Abstract
Graves眼病是临床上最常见的眼眶疾病,辅助型T(T helper,Th)细胞在Graves眼病的发展中起重要作用。Th17细胞作为Th细胞的主要亚群在Graves眼病患者中呈高度异常的表达,Th17细胞及相关因子白细胞介素(interleukin,IL)-17A、IL-21和IL-23共同参与炎症反应的调控、纤维化和脂肪的生成。Th17细胞不稳定,可表现出一定程度的可塑性,并可同时分泌IL-17A和干扰素-γ,这会加剧Th17细胞的致病性。此外,Th17细胞及相关炎症因子与Graves眼病的疾病活动度和严重程度密切相关。
Keywords: Graves眼病, Th17细胞, 细胞因子
Abstract
Graves’ ophthalmopathy is the most common clinical orbital disease, and T helper (Th) cells play an important role in the development of Graves’ ophthalmopathy. Th17 cells are a major subpopulation of Th cells and abnormally highly expressed in patients with Graves’ ophthalmopathy. Th17 cells and the related cytokines interleukin (IL)-17A, IL-21 and IL-23 are involved in regulating the inflammatory response, fibrosis and adipogenesis. Th17 cells are unstable and exhibit a degree of plasticity, and they can differentiate into IL-17A and interferon (IFN)-γ dual-producing Th17.1 cells, which exacerbate the pathogenicity of Th17 cells. In addition, Th17 cells and the relevant factors are strongly associated with disease activity and severity in Graves’ ophthalmopathy.
Keywords: Graves’ ophthalmopathy, Th17 cells, cytokines
目前临床上最常见的眼眶疾病是Graves眼病(Graves’ ophthalmopathy,GO),它也被称之为甲状腺相关性眼病(thyroid associated ophthalmopathy,TAO)和甲亢突眼[1]。GO主要与Graves病(Graves’ disease,GD)病有关,研究[2-3]显示GD患者中大约有38%患有GO,且亚洲人发病率最高,一般女性高于男性。GO常见的临床表现为眼球向外突出、眼睑肿胀、自觉眼内异物感和畏光等。极少数患者病情严重,出现急性视神经病变并造成视力受损或失明[4]。GO被广泛认为是一种自身免疫性疾病。糖胺聚糖特别是透明质酸(hyaluronic acid,HA)和脂肪的堆积、纤维化和免疫细胞的浸润是GO发病的主要病理特征。双抗原学说一直以来受到研究人员的认同,即GD和GO共用同一个抗原-促甲状腺激素受体(thyroid stimulating hormone receptor,TSHR)。然而,研究[5]发现GO中TSHR与胰岛素样生长因子-1受体(insulin-likegrowthfactor-1 receptor,IGF-1R)组成的串扰信号也起着重要作用,如眼眶成纤维细胞(orbital fibroblasts,OFs)分泌HA就可由该信号激活。以往研究[6-7]发现GO与Th1细胞及其相关因子有着密切的联系,但近年来研究[8]表明Th17细胞及相关因子在GO中也占主导作用。本文将阐述Th17细胞及其相关因子在GO发生、发展中的作用,希望能为GO治疗及预后提供新的思路。
1. Th17细胞概述
1.1. Th17细胞的分化
研究人员[9]在2005年首次发现一种特别的Th细胞可特异性产生IL-17,因此将这种特殊的Th细胞称为Th17细胞。Th17细胞的主要特征包括转录因子维甲酸相关孤独受体γt(retinoic acid receptor related orphan receptor γt,RORγt)及C-C基序趋化因子受体(C-C motif chemokine receptor,CCR)6呈阳性,并能特异性分泌IL-21、IL-17(主要包括IL-17A和IL-17F)、IL-22等炎性因子。转化生长因子-β(transforming growth factor-β,TGF-β)被认为是Th17细胞分化过程中必不可少的因素,IL-6、IL-1β、IL-21和IL-23在该过分化过程中也扮演着重要角色。
