Skip to main content
Journal of Central South University Medical Sciences logoLink to Journal of Central South University Medical Sciences
. 2022 Dec 28;47(12):1754–1762. [Article in Chinese] doi: 10.11817/j.issn.1672-7347.2022.220277

人工晶状体表面处理预防后发性白内障的医工交叉研究进展

Advances in interdisciplinary medical and engineering research of intraocular lens surface modifications to prevent posterior capsule opacification

ZHANG Yue 1,2, JIANG Jian 1,
Editor: 田 朴
PMCID: PMC10930271  PMID: 36748388

Abstract

Posterior capsule opacification (PCO), a common complication after cataract surgery, impacts a patient’s long-term visual quality to various degrees. Although a neodymium:yttrium aluminum garnet (Nd:YAG) laser posterior capsulotomy is a very effective treatment, it may lead to a serial of complications. Accordingly, the search for simple, safe, and effective methods to prevent PCO has received widespread attention. Various researchers are committed to the interdisciplinary collaboration between medicine and engineering fields, such as functionalizing the surface of the intraocular lens (IOL) via supercritical fluid impregnation, coating the surface of the IOL, high-concentration drug immersion, and application of a drug delivery system, to effectively reduce the incidence and severity of PCO.

Keywords: cataract, posterior capsule opacification, intraocular lens surface modification


白内障是全球第一大致盲性眼病,其发病率在55~64岁之间为3.9%,80岁以上为92.6%[1-2]。手术目前依然是白内障最有效的治疗方法。影响白内障术后视觉质量的最常见并发症是后发性白内障(posterior capsule opacification,PCO),年龄越低并发症发生率越高,7~8岁儿童PCO的发生率为88.8%~95.4%,而婴幼儿的发生率几乎是100%[3-4]。术后炎症反应包括虹膜后粘连以及晶状体上皮细胞(lens epithelial cells,LECs)增殖快等[5-6]。白内障术后炎症反应的严重程度与LECs移行、增殖、纤维化以及PCO的形成之间有着密切的相关性,预防术后炎症及PCO的发生非常重要,尤其是在儿童白内障手术方面[7-8]。因此,探索更安全、有效的PCO预防策略是白内障研究领域热点之一。

PCO的发生是由残留的LECs向后囊增殖、迁移和上皮-间质转化(epithelial to mesenchymal transition,EMT)引起的[9],当LECs接近视轴区,则会导致视觉质量异常和视力下降。有研究[10]报道:在术后5年,成人PCO的发生率为20%~40%,是目前导致白内障术后视力下降的主要原因之一。掺钕钇铝石榴石(neodymium:yttrium aluminum garnet,Nd:YAG)激光后囊膜切开是目前治疗PCO的主要手段,但激光治疗也有并发症,严重的甚至出现视网膜裂孔和脱离[11]。因此,越来越多的研究开始探索如何更好地预防PCO的发生。

研究者为预防PCO做了许多尝试,如药物干预、人工晶状体(intraocular lens,IOL)的优化设计、新型IOL材料的使用等[12]。目前,通过使用一些新型技术或将IOL在高浓度药物中浸泡,将药物或化合物负载在IOL表面,不但能满足治疗的需要,而且不会造成对周围眼组织的毒性作用或改变IOL的光学特性。本文对几种将药物或化合物负载到IOL表面使其功能化的方式进行分类总结,进一步阐述不同IOL表面处理方式对预防PCO的影响,以期从医学、药学、材料学交叉研究方面为PCO的防治研究提供新的策略。

1. 超临界流体浸渍技术

近年来,超临界流体浸渍技术(supercritical solution impregnation,SSI)被用于将药物固定在IOL表面。SSI是一种将小分子物质负载到聚合物中的技术,利用超临界流体的高扩散系数、低黏度及其对聚合物的溶胀作用,使小分子物质通过分子扩散作用迅速进入溶胀的聚合物并包裹于其中[13-15]。有学者[16]研究出了用超临界CO2工艺装载眼科药物的IOL。CO2气体在一定的温度、压力下可以形成流体,进入IOL中使IOL发生溶胀,分子间隙变大;同时,溶解在CO2中的药物进入IOL分子间隙中。当压力逐渐减小,流体转变成气体从IOL中释放出来,而药物被留在IOL中。之后药物缓慢释放,发挥其特定的作用,多种药物均可使用该项技术负载到IOL中。

Ongkasin等[17]采用SSI将甲氨蝶呤负载在丙烯酸IOL上,制备出一种减轻后囊膜混浊的持续给药装置,研究了体外释药动力学,并测定载药量。在甲氨蝶呤修饰的IOL中,α-平滑肌肌动蛋白(α-smooth muscle actin,α-SMA)的表达降低,说明在IOL模型中,载药量足以在体外产生生物学效应,但仍需要进一步的研究来评估所述应用的临床潜力。另一项研究[18]将抗生素加替沙星浸渍到商用疏水折叠IOL上,并研究3种实验条件对药物浸渍的影响:压力(8~25 MPa)、温度(35~55 ℃)和浸渍时间(0.5~4 h)。实验结果表明:增加压力、延长浸渍时间会增加药物浸渍量,而且温度的升高不会影响药物的浸渍。

SSI的优点是较为环保,可以使药物更高效、更快速地负载到IOL表面,并且可以通过改变操作条件来控制药物释放,从而获得从几小时到几周不等的药物持续释放时间。另外,在减压期间CO2以气体的形式自发释放,因此可以获得无溶剂残留的最终产物。其缺点是需要控制超临界浸渍的压力及时间,才能实现最佳的负载效果。

2. IOL表面涂层

IOL表面涂层是指利用各种化学反应或物理手段如层层自组装(layer-by-layer,LBL)[19]、表面接枝改性[20]、氧等离子体、化学气相沉积法(chemical vapor deposition,CVD)[21]和席夫碱反应[22]、可逆加成断裂链转移聚合反应(surface initiated-reversible addition fragmentation chain transfer,SI-RAFT)[23]等方法,使IOL表面负载药物或非药物涂层或具有独特的结构或特性,以满足不同IOL设计的需要。由于制备简单,对IOL及眼内的影响较小,因此较为常用。

