 min,120 000 g离心15 min,获取上清。向蛋白质样品中加入50 μL的ProteinA/G-agarose工作液,于4 ℃下低速摇床晃动10 min,120 000 g离心15 min,获取上清,去除ProteinA/G-agarose微球。采用BCA法测定总蛋白质浓度,而后加入适量一抗,置于4 ℃下低速摇床过夜,获得免疫复合物,离心后收集沉淀进行蛋白质印迹分析。
1.7. 免疫组织化学检测
小鼠肠道标本于4%多聚甲醛中固定24 h,而后石蜡包埋,制作厚度为5 μm的切片行HE染色。免疫组织化学检测:组织切片行脱水、去除过氧化物酶、抗原修复及封闭后,用一抗孵育过夜,PBS清洗后用二抗在室温下孵育2 h,最后行DAB显色。肠道炎症及肿瘤分级评估由两名资深病理医生独立完成。
1.8. CCK-8及划痕实验
功能学CCK-8实验:将FHC细胞种植于96孔板,密度为2 000/孔,于不同检测时间点,向每孔加入10 μL CCK-8工作液并于37 ℃温箱中孵育1 h,用酶标仪行比色测量。
划痕实验:用10 μL小枪头迅速划刮单细胞层制作划痕,倒置显微镜观察不同时间点转染不同质粒或siRNA细胞的“伤口愈合”面积。
1.9. 动物实验
BALB/c小鼠购自中南大学湘雅医学院,小鼠实验方案通过中南大学湘雅二医院动物伦理委员会审查(审批号:2022661)。制备YAP慢病毒转染模型:取6~8周的雄性BALB/c小鼠,每只腹腔注射1×107载量病毒,注射3 d后用蛋白质印迹法检测小鼠蛋白质表达确保过表达模型构建成功。制备DSS诱导急性肠炎模型:使用含3% DSS溶液持续喂养小鼠5 d,而后撤除DSS改用正常饮水,于DSS喂养5 d和撤除DSS后5 d脊椎脱臼处死小鼠,取结肠测量其长度,选择近肛管1~2 cm肠管行免疫组织化学、蛋白质印迹分析。用AOM/DSS构建CAC模型:提前1周予小鼠腹腔注射 10 mg/kg的AOM,休息1周后用3% DSS持续喂养7 d,而后正常饮水14 d,此循环重复3次,最后一周期结束即获得CAC模型。
1.10. 统计学处理
采用统计软件Graph Prism 6对数据进行分析,数据以均数±标准误( ±SEM)表示,组间比较采用t检验,P<0.05为差异具有统计学意义。
2. 结 果
2.1. YAP在DSS炎症小鼠肠上皮中表达降低
Real-time RT-PCR及蛋白质印迹结果显示:YAP在DSS炎症小鼠肠上皮中的表达显著低于正常小鼠(图1A和1B)。免疫组织化学染色结果显示:在正常小鼠生理稳态条件下,YAP蛋白定位于肠黏膜上皮隐窝基底部(肠道干细胞所在区域),且主要位于细胞核(图1C)。连续DSS刺激导致小鼠肠上皮大量腺体破坏,固有层中可见大量炎性细胞(如中性粒细胞)浸润,此时,YAP在肠黏膜上皮中的分布较为分散,在腺体及间质中均有表达,其在腺体中的表达显著低于正常小鼠(P<0.000 1,图1C)。
图1.
YAP在DSS诱导小鼠肠黏膜中表达降低
Figure 1 Expression of YAP is decreased in murine colons after DSS induced injury
A: Real-time PCR analysis of the mRNA expressions of YAP in colons of 3% DSS induced and normal control mice; B: Western blotting analysis of the protein expressions of YAP in colons of 3% DSS induced and normal control mice; N: Normal; L: Lesion; C: Immunohistochemistry analysis of the expression of YAP in colons of inflamed and normal mice. Data represent the mean±standard error, scale bars=50 μm. **P<0.01, ***P<0.000 1.