Tang等[10]在体外观察到:Th0细胞在TGF-β1和IL-6的共同刺激下可向Th17细胞分化。IL-21也可作用于原始CD4+T细胞,主要通过下调叉头框蛋白P3(forkhead box P3,Foxp3)表达和上调RORγt表达而促进CD4+T细胞增殖和Th17细胞分化,与此同时抑制调节性T细胞(regulatory T cell,Treg)分化[11]。上述过程使得Th17细胞与其分泌的IL-21形成循环,该循环可长久维持Th17细胞相关炎症因子的紊乱。去除TGF-β的刺激,在IL-1β、IL-6与IL-23共同作用下同样可驱动Th0细胞向Th17细胞分化,并且其分化过程离不开IL-1β的作用[12]。最新研究[13]表明致病性Th17细胞分化可由激活素A驱动,激活素A是TGF-β超家族的成员之一。有研究[14]报道TGF-β不仅不是Th17细胞分化的必需成分,而且对于Th17的细胞分化有着抑制作用。在高浓度的TGF-β作用下,Th0细胞可拮抗RORγt的促分化作用,从而抑制其向Th17细胞分化,这是因为其表达了Foxp3。此外,研究[15]发现Th17分化过程中需要转录因子参与调控,除开干扰素调节因子4(interferon regulatory factor-4,IRF-4)、信号转导与转录激活因子(signal transducer and activator of transcription,STAT)3与核受体视黄酸相关孤儿受体α(acid-related orphan receptor-α,RORα)外,还有4个转录因子起到关键作用,它们分别是缺氧诱导因子1(hypoxia inducible factor-1,HIF-1)、B细胞活化转录因子(B cell activating transcription factor,BATF)、芳香烃受体(aryl hydrocarbon receptor,AHR)和FOS相关抗原2(fos-related antigen 2,FOSL2)。
1.2. Th17细胞的可塑性
现已经证实Th17细胞具有可塑性,可在某些特定的条件下同时具有Th1和Th17细胞的特征,即分泌Th1细胞特有的细胞因子IFN-γ和IL-17,这种特殊的细胞被称为Th1样Th17细胞或Th17.1细胞,其分化途径可以体现于以下几种:1)Th17细胞无法自分泌TGF-β1时,其更易分化成Th1样Th17细胞,与此同时IL-12受体β2和IL-27受体α表达水平也升高了[16];2)IL-23促进T细胞表达的T-bet诱导是导致Th1样Th17细胞表达IFN-γ的重要一步[17];3)IL-12可直接诱导Th17细胞的细胞因子分泌谱改变,并成为Th1样Th17细胞[18]。Th17细胞与Th1样Th17细胞主要通过其表达的趋化因子受体区分,表达CCR6和CCR4的细胞是Th17细胞,表达CCR6和C-X-C基序趋化因子受体(C-X-C motif chemokine receptor,CXCR)3的细胞则是Th1样Th17细胞[19]。研究[20]表明Th1样Th17细胞具有强烈的致病性。与Th17细胞和Th1细胞相比,Th17.1细胞的存活和增殖能力更强,可分泌更多功能性的细胞因子。而且Th17.1细胞可对抗Treg介导的细胞增殖和细胞因子生成的作用[21]。
2. Th17细胞与GO
Th17细胞及其相关因子可导致GO。Th17细胞分泌的IFN-γ、IL-21、IL-17(主要包括IL-17A、IL-17F)和IL-22等促炎因子可激活内皮细胞、巨噬细胞、中性粒细胞和成纤维细胞,还可产生单核细胞趋化蛋白(monocyte chernotactic protein,MCP)-1、巨噬细胞炎症蛋白(macrophage inflammatory protein,MIP)-1α、IL-8、IL-6、肿瘤坏死因子(tumor necrosis factor,TNF)-α以及活性氧中间物,并能释放溶酶体等炎性因子。Th17细胞也可表达不同的转录因子(如RORγt、RORα和STAT3)而参与炎症损伤。无论是GO患者血液中,还是组织中,都发现存在高频率的Th17细胞及其相关因子,说明Th17细胞失衡参与了GO的发生、发展。如在GO患者的外周血样本中发现有比GD患者更高频率的Th17细胞[22]。与健康人相比,Th17细胞特异性分泌的IL-17高度表达于GO患者的泪液和眼眶组织中[23]。