Abstract
射血分数保留的心力衰竭(heart failure with preserved ejection fraction,HFpEF)是一种临床表现具有高度异质性的综合征,近年来发病率持续上升。相比于射血分数降低的心力衰竭(heart failure with reduced ejection fraction,HFrEF),HFpEF预后更差。针对HFpEF心脏内机制的传统治疗方案对HFpEF疗效有限或无效,因此着眼于针对HFpEF心脏外机制的治疗方案有望找到治疗HFpEF的新靶点。近年研究表明,心肺的病理生理相互作用,加剧HFpEF进展;高血压、全身性血管损伤和炎症反应引发冠状动脉微血管功能障碍,导致心肌肥大和冠状动脉微血管的重构;急性肾损伤通过影响心肌能量产生、诱发氧化应激等方式导致心肌功能障碍,并诱导心肌蛋白质分解代谢;肝纤维化主要通过异常蛋白质的沉积和炎症因子作用介导心肌病变;骨骼肌代谢信号与交感神经系统相互作用,并产生肌因子,共同影响心脏功能。代谢综合征、肠道微生物群紊乱、免疫系统疾病及缺铁等通过代谢改变、氧化应激、炎症反应等途径促进HFpEF的发生和发展。因此针对HFpEF心脏外机制的研究对HFpEF的模型构建、机制研究及治疗策略制订有一定启发作用。
Keywords: 射血分数保留的心力衰竭, 舒张功能障碍, 发病机制, 炎症, 心力衰竭
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a syndrome with highly heterogeneous clinical symptoms, and its incidence has been increasing in recent years. Compared with heart failure with reduced ejection fraction (HFrEF), HFpEF has a worse prognosis. Traditional therapies targeting the internal mechanisms of the heart show limited or inefficacy on HFpEF, and new therapeutic targets for HFpEF are expected to be found by focusing on the extracardiac mechanisms. Recent studies have shown that cardiopulmonary pathophysiological interaction exacerbates the progression of HFpEF. Hypertension, systemic vascular injury, and inflammatory response lead to coronary microvascular dysfunction, myocardial hypertrophy, and coronary microvascular remodeling. Acute kidney injury affects myocardial energy production, induces oxidative stress and catabolism of myocardial protein, which leads to myocardial dysfunction. Liver fibrosis mediates heart injury by abnormal protein deposition and inflammatory factors production. Skeletal muscle interacts with the sympathetic nervous system by metabolic signals. It also produces muscle factors, jointly affecting cardiac function. Metabolic syndrome, gut microbiota dysbiosis, immune system diseases, and iron deficiency promote the occurrence and development of HFpEF through metabolic changes, oxidative stress, and inflammatory responses. Therefore, the research on the extracardiac mechanisms of HFpEF has certain implications for model construction, mechanism research, and treatment strategy formulation.