2.2. 过表达YAP促进肠黏膜修复
通过慢病毒腹腔注射构建YAP过表达的小鼠模型,运用经典的炎症修复模型(即3% DSS连续诱导 5 d后正常饮水5 d)分析撤除DSS后第5天不同小鼠的肠道黏膜病变情况。蛋白质印迹结果显示:Flag标签及YAP蛋白在注射了慢病毒的YAPWT组小鼠肠黏膜中表达明显升高(图2E),且表达特异的EGFP荧光(图2A)。这表明过表达模型构建成功。YAPWT组小鼠的肠道较对照慢病毒转染(NC)组小鼠约长9 mm (P<0.05,图2C),HE染色结果显示NC组小鼠肠黏膜存在明显的上皮缺失及腺体破坏,固有层可见大量炎性细胞浸润,而YAPWT组小鼠固有层虽仍可见部分炎性细胞浸润,但肠上皮已基本恢复完整,肠上皮腺体基本排列规则(图2B),可见在撤除DSS后YAPWT组小鼠的肠上皮已基本恢复正常。肠道病理评分结果也支持这一发现(图2D)。免疫组织化学结果显示YAPWT组小鼠肠上皮细胞的YAP及Ki-67表达均显著高于NC组(图2F)。
图2.
过表达YAP促进DSS炎症小鼠肠黏膜的增殖修复
Figure 2 Overexpressing YAP promotes the colonic mucosal healing after DSS induced injury
All mice were killed at 5 d after DSS withdraw. Control represented the mice without lentivirus treatment; NC represented the mice received the negative control lentivirus treatment; YAPWT represented the mice obtained YAP overexpressed lentivirus injection. A: Fluorescence imaging of the colon in 3 groups; B: HE staining of the colon in 3 groups; C: Colon lengths in YAPWT and NC mice at 5 d afer DSS withdraw; D: Histological scores in YAPWT and NC mice; E: Western blotting analysis of indicated proteins in different groups; F: IHC analysis of YAP expression in colonic epithelium of YAPWT and NC mice at 5 d after DSS withdraw. Data are represented as the mean±standard error, scale bars=50 μm, *P<0.05, **P<0.01.
2.3. YAP核过表达激活STAT3通路,促进肠上皮细胞增殖
通过构建细胞炎症模型,我们发现DSS刺激导致YAP表达显著降低,而当DSS撤除后YAP蛋白的表达逐渐升高,表达峰值位于撤除后2 h,此时YAP在细胞核中的表达也达到最高值(图3A)。在撤除DSS后STAT3表达逐渐上升,在撤除后2 h达到峰值,磷酸化STAT3(phosphorylated-STAT3,p-STAT3)及其转录靶基因c-Myc均在撤除DSS后表达升高(图3A),细胞核YAP和活化STAT3的表达变化表明STAT3可能与YAP一同参与肠上皮细胞的损伤修复过程。
图3.
YAP和STAT3在DSS诱导的炎症修复期表达增高,过表达YAP激活STAT3并促进肠上皮细胞的增殖修复
Figure 3 Expressions of YAP and STAT3 are upregulated during epithelial repair after DSS induced injury, overexpressed YAP activates STAT3 to promote the colonic epithelial cell proliferation
A: FHC cells were pre-treated with 1% DSS. Western blotting was used to analyze the indicated protein expressions at 4 h DSS induction and 1, 2, and 4 h after DSS removal. B: Western blotting was used to analyze STAT3 and its associated protein expressions in YAPWT and NC cells. C: CCK-8 was used to analyze epithelial cell proliferation between NC and YAPWT FHC cells at different time points. Data are represented as the mean±standard error, **P<0.01, ***P<0.001. D: Scratch assay analysis of epithelial cell “wound healing” areas between NC and YAPWT FHC cells at different time points.
通过对FHC细胞进行慢病毒转染构建了YAP过表达的稳转株的蛋白质印迹检测发现:YAPWT转染使YAP主要于细胞核中过表达,YAPWT组STAT3、p-STAT3的表达也显著升高,同时,STAT3的转录靶基因c-Myc及Cyclin D1的表达在YAPWT组也明显增高(图3B)。进一步的CCK-8及划痕实验发现:相对于NC组,YAPWT组的肠上皮细胞具有更强的增殖能力及“伤口愈合”能力(图3C~3D)。
2.4. YAP与STAT3于细胞核内结合,调控下游靶基因表达
对YAP过表达的FHC细胞进行STAT3瞬时沉默后比较YAPWT及YAPWTsiSTAT3细胞各蛋白质的表达,结果显示沉默了STAT3的YAPWTsiSTAT3组c-Myc及Cyclin D1的表达明显降低(图4A),划痕实验也表明沉默STAT3明显削弱了YAPWT细胞的增殖能力(图4B)。进一步的蛋白质免疫共沉淀实验结果发现YAP与STAT3在细胞核中直接结合(图4C)。
图4.