2.1. 抗炎药物涂层

抗炎药物包括溴芬酸钠、双氯芬酸钠、吲哚美辛、磺胺嘧啶、庆大霉素、莫西沙星等[24],当涂抹于IOL表面后,可在眼内局部发挥抗炎的作用,一定程度上降低了PCO的发生率。聚(2-苯氧乙基甲基丙烯酸酯-co-2-苯氧乙基丙烯酸酯-co-2-乙基己基)[poly(2-phenoxyethyl methacrylate-co-2-phenoxyethyl acrylate-co-2-ethylhexyl methacrylate,PPPE]疏水性丙烯酸IOL材料是近年研发出来的新型材料,具有优异的光学性能、折叠性能和热机械性能[25]。利用席夫碱反应,可以将庆大霉素(gentamycin sulfate,GS)与聚多巴胺(polydopamine,PDA)膜偶联固定在PPPE材质IOL的前表面。席夫碱反应[26]是一种羰基和胺的亲核加成反应,进一步脱水后形成席夫碱类化合物,利用该反应,可以将药物固定在IOL表面。在模拟炎症条件下,PPPE亲水载药的IOL前表面具有更好的细菌黏附抗性,使细菌增殖受到抑制,并有酸依赖性的GS释放行为,可有效抑制炎症反应,有利于预防术后眼内炎症。同时,疏水的IOL后表面利于防止PCO的形成和发展。席夫碱反应的优点是在白内障术后炎症环境pH值降低的情况下,pH值敏感的席夫碱键有利于药物从IOL表面释放;缺点是该反应可能会产生一些不良反应及副产物。

2.2. 抗增殖药物涂层

转化生长因子-β2(transforming growth factor-β2,TGF-β2)和基质金属蛋白酶(matrix metalloproteinases,MMPs)及其内源性抑制剂金属蛋白酶组织抑制剂(tissue inhibitors of metalloproteinases,TIMPs)均已被证明在后囊膜混浊的过程中发挥重要作用[27]。磺胺嘧啶具有与TIMPs相似的化学结构,可通过抑制TGF-β信号通路降低MMP-2和MMP-9的表达水平,来达到减少PCO发生的效果[28]。将聚二甲基硅氧烷(polydimethylsiloxane,PDMS)作为模型IOL材料,并在其表面接枝磺胺嘧啶,与对照组相比,其产生的EMT特异性标志物水平α-SMA和纤维连接蛋白显著减少,从而降低PCO发生率。表面接枝改性是通过在高分子聚合物上接枝大分子链,从而使其获得不同于本体性质的表面特性[20]。为了使表面接枝改性IOL获得缓释特性,将含有光响应分子香豆素的单体甲基丙烯酸香豆素(coumarin methacrylate,CMA)引入聚乙二醇(polyethylene glycol,PEG)共聚物中,合成三元共聚物聚乙二醇(PEGMA-co-GMA-co-CMA,PPGC),并接枝到IOL表面。通过香豆素与5-氟尿嘧啶(5-fluorouracil,5-FU)在365 nm紫外线辐射下的环加成反应,5-FU可被偶联到PPGC三聚体上,在IOL表面形成光控药物释放涂层。在254 nm紫外线照射下,5-FU又可根据需要从涂层中释放出来,实现IOL表面药物的可控释放,降低了药物持续释放的不良影响[29]。通过调节照射的波长、强度、持续时间,可以很容易地控制药物的释放行为。

LBL技术是基于带相反电荷的聚电解质在固液界面通过静电作用交替沉积而形成多层膜[19]。使用该项技术可使药物多层沉积在IOL表面而具有缓释的特性。采用LBL技术制备抗增殖药物紫杉醇(paclitaxel,Pac)-缓释透明质酸(hyaluronic acid,HA)-壳聚糖(chitosan,CHI)多层修饰IOL,在IOL表面形成了11层HA-Pac/CHI的结构,经修饰后的IOL材料9 h后的累积释药率约为22.3%,15 d后逐渐增加到43.3%,具有良好的药物缓释性能,可用于长期预防PCO[30-31]。载药物的纳米颗粒也能与LBL技术相结合,以增强其缓释的效果。将阿霉素(doxorubicin,DOX)包埋在一种具有内吞和自噬作用的树枝状分子(polyaminoamide,PAMAM)中制备DOX@PAMAM纳米颗粒,利用LBL技术再将其组装在胺化IOL表面。实验[32]结果表明,经此技术处理后的IOL细胞摄取和自噬能力均增强,可有效抑制PCO的发生。另一种载DOX纳米颗粒 CHI-TPP-DOX(CTDNP)通过LBL技术与肝素沉积在IOL表面,形成双药物人工晶体表面涂层,可同时具备抗增殖和抗生物黏附的特性。该涂层在生理条件下是稳定的,而当载药的表面包覆层置于酸性环境中时,包裹在纳米颗粒中的药物会缓慢释放[10, 33]

表面接枝改性的优点是可以在IOL表面更稳定地接枝不同的物质以获得特定的功能,且不改变IOL原本的特性。另外,可以同时使几种药物或化合物负载到IOL表面,以此修饰过的IOL可具备多种特性,具有更强的抑制PCO的效果。LBL技术的优点是能在不显著改变IOL透射率的情况下,在其表面形成多层药物结构,使其逐层释放,更容易实现药物或化合物的缓释,有效避免了不可控释放所带来的生物安全性问题。缺点是使用这两种方法在IOL上形成涂层耗时且设计及操作方法较为困难,成本较高。