Keywords: heart failure with preserved ejection fraction, diastolic dysfunction, pathogenesis, inflammation, heart failure
心力衰竭严重威胁公众健康[1]。2021年美国心力衰竭学会、欧洲心脏病学会心力衰竭协会、日本心力衰竭学会共同发布了《心力衰竭的通用定义和分类》,根据左心室射血分数(left ventricular ejection fraction,LVEF)将心力衰竭分为4类[2]:射血分数降低的心力衰竭(heart failure with reduced ejection fraction,HFrEF) (LVEF值≤40%)、射血分数轻度下降的心力衰竭(41%≤LVEF值≤49%)、射血分数保留的心力衰竭(heart failure with preserved ejection fraction,HFpEF) (LVEF值≥50%)和治疗后改善的心力衰竭(基线LVEF值≤40%,治疗后第2次测量时LVEF值相比基线值增加10个百分点以上,且LVEF值>40%)。近年来随着新型抗心力衰竭药物的出现,HFrEF再住院率和病死率逐渐降低,但HFpEF仍面临治疗困境。现已证明不同表型的HFpEF的病因和预后各异[3]。传统的心血管疾病治疗靶点主要针对其心脏内机制,如调节神经激素、逆转心肌纤维化、改善心脏变时功能等,这些治疗策略对HFpEF的疗效有限或无效。而通过研究HFpEF心脏外机制有望找到治疗HFpEF的新靶点。
1. HFpEF与肺
心脏和肺的关系是双向的。HFpEF引起肺血流动力学异常,表现为肺动脉高压、肺淤血和肺水肿,从而导致肺功能异常[4];而慢性阻塞性肺疾病(chronic obstructive pulmonary disease,COPD)引起全身炎症反应、微血管功能障碍,从而诱发心肌损伤。合并COPD的HFpEF患者血清肌酐、中性粒细胞/淋巴细胞比值更高,且预后更差[5]。在治疗方面,合并危险因素较少的HFpEF患者采用利奥西呱治疗肺动脉高压疗效更佳[6];在预后评估方面,肺超声心动图参数对HFpEF预后具有预测价值,B线数量多是不良预后的预测因素[7]。由此可见,心肺的各种病理生理过程相互作用形成恶性循环从而加剧HFpEF进展。
2. HFpEF与血管
全身性血管损伤和冠状动脉微血管功能障碍(coronary microvascular dysfunction,CMD)参与HFpEF的病理生理过程。肾动脉阻力指数和臂踝脉搏波传导速度是肾血管阻力/全身血管损伤和动脉硬化的指标,两者在HFpEF患者中均显著升高,且与其不良预后相关[8]。CMD是HFpEF的重要病理生理机制,核心环节包括活性氧(reactive oxygen species,ROS)的蓄积及继发的氧化应激和炎症反应,表现为冠状动脉的功能和结构改变[9]。冠状动脉功能改变指冠状动脉痉挛,表现为内皮细胞的血管扩张/收缩活性物质产生不平衡和血管平滑肌过度收缩;冠状动脉结构改变指冠状动脉血管重塑,表现为管壁纤维化、管腔狭窄和毛细血管稀疏[10]。CMD对心肌细胞的影响包括直接促进成纤维细胞表型转化及胶原蛋白产生和交联,以及冠状动脉本身功能障碍导致的心肌缺血、微梗死频繁发作,从而继发心肌纤维化[10]。NO-可溶性鸟苷酸环化酶(soluble guanylate cyclase,SGC)-环腺苷酸(cyclic adenosine monophosphate,cAMP)信号通路参与上述过程(图1)。在2型糖尿病小鼠模型中,过量脂肪酸作为代谢底物,通过下调内皮型NO合酶,促使CMD发生和心肌细胞功能下降,最终导致舒张功能障碍及HFpEF[11]。血管内皮生长因子抑制剂作用于ZSF-1瘦素受体基因敲除大鼠(HFpEF大鼠动物模型),增加血管ROS水平、抑制SGC转录、使血管舒张能力下降、触发肺血管重建并诱发HFpEF[12]。NO-环鸟苷酸(cyclic guanosine monophosphate,cGMP)-依赖cGMP的蛋白激酶(cGMP-dependent protein kinase,PKG)通路也参与HFpEF的病理生理过程,NO生物利用度的下调降低PKG活性,一方面解除PKG对心肌肥大的限制[13];另一方面降低肌联蛋白磷酸化水平,从而抑制其在心肌舒张中的双向调控功能,增加心肌僵硬度[14-15]。HFpEF患者血管内皮髓过氧化物酶相关氧化应激生物标志物尿酸和钙网蛋白水平上升,提示微血管内皮炎症参与HFpEF的发生[16]。高血压和炎症反应激活内皮细胞释放相关炎症因子[17],促进单核巨噬细胞的迁移和浸润,后者释放转化生长因子-β (transforming growth factor-β,TGF-β)、白细胞介素-1β (interleukin-1β,IL-1β)、IL-6、肿瘤坏死因子-α (tumour necrosis factor-α,TNF-α)和趋化因子配体5[chemokine (C-C motif) ligand 5,CCL-5]等细胞因子,促进肌成纤维细胞分化和胶原沉积[18]。心肌肥大导致氧供需失衡,冠状动脉微血管的重构导致冠状动脉血流储备降低,继发临床或亚临床心肌缺血,最终引发功能障碍,促进HFpEF的发展。
图1.