此外,研究[24]表明IL-17受体基因家族之一的IL17RE基因的甲基化水平与临床活性评分(clinical activity score,CAS)呈正相关。Fang等[25]的实验表明:来源于GO眼眶组织的CD34-OFs可产生前列腺素E2(prostaglandin E2,PGE2)、促进PGE2-前列腺素E受体(prostaglandin E receptor,EP)2/EP4-环磷酸腺苷(cyclic adenosine monophosphate,cAMP)途径,并上调IL-23受体和IL-1受体表达,从而进一步促进Th17细胞分化。最新的研究[26]发现:GO患者中Th17细胞占优势,且中度至重度GO患者中存在一种特殊的Th17细胞,该细胞可独立表达RORγt而产生最高水平的IL-17A,而在非常严重的GO中,这种特殊的细胞(Th1样Th17细胞)可共表达RORγt和Th1细胞特征型转录因子T-bet,并能产生最高水平的IFN-γ。Th17细胞能促进GO患者纤维细胞的抗原呈递功能,也能促进其释放IL-6、IL-8、MCP-1、MIP-3、TNF-α等炎症因子,体外纤维细胞能反作用增强Th17细胞功能,并以MIP-3/CCR6依赖性方式招募Th17细胞[27]。研究[28]表明对于GO患者起治疗作用的药物参与调节了Th17细胞的稳态,如甲基强的松龙可通过降低Th17/Treg细胞的比例而达到对GO患者的治疗作用。随机临床试验[29]显示:托珠单抗治疗难治性中度或重度 GO患者1个月后,GO患者的临床症状都得到明显改善且维持时间长达1年。其可能是因为托珠单抗可作为一种针对IL-6受体的重组人源化单克隆抗体,可抑制Th17细胞分化的关键信号IL-6/IL-6受体,从而可达到治疗GO的目的。
3. Th17细胞相关因子与GO
3.1. IL-17A与GO
IL-17A主要由Th17细胞产生,在GO的病程中扮演着重要角色。目前普遍的观点是IL-17A是致炎性细胞因子。研究[25]表明高度表达的IL-17A存在于GO患者的眼眶组织中,且CAS以及视力降低水平与IL-17A表达水平呈正相关。来自于GO患者的纤维细胞和OFs都高度表达IL-17受体A[27, 30],这表明从外周循环到局部眼眶结缔组织均受到IL-17A的连续刺激。IL-17A在GO中表达明显上升。IL-17A可激活核因子κB(nuclear factor kappa-B,NF-κB)通路和丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)通路并促进纤维细胞和OFs表达多种炎症因子,包括IL-6、TNF-α、IL-1β、趋化因子[如MCP-1、C-X-C基序趋化因子配体(C-X-C motif chemokine ligand,CXCL)1、CXCL2、CXCL9、CXCL10、C-C基序趋化因子配体(C-C motif chemokine ligand,CCL)7、CCL20]、粒细胞-巨噬细胞刺激因子(granulocyte-macrophage colony-stimulating factor,GM-CSF)、细胞间黏附分子(intercellular cell adhesion molecule,ICAM)、PGE2、一氧化氮合酶、共刺激分子[CD40和主要组织相容性复合体(major histocompatibility complex,MHC)II]等[31]。IL-17A也可起到招募、促进炎症细胞增殖并迁移到靶细胞的黏膜表面的作用[31]。另外,IL-6参与Th17细胞分泌IL-17A的过程,这使得IL-6与IL-17A在GO患者中形成一个正反馈环路。这个正反馈环路维持了Th17细胞的活性及相关免疫异常应答和炎症反应。研究[30, 32]发现IL-17A可促进TGF-β所诱导的GO-OFs向肌纤维细胞分化的过程,该过程依赖c-Jun-N末端激酶(c-Jun-N-terminal kinase,JNK)信号通路,并可上调α-平滑肌肌动蛋白(alpha-smooth muscle actin,α-SMA)等纤维化标志物和相关蛋白,表明在GO患者中IL-17A能加速纤维化进程。IL-17A对于脂肪生成有着调节作用。有研究[30]报道IL-17A减弱环戍烯酮类前列腺素(15-deoxy-Δ-12,14-Prostaglandin J2,15d-PGJ2)触发的CD90-OFs中脂肪生成,并且下调与脂肪生成相关的过氧化物酶体增殖物激活受体-γ(peroxisome proliferator-activated receptor-γ,PPAR-γ)等蛋白水平。然而最新研究[33]却发现IL-17A可促进15d-PGJ2所触发的CD34+泪液成纤维细胞(lacrimal fibroblasts,LFS)和OFs中脂肪的生成,且IL-17A可激活CD34+ OFs中的成脂通路,如PPAR-γ和胰岛素信号通路等。