2.3. 使IOL表面改性的药物或化合物涂层

白内障术后炎症反应和PCO的产生,可能是由于手术引起的血-房水屏障受损和血浆蛋白渗漏到房水引起的IOL材料的生物相容性不足,可导致不同的临床表现,如前囊膜混浊、后囊膜混浊和LECs生长[34]。临床上常用的亲水性IOL和疏水性IOL各有利弊。疏水性丙烯酸IOL的PCO发生率最低,这是由于疏水性表面高度的生物黏附性使IOL紧密附着在后囊膜,LECs将很难在后囊膜上进行增殖,减少了PCO的发生。目前解释其工作原理的理论被称为屏障效应,源自三明治理论[35]。三明治理论[36]指出:当IOL与后囊膜接触最大时,PCO的发生率降低。但疏水性IOL因其对异体细胞黏附性强,不适合葡萄膜炎患者使用。亲水性丙烯酸IOL具有更强的生物相容性,包括葡萄膜生物相容性、对植入物的炎症性异物反应以及囊袋生物相容性,优点是不对周围眼组织产生毒性作用或影响IOL的物理特性,可更好地满足治疗需要。亲水表面为LECs的增殖和迁移提供了基础,因此亲水性IOL比疏水性IOL更容易发生后囊混浊[37]。目前,通过在疏水性IOL表面引入各种分子化合物,使IOL表面变为亲水性,将疏水性和亲水性IOL的优点结合起来,既能提高生物相容性,又能预防PCO的发生。

对疏水性IOL材料进行表面接枝改性以提高其表面亲水性已经得到了广泛的研究证实。通过在IOL表面引入PEG、肝素、HA、二甘醇二甲醚(digylme,DG)[38]、聚甲基丙烯酸磺基甜菜碱[poly(sulfobetaine methacrylate),PSBMA]刷[39]、钛、氮化钛、乙烯基吡咯烷酮、细胞因子抑制剂使IOL表面更亲水。其中,PEG是一种无毒、无免疫原性和非抗原性的聚合物,它可以降低表面和蛋白质之间的吸引力,PEG的蛋白质排斥特性将阻止细胞外基质的形成,从而阻止细胞黏附,有效抑制PCO的发生;同时,具有PEG的IOL更亲水,且具有较好的生物相容性[40-42]。F-肝素 PMMA具有亲水自由基和疏水基团相分离的结构,使PMMA成为亲水和疏水平衡的表面,既具有良好的生物相容性,又能有效预防PCO的发生[43]。 HA是皮肤细胞外基质的主要成分,具有良好的亲水性、生物相容性。由于HA的亲水性,接种有HA或HA溶菌酶的PMMA上金黄色葡萄球菌和LECs黏附量显著减少。同时,加入的溶菌酶成分对金黄色葡萄球菌具有显著的杀菌活性[44]

2.4. 非药物涂层

非药物负载到IOL上也可以使IOL表面功能化,发挥相应的作用。通过氧等离子体处理后使疏水性丙烯酸IOL表面具有纳米形貌结构,通过CVD将PDMS刷连接在IOL表面上。CVD是利用气态或蒸汽态的物质在气相或气固界面上发生反应生成固态沉积物的过程[45]。CVD技术使IOL前表面具有自清洁能力,能够抑制包括蛋白质、LECs和细菌等生物黏附引起的眼内炎症反应,人工制备的表面功能化(NT+LLL)-IOL的疏水性后表面能够更好地附着在后囊膜上,从而防止残余LECs迁移引起的PCO[46]。人工合成Ce6接枝物α-环糊精(Ce6 graft a-cyclodextrin,α-CD-Ce6)光敏剂通过LBL技术至聚甲基丙烯酸酯刷所建立的IOL表面上,可成功将光动力涂层引入IOL的表面。通过光动力疗法(photodynamic therapy,PDT),光敏剂被光能激活,产生的活性氧(reactive oxygen species,ROS)可以诱导细胞凋亡以消除残留的LECs[47]

近年来,将两性离子聚合物与IOL相结合已成为获得高防污性能的一种有效方法。两性离子材料中的2-甲基丙烯酰氧乙基磷酰胆碱(2-methacryloyloxyethyl phosphorylcholine,MPC)能有效防止蛋白质吸附、细菌和LECs黏附。SI-RAFT聚合法是一种活性自由基聚合法[48],以PDMS为底物,季铵盐类化合物TOEAC抗菌剂和MPC单体通过SI-RAFT聚合法在IOL表面制备了P(TOEAC-co-MPC)刷子使其对金黄色葡萄球菌和人LECs具有良好的防污性能,可有效预防眼内炎和PCO[49]

受鲨鱼光滑皮肤的启发而研发出的Sharklet技术,通过模拟鲨鱼皮肤的排布,改变材料表面纹路,以达到抗生物黏附的目的。这种受鲨鱼皮肤启发的微图案膜比其他有序的图案更能有效抑制生物黏附。同时,这种微图案膜可以控制细胞迁移,有效减少LECs向晶体后囊膜迁移,延缓PCO的发生。该种微图案膜可以植入晶状体囊袋中,或涂布于IOL后表面[50-51]。有学者[52]发现CuInS/ZnS量子点集成到IOL表面后,在一定波长的近红外光(near-infrared,NIR)照射后具有良好的光热转化能力,它不含有毒重金属,更具有生物相容性,在808 nm波长的NIR激光照射下,CuInS/ZnS量子点可以产生局域热,会对LECs产生区域限制的光热杀伤效应,说明纳米技术与光热疗法联合治疗PCO是可行的。

通过在IOL表面引入非药物涂层的优点是可以引入具有特殊功能的聚合物,在一定条件下发挥其作用可以抑制PCO的发生。CVD的优点是可以控制IOL表面涂层的厚度和密度,缺点是反应条件较难实现,因此在应用上受到一定限制。SI-RAFT聚合法的优点是适用的化合物范围广,且反应不需使用昂贵的试剂,也不会残存试剂或产生杂质,缺点是反应发生的初始条件复杂,需要引发剂辅助进行。