血管壁炎症反应对心肌纤维化的直接和间接作用
Figure 1 Direct and indirect effects of vascular wall inflammatory response on myocardial fibrosis
Coronary microvascular endothelial inflammation causes endothelial cells to produce excessive ROS and reduces the availability of NO in cardiomyocytes. On the one hand, it causes coronary microvascular dysfunction; on the other hand, it decreases the NO-cAMP-PKG signal, releases the inhibition of PKG on cardiomyocyte hypertrophy, and promotes ventricular remodeling. It also reduces PKG-mediated titin phosphorylation and increases myocardial stiffness. The inflammatory response activates the expression of related cell factors, promotes the migration of monocytes to the endothelium, produces TGF-β, and promotes fibroblast proliferation and collagen deposition. Together, these mechanisms are involved in myocardial fibrosis and heart failure mediated by inflammation of the vessel wall. ROS: Reactive oxygen species; TGF-β: Transforming growth factor-β; IL-1β: Interleukin-1β; IL-6: Interleukin-6; TNF-α: Tumour necrosis factor-α; CCL-5: Chemokine (C-C motif) ligand 5; NO: Nitric oxide; cAMP: Cyclic adenosine monophosphate; PKG: cGMP-dependent protein kinase; cGMP: Cyclic guanosine monophosphate.
3. HFpEF与肾和肝
慢性肾病患者心力衰竭患病率显著升高,心脏和肾通过血液动力学、神经内分泌、炎症和表观遗传等机制进行双向调节,失调时导致心肾综合征[19]。病例对照研究[20]表明HFpEF患者肾小球滤过率(glomerular filtration rate,GFR)降低,肾血管阻力升高,且心力衰竭严重程度与GFR呈负相关,与肾血管阻力呈正相关。血尿素氮/血肌酐比值是评价肾功能的指标,比值升高与HFpEF患者不良预后相关,提示HFpEF发展过程存在密切的心肾相互作用[21]。
急性肾损伤(acute kidney injury,AKI)通过影响心肌能量产生、改变产能途径、诱发氧化应激等方式导致心肌功能障碍(图2)。在雄性小鼠AKI模型中,AKI诱发高血压,同时减少烟酰胺腺嘌呤二核苷酸(nicotinamide adenine dinucleotide,NAD)合成,从而降低心脏三磷酸腺苷(adenosine triphosphate,ATP)水平,导致心肌舒张功能障碍而射血分数未降低,该效应由炎症因子和非编码RNA(non-coding RNA,ncRNA)参与介导[22]。对缺血性AKI小鼠模型的代谢组学研究[23]表明:心肌氨基酸代谢产能占比增加,血浆中氧化还原内稳态失衡标志物水平上升,而活性氧清除剂谷胱甘肽水平下降。当能量不足时,AKI诱导包括心肌在内的全身蛋白质分解代谢,影响心肌正常功能,并可能促进细胞萎缩、凋亡和自噬[24]。
图2.
AKI和HFpEF的相互作用
Figure 2 Interaction between AKI and HFpEF
The cardiovascular system interacts with the kidney through ncRNA and cell factors. AKI leads to the enhancement of myocardial protein catabolism, the activation of myocardial atrophy and apoptosis signals; it also leads to dysfunction of myocardial mitochondria, increased ROS, and decreased ATP, which causing hypertension and cardiomyopathy. ROS: Reactive oxygen species; ATP: Adenosine triphosphate.