3.2. IFN-γ与GO
免疫调控是IFN-γ的主要生理功能,IFN-γ可诱导多种抗原提呈细胞表达 MHCI/II分子并活化自然杀伤细胞(natural killer cell,NK)、巨噬细胞而产生成纤维细胞生长因子(fibroblast growth factor,FGF)、TNF-α、IL-6等炎性细胞因子,导致急性炎症反应而出现红、肿、热、痛等典型的炎症症状。IFN-γ有促进细胞毒性T细胞(cytotoxic tlymphocyte,CTL)增殖及分化的作用,活化后的CTL可释放穿孔素、颗粒酶、颗粒溶素而促进眼部组织的损伤。IFN-γ可通过促进IL-1β、IL-6等促炎因子的产生,同时减少IL-10、IL-11、TGF-β等抗炎介质的产生而加重炎症反应,继而促进眼部组织损伤。另外,IFN-γ可通过增强IL-1β诱导的透明质酸合成酶-2(hyaluronan synthase 2,HAS2)mRNA的表达而促进透明质酸的合成[34]。在体外细胞实验中,IFN-γ可刺激GO患者的OFs和前脂肪细胞分泌趋化因子CXCL10而招募淋巴细胞,同时抑制CXCL8的生成[35]。IFN-γ本就可活化Th1细胞而促进IFN-γ、TNF-α等细胞因子分泌,这些促炎因子又可抑制Th2细胞的活化。上述过程确保了GO患者眼眶组织的Th1细胞相关免疫应答的持续发生。研究[36]显示每种浓度的IFN-γ都可以在体外细胞培养实验中促进GO患者和正常人的OFs增殖,且夏枯草多糖抑制IFN-γ是在OFs增殖及透明质酸分泌的抑制过程中不可或缺的条件。多项研究[32-33]证实IFN-γ可在体外抑制TGF-β诱导GO-OFs所产生的纤维化标志物和相关蛋白而抑制纤维化。Huang等[33]报道了IFN-γ对15d-PGJ2处理的CD34+泪液成纤维细胞和OFs的脂肪生成的抑制作用。GO患者中IFN-γ表达水平明显高于健康人,且IFN-γ表达水平与GO的活动性成正相关,提示IFN-γ表达越高,其临床症状也就越严重。
3.3. Th17细胞其他因子与GO
研究[37]表明IL-23在GO患者外周血中高度表达,且与CAS呈正相关。IL-23主要通过调控Th17细胞及炎症因子参与GO的发病过程。IL-23主要激活转录因子STAT3,并且可通过Janus激酶(Janus kinase,JAK)-STAT途径促进Th17细胞分化及相关因子IL-17A的分泌。研究[38]表明IL-23能诱导来源于GO患者的外周血单核细胞(peripheral blood mononuclear cells,PBMCs)产生PGE2,并通过PGE2/EP2+EP4,上调IL-23受体,促进Th17分化和IL-17A分泌,加剧GO的炎症反应。
与IL-23一样,IL-21在GO患者外周血中呈高度表达,IL-21表达水平越高,患者的CAS也越高[39]。IL-21可激活JAK/STAT、MAPK和磷脂酰肌醇3-激酶(phosphatidylinositide 3-kinases,PI3K)途径,促进滤泡Th和Th17细胞的发育,平衡Th亚群,诱导B细胞生成并分化成浆细胞,且可促进免疫球蛋白的产生而参与免疫紊乱[40]。此外,有研究[41]曾报道IL-21基因多态性rs13143866与GO显著有关。
4. 结 语
Th17细胞及其相关因子稳态被破坏后,过度表达的Th17细胞及相关因子可相互作用、共同协调,从而参与GO的发生、发展过程,调节Th17细胞及其相关因子的稳态或将成为治疗GO的有效手段。值得指出的是,IFN-γ和Th1样Th17细胞的表达水平似乎可以作为GO患者的预后因素之一。由于Th17细胞与GO的关系研究尚在起步阶段,其相互的作用机制尚未完全明了,有待未来研究人员进一步探索。
基金资助
河南省中医药传承与创新人才工程(仲景工程)中医药拔尖人才(CZ0237-02);河南省中医药科学研究专项课题(20-21ZY1016)。
This work was supported by Henan Traditional Chinese Medicine Inheritance and Innovation Talent Project (Zhongjing Project) Top-Notch Talents of Traditional Chinese Medicine (CZ0237-02) and the Special Project of Scientific Research on Traditional Chinese Medicine in Henan Province (20-21ZY1016), China.