3. 药物浸泡IOL

将药物负载到IOL中较为常用的方法是将IOL浸泡在高浓度药物溶液中特定时间,使药物能够附着到IOL上。因其简单且成本低,被广泛使用。

3.1. IOL在抗炎药物中浸泡

将亲水性和疏水性IOL同时在第四代氟喹诺酮类抗生素莫西沙星和非甾体类抗炎药酮咯酸中浸泡,通过体内试验比较滴眼液眼局部使用(对照组)和载药IOL植入术后房水中药物的浓度,载药IOL能够以治疗水平持续释放药物,与对照组相比,载药IOL表面LECs黏附程度降低,这可能有助于降低PCO的发生率[53]

3.2. IOL在抗增殖药物中浸泡

抗增殖药物包括5-FU、DOX、多柔比星、紫杉醇、吉非替尼等[54-55]广泛用于各类疾病,当IOL在这些药物中浸泡后,同样可以发挥其抗LECs增殖的作用。用吉非替尼分别对亲水性和疏水性IOL进行浸泡,与对照组相比,均能抑制LECs的生长。被吉非替尼浸泡的IOL植入人囊袋模型后,被药物包覆的IOL能够释放药物超过10 d,而且并未在眼前段组织产生毒性反应[56]。厄洛替尼也被用于浸泡IOL,其生物学效应可长期延缓细胞生长,对预防PCO有一定的临床意义[57-58]

3.3. IOL在其他化合物中浸泡

除了药物,一些化合物也能通过浸泡负载在IOL表面并发挥其作用。ROS包括超氧阴离子、羟自由基和过氧化氢(hydrogen peroxide,H2O2),参与调节细胞周期进程、增殖、分化、迁移和细胞死亡[59]。单纯通过模拟ROS的自然级联催化反应,在不使用任何药物的情况下,就可以有效抑制PCO[60]。将具有纳米结构的IOL浸泡在天然葡萄糖氧化酶(glucose oxidase,GOD)和辣根过氧化物酶(horseradish peroxidase,HRP)溶液中,可以构建一个双酶催化级联催化平台改良IOL,其中GOD首先能催化眼内葡萄糖生成葡萄糖酸和H2O2,然后经HRP不断催化生成毒性更强的羟自由基,导致LECs高效凋亡和死亡[60]

PI3K/Akt信号转导通路与肿瘤转化、进展及各种纤维化疾病密切相关。该信号通路也被认为与PCO发病机制密切相关[61]。小分子化合物Erufosine是PI3K的有效抑制剂,可明显抑制细胞增殖,IOL在其中浸泡后,对PCO有长效的预防作用[62]

直接将IOL浸泡在高浓度药物或化合物中的优点是方便简单,较易实现;缺点是负载量可能不易掌控,负载效率较低,无法对药物或化合物进行缓释设计,有爆发性释放的可能性。不可控的药物释放可能导致药物局部浓度过高,对虹膜、角膜等周围组织产生不良影响。

4. IOL药物递送系统

药物递送系统(drug delivery system,DDS)可以将药物运送到需要的区域,减少全身吸收,使生物利用度达到最大化。DDS装载药物后,可以是环状或条状附着在IOL后表面,也可一个或多个DDS附着在IOL两襻上[63],或将DDS环状固定在IOL表面的非光学中心区域[64]。使用IOL作为DDS具有较明显的优势[65]:1)IOL与囊膜上的LECs直接接触,可以使药物直接释放到靶点。即使是低浓度的药物也可以发挥效能,同时大大减轻了对眼前段组织的毒性作用。2)在手术过程中植入经特定修饰后的IOL可以降低患者缺乏依从性的风险。因此,该方式越来越受到关注。

4.1. 抗增殖药物DDS

最近研发的一种受控的光热协同DDS[66],可以在没有爆发性释放的情况下实现药物的持续释放,从而降低对正常细胞的毒性,保证了治疗的效果。它的工作原理是用自制的黑磷纳米片作为光热治疗的纳米载体材料,以DOX为模型药物,将DOX负载的黑鳞片集成到IOL的非光学部分,经808 nm NIR激光照射3 min可促进DOX的释放,表现出光控的药物释放行为。

4.2. 抗炎药物DDS

将含有左氧氟沙星或莫西沙星的可生物降解载药装置通过超声波喷涂环形附着在IOL周围或两襻上,对IOL光学特性没有干扰,其中负载量为3%~5%的左氧氟沙星可确保抗生素在所需治疗剂量下受控释放14 d,并且可以克服IOL植入后感染和患者对滴眼液的依从性差的问题[67]。采用聚乳酸-羟基乙酸[poly(lactic-co-glycolic acid),PLGA]为DDS,用超声波喷涂系统将PLGA和溴芬酸共同喷涂在定制的疏水性丙烯酸人IOL的两襻上,以确保IOL的光学区域不受干扰,可以实现溴芬酸钠的眼内持续释放[68]。这种新型药物洗脱IOL,其释放的非甾体抗炎药可以通过ERK/GSK-3β信号通路抑制TGF-β2诱导的LECs迁移和EMT[68]

4.3. 免疫抑制剂DDS

有研究[69]将含有环孢素A的DDS环形负载到IOL边缘上以减轻术后炎症反应。DDS以同心圆形式负载到IOL周边,既保证了光学区透明,不影响视觉效果,又能保证药物有效释放。药物释放表现为前几小时爆发性释放,之后持续释放,可保证术后4~6周的治疗效果。与对照组相比,负载免疫抑制剂环孢素A的IOL可以诱导LECs凋亡,能有效防治PCO的发生。

DDS的优点是能够将药物负载到IOL的非光学区域,实现药物的局部释放而不对光学质量产生干扰,且相对于超临界流体浸渍及IOL表面涂层方法,DDS的药物缓释效果更有效且稳定;缺点是DDS的设计与制作较其他方法更为复杂。