此外,神经内分泌系统广泛调节心肾的相互作用。心力衰竭造成的肾缺血,激活肾素-血管紧张素-醛固酮系统,促使外周血管收缩和血液潴留,导致肾功能恶化、心肌和血管重构,增加HFpEF患者再住院风险和病死率[25]。虽然醛固酮拮抗剂螺内酯可能增加肾功能恶化风险,但能显著降低心源性死亡。因此,HFpEF的药物治疗需要充分考虑心肾相互作用[26]。
肝性心肌病主要由炎症、氧化应激、微血管功能障碍和肝纤维化介导,伴有全身性低血压、大血管和微血管功能受损,其中炎症因子发挥关键作用[27]。队列研究[28]显示肝纤维化与HFpEF相关,而与HFrEF无关,提示肝纤维化可能参与HFpEF的发生和发展。心肌淀粉样变是HFpEF的常见病因,主要包括免疫球蛋白轻链心肌淀粉样变和转甲状腺素蛋白心肌淀粉样变,这两种蛋白质均由肝合成,其错误折叠并沉积于心肌间质,引起心肌淀粉样变[29]。
4. HFpEF与骨骼肌
骨骼肌与心脏的双向作用促进心力衰竭的发展。HFpEF患者骨骼肌的丢失往往早于体重的下降,腰大肌体重指数可预测其预后,而与HFrEF无明显关联[30]。HFpEF主要通过血管内皮损伤和功能障碍影响氧气供应和血管舒张,继而影响骨骼肌的结构和功能,使代谢和氧供平衡难以维持,导致机体运动不耐受[31]。
骨骼肌代谢信号通过与交感神经系统相互作用影响心脏功能。有氧运动训练提高骨骼肌代谢效率后,相同负荷下交感神经活动水平下降、心血管不良反应减少[32]。在老年肥胖HFpEF患者中,有氧运动训练改善其峰值氧耗并提高其生存质量[33]。骨骼肌产生和分泌细胞因子、多肽和糖蛋白等一系列肌因子,可改善心脏代谢,促进呼吸熵正常化,抑制炎症反应,减轻胰岛素抵抗等[34];肌因子生成失调可继发代谢紊乱、炎症反应、胰岛素抵抗,导致HFpEF进一步发展。
5. HFpEF与代谢综合征
代谢综合征临床表现包括肥胖或超重、脂代谢异常、糖尿病等,与脂肪细胞数量增多、体积增大、促炎状态及胰岛素抵抗相关。相比其他类型心力衰竭,HFpEF患者心外膜脂肪组织含量更高,且与左室舒张功能障碍相关[35]。
糖尿病通过高胰岛素血症、循环细胞因子、脂肪因子、血管低度炎症、内皮功能障碍和氧化应激等,促进HFpEF发生。钠-葡萄糖耦联转运体抑制剂达格列净可降低HFpEF患者的再住院风险和病死率,提示糖尿病参与HFpEF病理生理过程[36]。前列环素类似物与二甲双胍的联合应用可以改善糖耐量异常,同时对代谢相关HFpEF具有一定疗效[37]。
6. 其他机制
肠道与心脏的相互作用主要由肠道微生物介导。心力衰竭继发肠壁缺血促进微生物构成和数目改变,诱发肠道菌群移位,加重炎症反应;肠道微生物产生的短链脂肪酸、多肽模拟物等代谢物参与内分泌调节,调控炎症反应和心肌纤维化进程[38]。
心力衰竭是免疫系统疾病常见的并发症,巨噬细胞、B细胞、细胞毒性T细胞、调节性T细胞、树突状细胞、自然杀伤细胞、中性粒细胞等参与其中[31]。有研究[39]显示IL-6/C-反应蛋白通路的激活是HFpEF特征性病理生理过程。
铁是血红蛋白的组成成分,缺铁继发的缺氧促进心力衰竭发生。队列研究[40]表明:缺铁的HFpEF患者预后更差,缺氧诱导因子水平上升,并引起下游连锁效应,包括代谢变化、血管生成、上皮-间充质转化、炎症因子产生等,导致肺血管重塑和肺动脉高压,增加心脏负荷并进一步降低心肌氧供,加剧心力衰竭进程。
7. 结 语
HFpEF发病率逐年上升,其具有独特的病理生理机制和高度的异质性,但目前缺乏有效治疗手段。近年来的研究倾向认为HFpEF为一种多器官病变,因此构建模型时应考虑多器官系统的相互作用。同时,在选取生物标志物方面不应仅限于循环标志物,而需要评估HFpEF患者更多组织样本(如脂肪组织、心脏、骨骼肌等)的指标。总之,对HFpEF心脏外机制的深入研究可能为防治HFpEF提供新思路、新靶点。
基金资助
国家自然科学基金(81700309)。
This work was supported by the National Natural Science Foundation of China (81700309) .