YAP通过与STAT3在胞核中直接结合调控下游靶基因表达及肠上皮细胞的增殖
Figure 4 YAP interacts with STAT3 in nucleus to transcriptionally regulate downstream genes expressions to facilitate epithelial cell proliferation
A: Western blotting analysis of the indicated protein expressions in YAPWT and YAPWT+siSTAT3 FHC cells; B: Scratch assay analysis of epithelial cell “wound healing” areas between YAPWT and YAPWT+siSTAT3 FHC cells at different time points; C: Protein immunoprecipitation analysis of YAP and STAT3 interaction in cytoplasm and nucleus of FHC cells.
2.5. YAPWT 和YAP磷酸化突变体双向调控CAC的发生
通过慢病毒腹腔注射构建YAP细胞核过表达(YAPWT)及细胞质过表达(YAPS112D,YAP丝氨酸112位点突变为天冬氨酸,为鼠源YAP的持续失活状态)模型,结果表明:经过3个周期AOM/DSS诱导,YAPWT组肿瘤多为高级别上皮内瘤变,而YAPS112D组肿瘤分级基本为低级别上皮内瘤变(图5)。同时,IHC染色显示YAPS112D组STAT3表达显著低于YAPWT组(图5)。
图5.
YAP细胞质过表达的磷酸化突变体抑制STAT3表达,抑制肠炎相关肿瘤的发生、发展
Figure 5 Cytoplasmic YAP overexpression (YAPS112D) downregulates STAT3 expression and inhibits CAC progression
All mice were killed after 3 cycles of AOM/DSS procedure ended. Scale bars=20 μm.
3. 讨 论
YAP是Hippo通路中的转录辅助因子,在器官生长、组织再生及肿瘤发生中发挥重要作用[13-14]。UC具有一个重要的生物学特点即肠上皮再生修复障碍。本研究发现YAP在急性DSS炎症小鼠肠上皮中表达明显降低,YAP过表达可促进DSS损伤后的肠黏膜修复,然而,在持续慢性炎症刺激下,YAP促进肠上皮细胞过度增殖,诱导炎症相关肠癌的发生,我们认为YAP是影响肠黏膜上皮修复及肿瘤发生的重要调控因子。
YAP是Hippo通路的关键因子,其通过与转录因子(如TEAD家族)结合调控靶基因如CTGF、Areg等的表达,在许多肿瘤的增殖、迁移中发挥重要作用[8, 15-16]。YAP还参与多种器官如肠道[17]、肝[18]、心[19]等的再生修复过程。我们前期的研究[20]发现YAP可激活β-catenin通路,并通过与β-catenin/转录因子4形成转录复合体调控靶基因Lgr5及cyclin D1的表达,继而促进肠道上皮细胞的自我更新、损伤后修复及CAC的发生。本研究发现:YAP在DSS急性炎症小鼠肠上皮中表达显著降低,YAP过表达促进了炎症损伤后肠黏膜修复,并且在修复期YAP的核表达与活化的STAT3表达趋于一致,表明除了激活β-catenin通路,YAP还可通过激活STAT3途径参与肠上皮细胞的修复过程。
STAT3是参与细胞炎症、组织再生、损伤修复及肿瘤发生的重要转录因子[21-23],其酪氨酸705位点磷酸化被认为是STAT3的活化状态[24]。既往研究[25]表明STAT3为YAP/TEAD4转录的靶基因,YAP通过激活JAK/STAT3通路影响胰腺癌的发生、发展。此外,YAP可在细胞核内直接结合转录因子STAT3(而非经典的TEADs),其靶基因的表达与三阴性乳腺癌患者的不良预后相关[14];YAP还可通过直接结合STAT3转录调控VEGF的表达,上调M2样肿瘤相关巨噬细胞中PD-L1的表达,促进体内喉癌细胞的增殖[26]。然而,YAP与STAT3在肠道炎症修复及CAC中的调控机制尚不清楚。本研究通过细胞炎症模型,发现YAP细胞核表达在撤除DSS后2 h显著升高,STAT3及p-STAT3与之呈现一致的表达趋势,且YAP细胞核过表达可上调p-STAT3的表达,同时促进肠黏膜上皮细胞的增殖、修复,而在YAP细胞核过表达基础上沉默STAT3,则逆转了细胞增殖的趋势,进一步的实验显示YAP与STAT3在肠上皮细胞中可直接结合。本研究揭示了在细胞核中,YAP通过直接结合转录因子STAT3调控下游上皮增殖相关基因的表达,从而促进肠道上皮细胞的增殖、修复,加速肠上皮损伤后修复。此外,在慢性炎症刺激下,YAP细胞核高表达促进肠上皮细胞过度增殖,增加CAC的易感性,而持续YAP磷酸化失活状态则抑制了STAT3的表达和CAC的发生。
综上所述,组织的增殖修复障碍可导致炎症性肠病及年龄相关的组织萎缩,而持续、过度的组织增殖则可导致肿瘤。尽早达到内镜下的黏膜愈合对于炎症性肠病的治疗及预防相关并发症至关重要。在本研究中,YAP通过与转录因子STAT3结合激活、促进下游转录靶基因的表达,促进肠黏膜上皮细胞增殖,从而调控炎症损伤后修复。YAP可作为UC黏膜修复的重要靶点,体内静脉系统给予YAP磷酸化突变体可能成为CAC的治疗新策略。
基金资助
国家自然科学基金(81900478)。
This work was supported by the National Natural Science Foundation of China (81900478).