5. 结 语

目前,利用IOL作为药物或化合物传递载体来预防白内障手术后的炎症和PCO已经被广泛研究,在方法和材料方面取得了相当大的进展。药物或化合物通过各种化学或物理手段负载到IOL上,使其具有特定的功能,输送到局部的药物可在一定程度上减轻LECs增殖。将IOL浸泡在高浓度药物中虽方便快捷,但无法控制药物释放,为了避免大剂量药物一次性释放对周围组织产生的严重不良反应,故产生了各种IOL表面药物缓释系统。SSI、IOL表面涂层、DDS都能起到一定的缓释作用,在体外细胞实验及动物实验中都展现出较好的预防PCO的效果,且这些新型给药方式不受患者依从性的影响,因此具有重要的临床意义。缓释不仅能替代多次重复给药,还能更好地保证生物安全性,是未来IOL表面处理技术的发展趋势。然而,各种IOL表面处理后药物或化合物的缓释效果缺乏直接比较,且尚未进行临床试验,仍然需要更多的研究大数据支持,以便将这些技术向临床转化,进一步应用到患者的治疗中。

基金资助

国家自然科学基金(81974130);湖南省自然科学基金(2020JJ4882)。

This work was supported by the National Natural Science Foundation (81974130) and the Natural Science Foundation of Hunan Province (2020JJ4882), China.