利益冲突声明
作者声称无任何利益冲突。
作者贡献
王思羽 文献收集及论文撰写;肖宜超 论文指导。所有作者阅读并同意最终的文本。
原文网址
http://xbyxb.csu.edu.cn/xbwk/fileup/PDF/2022121733.pdf
参考文献
- 1. Shah SJ, Borlaug BA, Kitzman DW, et al. Research priorities for heart failure with preserved ejection fraction: national heart, lung, and blood institute working group summary[J]. Circulation, 2020, 141(12): 1001-1026. 10.1161/CIRCULATIONAHA.119.041886. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2. Bozkurt B, Coats AJ, Tsutsui H, et al. Universal definition and classification of heart failure: a report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the universal definition of heart failure[J]. J Card Fail, 2021: S1071-9164(21)00050-6. 10.1016/j.cardfail.2021.01.022. [DOI] [Google Scholar]
- 3. Nguyen NT, Tran DT, Le An P, et al. Clinical phenotypes and age-related differences in presentation, treatment, and outcome of heart failure with preserved ejection fraction: a vietnamese multicenter research[J]. Cardiol Res Pract, 2021: 4587678. 10.1155/2021/4587678. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4. 陈浩然, 麦妙美, 李格丽, 等. 射血分数保留的心力衰竭患者肺功能异常特征研究[J]. 中国全科医学, 2020, 23(4): 447-452. 10.12114/j.issn.1007-9572.2019.00.357. [DOI] [Google Scholar]; CHEN Haoran, Miaomei MAI, LI Geli, et al. Characteristic of lung function abnormalities in HFpEF[J]. Chinese General Practice, 2020, 23(4): 447-452. 10.12114/j.issn.1007-9572.2019.00.357. [DOI] [Google Scholar]
- 5. Mooney L, Hawkins NM, Jhund PS, et al. Impact of chronic obstructive pulmonary disease in patients with heart failure with preserved ejection fraction: insights from PARAGON-HF[J/OL]. J Am Heart Assoc, 2021, 10(23): e021494 [2022-11-10]. 10.1161/JAHA.121.021494. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6. Barnikel M, Kneidinger N, Arnold P, et al. Riociguat in patients with CTEPH and advanced age and/or comorbidities[J]. J Clin Med, 2022, 11(4): 1084. 10.3390/jcm11041084. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7. Morvai-Illés B, Polestyuk-Németh N, Szabó IA, et al. The prognostic value of lung ultrasound in patients with newly diagnosed heart failure with preserved ejection fraction in the ambulatory setting[J]. Front Cardiovasc Med, 2021, 8: 758147. 10.3389/fcvm.2021.758147. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8. Aizawa Y, Okumura Y, Saito Y, et al. Association of renal resistance index and arterial stiffness on clinical outcomes in patients with mild-to-moderate renal dysfunction and presence or absence of heart failure with preserved ejection fraction[J]. Heart Vessels, 2020, 35(12): 1699-1708. 10.1007/s00380-020-01649-2. [DOI] [PubMed] [Google Scholar]
- 9. Masi S, Rizzoni D, Taddei S, et al. Assessment and pathophysiology of microvascular disease: recent progress and clinical implications[J]. Eur Heart J, 2021, 42(26): 2590-2604. 10.1093/eurheartj/ehaa857. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10. Del Buono MG, Montone RA, Camilli M, et al. Coronary microvascular dysfunction across the spectrum of cardiovascular diseases: JACC state-of-the-art review[J]. J Am Coll Cardiol, 2021, 78(13): 1352-1371. 10.1016/j.jacc.2021.07.042. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11. Veitch S, Njock MS, Chandy M, et al. MiR-30 promotes fatty acid beta-oxidation and endothelial cell dysfunction and is a circulating biomarker of coronary microvascular dysfunction in pre-clinical models of diabetes[J]. Cardiovasc Diabetol, 2022, 21(1): 31. 10.1186/s12933-022-01458-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12. Satoh T, Wang L, Espinosa-Diez C, et al. Metabolic syndrome mediates ROS-miR-193b-NFYA-dependent downregulation of soluble guanylate cyclase and contributes to exercise-induced pulmonary hypertension in heart failure with preserved ejection fraction[J]. Circulation, 2021, 144(8): 615-637. 10.1161/CIRCULATIONAHA.121.053889. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13. Zhao W, Chen Y, Yang W, et al. Effects of cardiomyocyte-specific deletion of STAT3-a murine model of heart failure with preserved ejection fraction[J]. Front Cardiovasc Med, 2020, 7: 613123. 10.3389/fcvm.2020.613123. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14. Hassoun R, Budde H, Zhazykbayeva S, et al. Stress activated signalling impaired protein quality control pathways in human hypertrophic cardiomyopathy[J]. Int J Cardiol, 2021, 344: 160-169. 10.1016/j.ijcard.2021.09.009. [DOI] [PubMed] [Google Scholar]