利益冲突声明
作者声称无任何利益冲突。
作者贡献
夏翩翩 细胞培养、慢病毒转染、动物模型构建及处理;邓飞鸿 蛋白质印迹、免疫组织化学、蛋白质免疫共沉淀等实验操作,数据统计,文章撰写、修订。所有作者已阅读并同意最终的文本。
原文网址
http://xbyxb.csu.edu.cn/xbwk/fileup/PDF/2022121637.pdf
参考文献
- 1. Ng SC, Shi HY, Hamidi N, et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies[J]. Lancet, 2017, 390(10114): 2769-2778. 10.1016/S0140-6736(17)32448-0. [DOI] [PubMed] [Google Scholar]
- 2. van der Kraak L, Gros P, Beauchemin N. Colitis-associated colon cancer: is it in your genes? [J]. World J Gastroenterol, 2015, 21(41): 11688-11699. 10.3748/wjg.v21.i41.11688. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3. Krishnan K, Arnone B, Buchman A. Intestinal growth factors: potential use in the treatment of inflammatory bowel disease and their role in mucosal healing[J]. Inflamm Bowel Dis, 2011, 17(1): 410-422. 10.1002/ibd.21316. [DOI] [PubMed] [Google Scholar]
- 4. Neurath MF. New targets for mucosal healing and therapy in inflammatory bowel diseases[J]. Mucosal Immunol, 2014, 7(1): 6-19. 10.1038/mi.2013.73. [DOI] [PubMed] [Google Scholar]
- 5. Taniguchi K, Wu LW, Grivennikov SI, et al. A gp130-Src-YAP module links inflammation to epithelial regeneration[J]. Nature, 2015, 519(7541): 57-62. 10.1038/nature14228. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6. Yu FX, Meng ZP, Plouffe SW, et al. Hippo pathway regulation of gastrointestinal tissues[J]. Annu Rev Physiol, 2015, 77: 201-227. 10.1146/annurev-physiol-021014-071733. [DOI] [PubMed] [Google Scholar]
- 7. Zhao B, Li L, Tumaneng K, et al. A coordinated phosphorylation by lats and CK1 regulates YAP stability through SCF(beta-TRCP)[J]. Genes Dev, 2010, 24(1): 72-85. 10.1101/gad.1843810. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8. Marti P, Stein C, Blumer T, et al. YAP promotes proliferation, chemoresistance, and angiogenesis in human cholangio-carcinoma through TEAD transcription factors[J]. Hepatology, 2015, 62(5): 1497-1510. 10.1002/hep.27992. [DOI] [PubMed] [Google Scholar]
- 9. Totaro A, Panciera T, Piccolo S. YAP/TAZ upstream signals and downstream responses[J]. Nat Cell Biol, 2018, 20(8): 888-899. 10.1038/s41556-018-0142-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10. Zhou DW, Zhang YY, Wu HT, et al. Mst1 and Mst2 protein kinases restrain intestinal stem cell proliferation and colonic tumorigenesis by inhibition of Yes-associated protein (Yap) overabundance[J/OL]. Proc Natl Acad Sci USA, 2011, 108(49): E1312-E1320 [2019-04-14]. 10.1073/pnas.1110428108. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11. Cai J, Zhang NL, Zheng YG, et al. The Hippo signaling pathway restricts the oncogenic potential of an intestinal regeneration program[J]. Genes Dev, 2010, 24(21): 2383-2388. 10.1101/gad.1978810. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12. Gregorieff A, Liu Y, Inanlou MR, et al. Yap-dependent reprogramming of Lgr5(+) stem cells drives intestinal regeneration and cancer[J]. Nature, 2015, 526(7575): 715-718. 10.1038/nature15382. [DOI] [PubMed] [Google Scholar]
- 13. Moya IM, Halder G. Hippo-YAP/TAZ signalling in organ regeneration and regenerative medicine[J]. Nat Rev Mol Cell Biol, 2019, 20(4): 211-226. 10.1038/s41580-018-0086-y. [DOI] [PubMed] [Google Scholar]