利益冲突声明

作者声称无任何利益冲突。

作者贡献

张悦 文献查阅,论文构思、撰写和修订;蒋剑 论文构思、指导和审校。所有作者阅读并同意最终的文本。

原文网址

http://xbyxb.csu.edu.cn/xbwk/fileup/PDF/2022121754.pdf

参考文献

  • 1. Liu YC, Wilkins M, Kim T, et al. Cataracts[J]. Lancet, 2017, 390(10094): 600-612. 10.1016/s0140-6736(17)30544-5. [DOI] [PubMed] [Google Scholar]
  • 2. Zhu ZT, Wang LH, Scheetz J, et al. Age-related cataract and 10-year mortality: the Liwan eye study[J/OL]. Acta Ophthalmol, 2020, 98(3): e328-e332[2022-06-18]. 10.1111/aos.14258. [DOI] [PubMed] [Google Scholar]
  • 3. Mönestam E. Long-term outcome of cataract surgery: 20-year results from a population-based prospective study[J]. J Cataract Refract Surg, 2019, 45(12): 1732-1737. 10.1016/j.jcrs.2019.07.026. [DOI] [PubMed] [Google Scholar]
  • 4. Sen P, Kshetrapal M, Shah C, et al. Posterior capsule opacification rate after phacoemulsification in pediatric cataract: Hydrophilic versus hydrophobic intraocular lenses[J]. J Cataract Refract Surg, 2019, 45(10): 1380-1385. 10.1016/j.jcrs.2019.05.018. [DOI] [PubMed] [Google Scholar]
  • 5. Vittitow JL, Williams JI. Loteprednol etabonate gel 0.5% vs prednisolone acetate suspension 1% for the treatment of inflammation after cataract surgery in children[J]. J Cataract Refract Surg, 2020, 46(8): 1092-1101. 10.1097/j.jcrs.0000000000000218. [DOI] [PubMed] [Google Scholar]
  • 6. Wernecke L, Keckeis S, Reichhart N, et al. Epithelial-mesenchymal transdifferentiation in pediatric lens epithelial cells[J]. Invest Ophthalmol Vis Sci, 2018, 59(15): 5785-5794. 10.1167/iovs.18-23789. [DOI] [PubMed] [Google Scholar]
  • 7. Jiang J, Shihan MH, Wang Y, et al. Lens epithelial cells initiate an inflammatory response following cataract surgery[J]. Invest Ophthalmol Vis Sci, 2018, 59(12): 4986-4997. 10.1167/iovs.18-25067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8. Shihan MH, Novo SG, Duncan MK. Cataract surgeon viewpoints on the need for novel preventative anti-inflammatory and anti-posterior capsular opacification therapies[J]. Curr Med Res Opin, 2019, 35(11): 1971-1981. 10.1080/03007995.2019.1647012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9. Taiyab A, Holms J, West-Mays JA. β-catenin/Smad3 interaction regulates transforming growth factor-β-induced epithelial to mesenchymal transition in the lens[J]. Int J Mol Sci, 2019, 20(9): 2078. 10.3390/ijms20092078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10. Han YM, Tang JM, Xia JY, et al. Anti-adhesive and antiproliferative synergistic surface modification of intraocular lens for reduced posterior capsular opacification[J]. Int J Nanomedicine, 2019, 14: 9047-9061. 10.2147/IJN.S215802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11. Wormstone IM, Wormstone YM, Smith AJO, et al. Posterior capsule opacification: what’s in the bag?[J]. Prog Retin Eye Res, 2021, 82: 100905. 10.1016/j.preteyeres.2020.100905. [DOI] [PubMed] [Google Scholar]
  • 12. Tassignon MJ. Elimination of posterior capsule opacification[J]. Ophthalmology, 2020, 127(4S): S27-S28. 10.1016/j.ophtha.2019.12.029. [DOI] [PubMed] [Google Scholar]
  • 13. Bouledjouidja A, Masmoudi Y, Li Y, et al. Supercritical impregnation and optical characterization of loaded foldable intraocular lenses using supercritical fluids[J]. J Cataract Refract Surg. 2017, 43(10): 1343-1349. https:// 10.1016/j.jcrs.2017.07.033 [DOI] [PubMed] [Google Scholar]
  • 14. Bouledjouidja A, Masmoudi Y, Sergent M, et al. Drug loading of foldable commercial intraocular lenses using supercritical impregnation[J]. Int J Pharm, 2016, 500(1/2): 85-99. 10.1016/j.ijpharm.2016.01.016. [DOI] [PubMed] [Google Scholar]
  • 15. González-Chomón C, Braga ME, de Sousa HC, et al. Antifouling foldable acrylic IOLs loaded with norfloxacin by aqueous soaking and by supercritical carbon dioxide technology[J]. Eur J Pharm Biopharm, 2012, 82(2): 383-391. 10.1016/j.ejpb.2012.07.007. [DOI] [PubMed] [Google Scholar]
  • 16. Chakravarty P, Famili A, Nagapudi K, et al. Using supercritical fluid technology as a green alternative during the preparation of drug delivery systems[J]. Pharmaceutics, 2019, 11(12): 629. 10.3390/pharmaceutics11120629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17. Ongkasin K, Masmoudi Y, Wertheimer CM, et al. Supercritical fluid technology for the development of innovative ophthalmic medical devices: drug loaded intraocular lenses to mitigate posterior capsule opacification[J]. Eur J Pharm Biopharm, 2020, 149: 248-256. 10.1016/j.ejpb.2020.02.011. [DOI] [PubMed] [Google Scholar]
  • 18. Ongkasin K, Masmoudi Y, Tassaing T, et al. Supercritical loading of gatifloxacin into hydrophobic foldable intraocular lenses - Process control and optimization by following in situ CO2 sorption and polymer swelling[J]. Int J Pharm, 2020, 581: 119247. 10.1016/j.ijpharm.2020.119247. [DOI] [PubMed] [Google Scholar]
  • 19. Lin QK, Tang JM, Han YM, et al. Hydrophilic modification of intraocular lens via surface initiated reversible addition-fragmentation chain transfer polymerization for reduced posterior capsular opacification[J]. Colloids Surf B Biointerfaces, 2017, 151: 271-279. 10.1016/j.colsurfb.2016.12.028. [DOI] [PubMed] [Google Scholar]
  • 20. Chernyy S, Jensen BE, Shimizu K, et al. Surface grafted glycopolymer brushes to enhance selective adhesion of HepG2 cells[J]. J Colloid Interface Sci, 2013, 404: 207-214. 10.1016/j.jcis.2013.04.025. [DOI] [PubMed] [Google Scholar]
  • 21. Choi G, Song Y, Lim H, et al. Antibacterial nanopillar array for an implantable intraocular lens[J/OL]. Adv Healthc Mater, 2020, 9(18): e2000447 [2022-01-05]. 10.1002/adhm.202000447. [DOI] [PubMed] [Google Scholar]
  • 22. Lima LRM, Ramos ELL, Silva MFS, et al. Poly(N-isopropylacrylamide)/galactomannan from Delonix regia seed thermal responsive graft copolymer via Schiff base reaction[J]. Int J Biol Macromol, 2021, 166: 144-154. 10.1016/j.ijbiomac.2020.10.121. [DOI] [PubMed] [Google Scholar]
  • 23. Pérez-Anes A, Gargouri M, Laure W, et al. Bioinspired titanium drug eluting platforms based on a poly-β-cyclodextrin-chitosan layer-by-layer self-assembly targeting infections[J]. ACS Appl Mater Interfaces, 2015, 7(23): 12882-12893. 10.1021/acsami.5b02402. [DOI] [PubMed] [Google Scholar]