- 15. Koser F, Hobbach AJ, Abdellatif M, et al. Acetylation and phosphorylation changes to cardiac proteins in experimental HFpEF due to metabolic risk reveal targets for treatment[J]. Life Sci, 2022, 309: 120998. 10.1016/j.lfs.2022.120998. [DOI] [PubMed] [Google Scholar]
- 16. Hage C, Michaëlsson E, Kull B, et al. Myeloperoxidase and related biomarkers are suggestive footprints of endothelial microvascular inflammation in HFpEF patients[J]. ESC Heart Fail, 2020, 7(4): 1534-1546. 10.1002/ehf2.12700. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17. 喻江标, 吴永港, 张银妆, 等. ACE2-Ang(1-7)-Mas受体轴在高血压射血分数保留心力衰竭中的作用[J]. 中南大学学报(医学版), 2018, 43(7): 738-746. 10.11817/j.issn.1672-7347.2018.07.007. [DOI] [PubMed] [Google Scholar]; YU Jiangbiao, WU Yonggang, ZHANG Yinzhuang, et al. Role of ACE2-Ang (1-7)-Mas receptor axis in heart failure with preserved ejection fraction with hypertension[J]. Journal of Central South University.Medical Science, 2018, 43(7): 738-746. 10.11817/j.issn.1672-7347.2018.07.007. [DOI] [PubMed] [Google Scholar]
- 18. Zhang N, Ma Q, You Y, et al. CXCR4-dependent macrophage-to-fibroblast signaling contributes to cardiac diastolic dysfunction in heart failure with preserved ejection fraction[J]. Int J Biol Sci, 2022, 18(3): 1271-1287. 10.7150/ijbs.65802. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19. Wang X, Hao G, Chen L, et al. Heart failure and left ventricular dysfunction in older patients with chronic kidney disease: the China Hypertension Survey (2012-2015)[J]. J Geriatr Cardiol, 2020, 17(10): 597-603. 10.11909/j.issn.1671-5411.2020.10.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20. Jung S, Bosch A, Kolwelter J, et al. Renal and intraglomerular haemodynamics in chronic heart failure with preserved and reduced ejection fraction[J]. ESC Heart Fail, 2021, 8(2): 1562-1570. 10.1002/ehf2.13257. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21. Zhen Z, Liang W, Tan W, et al. Prognostic significance of blood urea nitrogen/creatinine ratio in chronic HFpEF[J/OL]. Eur J Clin Invest, 2022, 52(7): e13761 [2022-11-10]. 10.1111/eci.13761. [DOI] [PubMed] [Google Scholar]
- 22. Soranno DE, Kirkbride-Romeo L, Wennersten SA, et al. Acute kidney injury results in long-term diastolic dysfunction that is prevented by histone deacetylase inhibition[J]. JACC Basic Transl Sci, 2021, 6(2): 119-133. 10.1016/j.jacbts.2020.11.013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23. Fox BM, Gil HW, Kirkbride-Romeo L, et al. Metabolomics assessment reveals oxidative stress and altered energy production in the heart after ischemic acute kidney injury in mice[J]. Kidney Int, 2019, 95(3): 590-610. 10.1016/j.kint.2018.10.020. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24. Murashige D, Jang C, Neinast M, et al. Comprehensive quantification of fuel use by the failing and nonfailing human heart[J]. Science, 2020, 370(6514): 364-368. 10.1126/science.abc8861. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25. Ke B, Tan X, Ren L, et al. Aldosterone dysregulation predicts the risk of mortality and rehospitalization in heart failure with a preserved ejection fraction[J]. Sci China Life Sci, 2022, 65(3): 631-642. 10.1007/s11427-021-1945-6. [DOI] [PubMed] [Google Scholar]
- 26. Beldhuis IE, Myhre PL, Bristow M, et al. Spironolactone in patients with heart failure, preserved ejection fraction, and worsening renal function[J]. J Am Coll Cardiol, 2021, 77(9): 1211-1221. 10.1016/j.jacc.2020.12.057. [DOI] [PubMed] [Google Scholar]