- 14. Chen J, Cheng JY, Zhao C, et al. The Hippo pathway: a renewed insight in the craniofacial diseases and hard tissue remodeling[J]. Int J Biol Sci, 2021, 17(14): 4060-4072. 10.7150/ijbs.63305. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15. Zhang AJ, Wang WL, Chen ZJ, et al. SHARPIN inhibits esophageal squamous cell carcinoma progression by modulating hippo signaling[J]. Neoplasia, 2020, 22(2): 76-85. 10.1016/j.neo.2019.12.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16. Chen Y, Lu CY, Cheng TY, et al. WW domain-containing proteins YAP and TAZ in the hippo pathway as key regulators in stemness maintenance, tissue homeostasis, and tumorigenesis[J]. Front Oncol, 2019, 9: 60. 10.3389/fonc.2019.00060. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17. Yui S, Azzolin L, Maimets M, et al. YAP/TAZ-dependent reprogramming of colonic epithelium links ECM remodeling to tissue regeneration[J]. Cell Stem Cell, 2018, 22(1): 35-49. 10.1016/j.stem.2017.11.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18. Li CY, Jin YT, Wei S, et al. Hippo signaling controls NLR family pyrin domain containing 3 activation and governs immunoregulation of mesenchymal stem cells in mouse liver injury[J]. Hepatology, 2019, 70(5): 1714-1731. 10.1002/hep.30700. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19. Meng F, Xie B, Martin JF. Targeting the Hippo pathway in heart repair[J]. Cardiovasc Res, 2021: cvab291. 10.1093/cvr/cvab291. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20. Deng FH, Peng L, Li ZJ, et al. YAP triggers the Wnt/β-catenin signalling pathway and promotes enterocyte self-renewal, regeneration and tumorigenesis after DSS-induced injury[J]. Cell Death Dis, 2018, 9: 153. 10.1038/s41419-017-0244-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21. Hu YS, Han X, Liu XH. STAT3: a potential drug target for tumor and inflammation[J]. Curr Top Med Chem, 2019, 19(15): 1305-1317. 10.2174/1568026619666190620145052. [DOI] [PubMed] [Google Scholar]
- 22. Yu H, Pardoll D, Jove R. STATs in cancer inflammation and immunity: a leading role for STAT3[J]. Nat Rev Cancer, 2009, 9(11): 798-809. 10.1038/nrc2734. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23. Tolomeo M, Cascio A. The multifaced role of STAT3 in cancer and its implication for anticancer therapy[J]. Int J Mol Sci, 2021, 22(2): 603. 10.3390/ijms22020603. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24. He LZ, Pratt H, Gao MS, et al. YAP and TAZ are transcriptional co-activators of AP-1 proteins and STAT3 during breast cellular transformation[J/OL]. eLife, 2021, 10: e67312[2021-12-31]. 10.7554/eLife.67312. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25. Gruber R, Panayiotou R, Nye E, et al. YAP1 and TAZ control pancreatic cancer initiation in mice by direct up-regulation of JAK-STAT3 signaling[J]. Gastroenterology, 2016, 151(3): 526-539. 10.1053/j.gastro.2016.05.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26. Du XX, He C, Lu X, et al. YAP/STAT3 promotes the immune escape of larynx carcinoma by activating VEGFR1-TGFβ signaling to facilitate PD-L1 expression in M2-like TAMs[J]. Exp Cell Res, 2021, 405(2): 112655. 10.1016/j.yexcr.2021.112655. [DOI] [PubMed] [Google Scholar]