  • 24. Zappavigna S, Cossu AM, Grimaldi A, et al. Anti-inflammatory drugs as anticancer agents[J/OL]. Int J Mol Sci, 2020, 21(7): E2605 [2021-12-16]. 10.3390/ijms21072605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25. Xiang Y, Jin RR, Zhang Y, et al. Foldable glistening-free acrylic intraocular lens biomaterials with dual-side heterogeneous surface modification for postoperative endophthalmitis and posterior capsule opacification prophylaxis[J]. Biomacromolecules, 2021, 22(8): 3510-3521. 10.1021/acs.biomac.1c00582. [DOI] [PubMed] [Google Scholar]
  • 26. Yang C, Gao LL, Liu XY, et al. Injectable Schiff base polysaccharide hydrogels for intraocular drug loading and release[J]. J Biomed Mater Res A, 2019, 107(9): 1909-1916. 10.1002/jbm.a.36677. [DOI] [PubMed] [Google Scholar]
  • 27. Morarescu D, West-Mays JA, Sheardown HD. Effect of delivery of MMP inhibitors from PDMS as a model IOL material on PCO markers[J]. Biomaterials, 2010, 31(8): 2399-2407. 10.1016/j.biomaterials.2009.11.108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28. Amoozgar B, Morarescu D, Sheardown H. Sulfadiazine modified PDMS as a model material with the potential for the mitigation of posterior capsule opacification (PCO)[J]. Colloids Surf B Biointerfaces, 2013, 111: 15-23. 10.1016/j.colsurfb.2013.05.002. [DOI] [PubMed] [Google Scholar]
  • 29. Xia JY, Han YM, Shen LL, et al. Photo-responsive intraocular lens with on demand drug release for posterior capsule opacification prevention and improved biosafety[J]. Chem Eng J, 2022, 430: 132716. 10.1016/j.cej.2021.132716. [DOI] [Google Scholar]
  • 30. Huang HY, Zhu SQ, Liu D, et al. Antiproliferative drug-loaded multi-functionalized intraocular lens for reducing posterior capsular opacification[J]. J Biomater Sci Polym Ed, 2021, 32(6): 735-748. 10.1080/09205063.2020.1865691. [DOI] [PubMed] [Google Scholar]
  • 31. Lin QK, Xu X, Wang BL, et al. Hydrated polysaccharide multilayer as an intraocular lens surface coating for biocompatibility improvements[J]. J Mater Chem B, 2015, 3(18): 3695-3703. 10.1039/c5tb00111k. [DOI] [PubMed] [Google Scholar]
  • 32. Qin C, Liu SH, Wen SM, et al. Enhanced PCO prevention of drug eluting IOLs via endocytosis and autophagy effects of a PAMAM dendrimer[J]. J Mater Chem B, 2021, 9(3): 793-800. 10.1039/d0tb02530e. [DOI] [PubMed] [Google Scholar]
  • 33. Han YM, Xu X, Wang YQ, et al. Drug eluting intraocular lens surface modification for PCO prevention[J]. Colloid Interface Sci Commun, 2018, 24: 40-44. 10.1016/j.colcom.2018.03.007. [DOI] [Google Scholar]
  • 34. Özyol P, Özyol E, Karel F. Biocompatibility of intraocular lenses[J]. Turk J Ophthalmol, 2017, 47(4): 221-225. 10.4274/tjo.10437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35. Cooksley G, Lacey J, Dymond MK, et al. Factors affecting posterior capsule opacification in the development of intraocular lens materials[J]. Pharmaceutics, 2021, 13(6): 860. 10.3390/pharmaceutics13060860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36. Linnola RJ, Sund M, Ylönen R, et al. Adhesion of soluble fibronectin, laminin, and collagen type IV to intraocular lens materials[J]. J Cataract Refract Surg, 1999, 25(11): 1486-1491. 10.1016/s0886-3350(99)00238-2. [DOI] [PubMed] [Google Scholar]
  • 37. Nanu RV, Ungureanu E, InstrateSL, et al. An overview of the influence and design of biomaterial of the intraocular implant of the posterior capsule opacification[J]. Rom J Ophthalmol, 2018, 62(3): 188-193. [PMC free article] [PubMed] [Google Scholar]
  • 38. Jaitli A, Roy J, Chatila A, et al. Role of fibronectin and IOL surface modification in IOL: Lens capsule interactions[J]. Exp Eye Res, 2022, 221: 109135. https:// 10.1016/j.exer.2022.109135 [DOI] [PubMed] [Google Scholar]
  • 39. Wang R, Xia JY, Tang JM, et al. Surface modification of intraocular lens with hydrophilic poly(sulfobetaine methacrylate) brush for posterior capsular opacification prevention[J]. J Ocul Pharmacol Ther, 2021, 37(3): 172-180. 10.1089/jop.2020.0134. [DOI] [PubMed] [Google Scholar]
  • 40. Bozukova D, Pagnoulle C, De Pauw-Gillet MC, et al. Improved performances of intraocular lenses by poly(ethylene glycol) chemical coatings[J]. Biomacromolecules, 2007, 8(8): 2379-2387. 10.1021/bm0701649. [DOI] [PubMed] [Google Scholar]
  • 41. Viveiros MM, Soares RT, Omodei MS, et al. Adhesion study of cultured human lens capsule cells on hydrophilic intraocular lenses coated with polyethylene glycol[J]. J Cataract Refract Surg, 2015, 41(7): 1478-1483. 10.1016/j.jcrs.2014.11.047. [DOI] [PubMed] [Google Scholar]
  • 42. Xu X, Tang JM, Han YM, et al. Surface PEGylation of intraocular lens for PCO prevention: aninvivo evaluation[J]. J Biomater Appl, 2016, 31(1): 68-76. 10.1177/0885328216638547. [DOI] [PubMed] [Google Scholar]
  • 43. Huang Q, Cheng GP, Chiu K, et al. Surface modification of intraocular lenses[J]. Chin Med J (Engl), 2016, 129(2): 206-214. 10.4103/0366-6999.173496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44. Wang BL, Lin QK, Jin TW, et al. Correction: Surface modification of intraocular lenses with hyaluronic acid and lysozyme for the prevention of endophthalmitis and posterior capsule opacification[J]. RSC Adv, 2022, 12(12): 7403-7404. 10.1039/d2ra90020c. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45. Wang M, Wang X, Moni P, et al. CVD polymers for devices and device fabrication[J]. Adv Mater, 2017, 29(11): 1604606. 10.1002/adma.201604606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46. Wu QN, Liu D, Chen W, et al. Liquid-like layer coated intraocular lens for posterior capsular opacification prevention[J]. Appl Mater Today, 2021, 23: 100981. 10.1016/j.apmt.2021.100981. [DOI] [Google Scholar]
  • 47. Tang JM, Liu SH, Han YM, et al. Surface modification of intraocular lenses via photodynamic coating for safe and effective PCO prevention[J]. J Mater Chem B, 2021, 9(6): 1546-1556. 10.1039/d0tb02802a. [DOI] [PubMed] [Google Scholar]
  • 48. Pourjavadi A, Kohestanian M, Streb C. pH and thermal dual-responsive poly(NIPAM-co-GMA)-coated magnetic nanoparticles via surface-initiated RAFT polymerization for controlled drug delivery[J]. Mater Sci Eng C, 2020, 108: 110418. 10.1016/j.msec.2019.110418. [DOI] [PubMed] [Google Scholar]