- 27. Matyas C, Erdelyi K, Trojnar E, et al. Interplay of liver-heart inflammatory axis and cannabinoid 2 receptor signaling in an experimental model of hepatic cardiomyopathy[J]. Hepatology, 2020, 71(4): 1391-1407. 10.1002/hep.30916. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28. So-Armah KA, Lim JK, Lo Re V 3rd, et al. FIB-4 stage of liver fibrosis is associated with incident heart failure with preserved, but not reduced, ejection fraction among people with and without HIV or hepatitis C[J]. Prog Cardiovasc Dis, 2020, 63(2): 184-191. 10.1016/j.pcad.2020.02.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29. Michels da Silva D, Langer H, Graf T Inflammatory and molecular pathways in heart failure-ischemia , HFpEF and transthyretin cardiac amyloidosis[J]. Int J Mol Sci, 2019, 20(9): 2322. 10.3390/ijms20092322. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30. Matsumura K, Teranaka W, Matsumoto H, et al. Loss of skeletal muscle mass predicts cardiac death in heart failure with a preserved ejection fraction but not heart failure with a reduced ejection fraction[J]. ESC Heart Fail, 2020, 7(6): 4100-4107. 10.1002/ehf2.13021. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31. Ciccarelli M, Dawson D, Falcao-Pires I, et al. Reciprocal organ interactions during heart failure: a position paper from the ESC Working Group on Myocardial Function[J]. Cardiovasc Res, 2021, 117(12): 2416-2433. 10.1093/cvr/cvab009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32. DeLorey DS, Clifford PS. Does sympathetic vasoconstriction contribute to metabolism: Perfusion matching in exercising skeletal muscle?[J]. Front Physiol, 2022, 13: 980524. 10.3389/fphys.2022.980524. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33. Brubaker PH, Nicklas BJ, Houston DK, et al. A randomized, controlled trial of resistance training added to caloric restriction plus aerobic exercise training in obese heart failure with preserved ejection fraction[J]. Circ Heart Fail, 2022, 172: 54-61. 10.1161/CIRCHEARTFAILURE.122.010161. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34. Seki M, Powers JC, Maruyama S, et al. Acute and chronic increases of circulating FSTL1 normalize energy substrate metabolism in pacing-induced heart failure[J/OL]. Circ Heart Fail, 2018, 11(1): e004486 [2022-11-10]. 10.1161/CIRCHEARTFAILURE.117.004486. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35. Wang X, Butcher SC, Kuneman JH, et al. The quantity of epicardial adipose tissue in patients having ablation for atrial fibrillation with and without heart failure[J]. Am J Cardiol, 2022, 172: 54-61. 10.1016/j.amjcard.2022.02.021. [DOI] [PubMed] [Google Scholar]
- 36. 唐晓笛, 樊瑛. 钠-葡萄糖协同转运蛋白抑制剂对合并射血分数保留型心力衰竭的2型糖尿病患者的心血管保护作用研究[J]. 临床心血管病杂志, 2021, 37(1): 68-72. 10.13201/j.issn.1001-1439.2021.01.014. [DOI] [Google Scholar]; TANG Xiaodi, FAN Ying. A study of sodium-glucose co-transporter inhibitor in improving the prognosis of type 2 diabetes with heart failure with preserved ejection fraction patients[J]. Journal of Clinical Cardiology, 2021, 37(1): 68-72. 10.13201/j.issn.1001-1439.2021.01.014. [DOI] [Google Scholar]
- 37. Wang L, Halliday G, Huot JR, et al. Treatment with treprostinil and metformin normalizes hyperglycemia and improves cardiac function in pulmonary hypertension associated with heart failure with preserved ejection fraction[J]. Arterioscler Thromb Vasc Biol, 2020, 40(6): 1543-1558. 10.1161/ATVBAHA.119.313883. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38. Tang WHW, Li DY, Hazen SL. Dietary metabolism, the gut microbiome, and heart failure[J]. Nat Rev Cardiol, 2019, 16(3): 137-154. 10.1038/s41569-018-0108-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39. Albar Z, Albakri M, Hajjari J, et al. Inflammatory markers and risk of heart failure with reduced to preserved ejection fraction[J]. Am J Cardiol, 2022, 167: 68-75. 10.1016/j.amjcard.2021.11.045. [DOI] [PubMed] [Google Scholar]
- 40. Barandiarán Aizpurua A, Sanders-van Wijk S, Brunner-La Rocca HP, et al. Iron deficiency impacts prognosis but less exercise capacity in heart failure with preserved ejection fraction[J]. ESC Heart Fail, 2021, 8(2): 1304-1313. 10.1002/ehf2.13204. [DOI] [PMC free article] [PubMed] [Google Scholar]