  • 49. Zhang HR, Zhang XM, Kuang Z, et al. Bionic antibacterial modification of IOL through SI-RAFT polymerization of P(TOEAC-co-MPC) brushes to prevent PCO and endophthalmitis[J]. Polym Test, 2020, 88: 106553. 10.1016/j.polymertesting.2020.106553. [DOI] [Google Scholar]
  • 50. Ellis N, Werner L, Balendiran V, et al. Posterior capsule opacification prevention by an intraocular lens incorporating a micropatterned membrane on the posterior surface[J]. J Cataract Refract Surg, 2020, 46(1): 102-107. 10.1016/j.jcrs.2019.08.003. [DOI] [PubMed] [Google Scholar]
  • 51. Kramer GD, Werner L, MacLean K, et al. Evaluation of stability and capsular bag opacification with a foldable intraocular lens coupled with a protective membrane in the rabbit model[J]. J Cataract Refract Surg, 2015, 41(8): 1738-1744. 10.1016/j.jcrs.2015.03.017. [DOI] [PubMed] [Google Scholar]
  • 52. Mao YY, Yu SR, Kang YY, et al. CuInS/ZnS quantum dots modified intraocular lens for photothermal therapy of posterior capsule opacification[J]. Exp Eye Res, 2021, 202: 108282. 10.1016/j.exer.2020.108282. [DOI] [PubMed] [Google Scholar]
  • 53. Topete A, Tang JM, Ding XX, et al. Dual drug delivery from hydrophobic and hydrophilic intraocular lenses: in-vitro and in-vivo studies[J]. J Control Release, 2020, 326: 245-255. 10.1016/j.jconrel.2020.07.020. [DOI] [PubMed] [Google Scholar]
  • 54. van Ramshorst MS, van der Voort A, van Werkhoven ED, et al. Neoadjuvant chemotherapy with or without anthracyclines in the presence of dual HER2 blockade for HER2-positive breast cancer (TRAIN-2): A multicentre, open-label, randomised, phase 3 trial[J]. Lancet Oncol, 2018, 19(12): 1630-1640. 10.1016/S1470-2045(18)30570-9. [DOI] [PubMed] [Google Scholar]
  • 55. Wertheimer C, Siedlecki J, Kook D, et al. EGFR inhibitor Gefitinib attenuates posterior capsule opacification in vitro and in the ex vivo human capsular bag model[J]. Albrecht Von Graefes Arch Fur Klinische Und Exp Ophthalmol, 2015, 253(3): 409-417. 10.1007/s00417-014-2875-0. [DOI] [PubMed] [Google Scholar]
  • 56. Kassumeh S, Kueres A, Hillenmayer A, et al. Development of a drug-eluting intraocular lens to deliver epidermal growth factor receptor inhibitor gefitinib for posterior capsule opacification prophylaxis[J]. Eur J Ophthalmol, 2021, 31(2): 436-444. 10.1177/1120672119891042. [DOI] [PubMed] [Google Scholar]
  • 57. Wertheimer C, Kueres A, Siedlecki J, et al. The intraocular lens as a drug delivery device for an epidermal growth factor-Receptor inhibitor for prophylaxis of posterior capsule opacification[J/OL]. Acta Ophthalmol, 2018, 96(7): e874-e882 [2022-03-16]. 10.1111/aos.13759. [DOI] [PubMed] [Google Scholar]
  • 58. Wertheimer C, Liegl R, Kernt M, et al. EGF receptor inhibitor erlotinib as a potential pharmacological prophylaxis for posterior capsule opacification[J]. Albrecht Von Graefes Arch Fur Klinische Und Exp Ophthalmol, 2013, 251(6): 1529-1540. 10.1007/s00417-013-2257-z. [DOI] [PubMed] [Google Scholar]
  • 59. Babizhayev MA, Yegorov YE. Reactive oxygen species and the aging eye: specific role of metabolically active mitochondria in maintaining lens function and in the initiation of the oxidation-induced maturity onset cataract: anovel platform of mitochondria-targeted antioxidants with broad therapeutic potential for redox regulation and detoxification of oxidants in eye diseases[J/OL]. Am J Ther, 2016, 23(1): e98-e117 [2022-02-09]. 10.1097/MJT.0b013e3181ea31ff. [DOI] [PubMed] [Google Scholar]
  • 60. Huang HY, Zhu SQ, Han YM, et al. Cascade catalytic platform modified intraocular lens for high-efficient posterior capsule opacification prevention[J]. Chem Eng J, 2022, 427: 131553. 10.1016/j.cej.2021.131553. [DOI] [Google Scholar]
  • 61. Huang X, Wang Y, Zhang P, Zou H. A HGF‑derived peptide suppresses EMT in human lens epithelial cells via the TGF‑β/Smad and Akt/mTOR signaling pathways[J]. Mol Med Rep, 2020, 22(1): 551-558. https:// 10.3892/mmr.2020.11097 [DOI] [PubMed] [Google Scholar]
  • 62. Wertheimer C, Brandlhuber U, Kook D, et al. Erufosine, a phosphoinositide-3-kinase inhibitor, to mitigate posterior capsule opacification in the human capsular bag model[J]. J Cataract Refract Surg, 2015, 41(7): 1484-1489. 10.1016/j.jcrs.2015.02.034. [DOI] [PubMed] [Google Scholar]
  • 63. Eibl-Lindner KH, Wertheimer C, Kampik A. Intraocular lens as a drug delivery device: state of the art and future perspective[J]. Klin Monbl Augenheilkd, 2016, 233(2): 172-178. 10.1055/s-0041-109512. [DOI] [PubMed] [Google Scholar]
  • 64. Topete A, Saramago B, Serro AP. Intraocular lenses as drug delivery devices[J]. Int J Pharm, 2021, 602: 120613. 10.1016/j.ijpharm.2021.120613. [DOI] [PubMed] [Google Scholar]
  • 65. Pimenta AFR, Serro AP, Colaço R, et al. Drug delivery to the eye anterior chamber by intraocular lenses: an in vivo concentration estimation model[J]. Eur J Pharm Biopharm, 2018, 133: 63-69. 10.1016/j.ejpb.2018.10.004. [DOI] [PubMed] [Google Scholar]
  • 66. Mao YY, Li M, Wang JD, et al. NIR-triggered drug delivery system for chemo-photothermal therapy of posterior capsule opacification[J]. J Control Release, 2021, 339: 391-402. 10.1016/j.jconrel.2021.09.030 [DOI] [PubMed] [Google Scholar]
  • 67. Tan DW, Lim SG, Wong TT, Venkatraman SS. Sustained antibiotic-eluting intra-ocular lenses: A new approach[J/OL]. PLoS One, 2016, 11(10): e0163857 [2021-11-20]. https:// 10.1371/journal.pone.0163857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68. Zhang XB, Lai KR, Li S, et al. Drug-eluting intraocular lens with sustained bromfenac release for conquering posterior capsular opacification[J]. Bioact Mater, 2022, 9: 343-357. 10.1016/j.bioactmat.2021.07.015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69. Lu D, Han Y, Liu D, et al. Centrifugally concentric ring-patterned drug-loaded polymeric coating as an intraocular lens surface modification for efficient prevention of posterior capsular opacification. Acta Biomater[J]. 2022, 138: 327-341. https:// 10.1016/j.actbio.2021.11.018. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Central South University Medical Sciences are provided here courtesy of Central South University

RESOURCES