利益冲突声明
作者声称无任何利益冲突。
作者贡献
蒋敏敏 论文构想,撰写;赵静晓、王萍 论文修订;燕树勋、王颖 论文修改。所有作者阅读并同意最终的文本。
原文网址
http://xbyxb.csu.edu.cn/xbwk/fileup/PDF/2022121748.pdf
参考文献
- 1. Huang Y, Fang S, Li D, et al. The involvement of T cell pathogenesis in thyroid-associated ophthalmopathy[J]. Eye (Lond), 2019, 33(2): 176-182. 10.1038/s41433-018-0279-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2. Chin YH, Ng CH, Lee MH, et al. Prevalence of thyroid eye disease in Graves’ disease: A meta-analysis and systematic review[J]. Clin Endocrinol (Oxf), 2020, 93(4): 363-374. 10.1111/cen.14296. [DOI] [PubMed] [Google Scholar]
- 3. Du B, Wang Y, Yang M, et al. Clinical features and clinical course of thyroid-associated ophthalmopathy: a case series of 3620 Chinese cases[J]. Eye(Lond), 2021, 35(8): 2294-2301. 10.1038/s41433-020-01246-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4. Bartalena L, Kahaly GJ, Baldeschi L, et al. The 2021 European Group on Graves’ Orbitopathy (EUGOGO) clinical practice guidelines for the medical management of Graves’ orbitopathy[J]. Eur J Endocrinol, 2021, 185(4): G43-G67. 10.1530/EJE-21-0479. [DOI] [PubMed] [Google Scholar]
- 5. Krieger CC, Perry JD, Morgan SJ, et al. TSH/IGF-1 receptor cross-talk rapidly activates extracellular signal-regulated kinases in multiple cell types[J]. Endocrinology, 2017, 158(10): 3676-3683. 10.1210/en.2017-00528. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6. Xia N, Zhou S, Liang Y, et al. CD4+ T cells and the Th1/Th2 imbalance are implicated in the pathogenesis of Graves’ ophthalmopathy[J]. Int J Mol Med, 2006, 17(5): 911-916. [PubMed] [Google Scholar]
- 7. Khong JJ, McNab AA, Ebeling PR, et al. Pathogenesis of thyroid eye disease: review and update on molecular mechanisms[J]. Br J Ophthalmol, 2016, 100(1): 142-150. 10.1136/bjophthalmol-2015-307399. [DOI] [PubMed] [Google Scholar]
- 8. Hai YP, Lee ACH, Frommer L, et al. Immunohistochemical analysis of human orbital tissue in Graves’ orbitopathy [J] .J Endocrinol Invest, 2020, 43(2): 123-137. 10.1007/s40618-019-01116-4. [DOI] [PubMed] [Google Scholar]
- 9. Harrington LE, Hatton RD, Mangan PR, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper Type 1 and 2 lineages [J]. Nat Immunol, 2005, 6(11): 1123-1132. 10.1038/ni1254. [DOI] [PubMed] [Google Scholar]
- 10. Tang Z, Wang Y, Xing R, et al. Deltex-1 is indispensible for the IL-6 and TGF-beta treatment-triggered differentiation of Th17 cells[J]. Cell Immunol, 2020, 356: 104176. 10.1016/j.cellimm.2020.104176. [DOI] [PubMed] [Google Scholar]
- 11. Shi Y, Chen Z, Zhao Z, et al. IL-21 induces an imbalance of Th17/Treg cells in moderate-to-severe plaque psoriasis patients[J]. Front Immunol, 2019, 10: 1865. 10.3389/fimmu.2019.01865. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12. Ghoreschi K, Laurence A, Yang XP, et al. Generation of pathogenic T(H)17 cells in the absence of TGF-β signalling[J]. Nature, 2010, 467(7318): 967-971. 10.1038/nature09447. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13. Wu B, Zhang S, Guo Z, et al. The TGF-beta superfamily cytokine activin-A is induced during autoimmune neuroinflammation and drives pathogenic Th17 cell differentiation[J]. Immunity, 2021, 54(2): 308-323. 10.1016/j.immuni.2020.12.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14. 冯婧, 李新胜, 侯振江. Th17细胞分化与调控的研究进展[J]. 中国免疫学杂志, 2021, 37(13): 1648-1655. 10.3969/j.issn.1000-484X.2021.13.022. [DOI] [Google Scholar]; FENG Jing, LI Xinsheng, HOU Zhenjiang. Advances in study of Th17 cell differentiation and regulation[J]. Chinese Journal of Immunology, 2021, 37(13): 1648-1655. 10.3969/j.issn.1000-484X.2021.13.022. [DOI] [Google Scholar]
- 15. Stadhouders R, Lubberts E, Hendriks RW. A cellular and molecular view of T helper 17 cell plasticity in autoimmunity[J]. J Autoimmun, 2018, 87: 1-15. 10.1016/j.jaut.2017.12.007. [DOI] [PubMed] [Google Scholar]
- 16. Choi G, Park YJ, Cho M, et al. A critical role for Th17 cell-derived TGF-β1 in regulating the stability and pathogenicity of autoimmune Th17 cells[J/OL]. Experimental & Molecular Medicine, 2021, 53(5): 993-1004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17. Hirota K, Duarte JH, Veldhoen M, et al. Fate mapping of IL-17-producing T cells in inflammatory responses[J]. Nat Immunol, 2011, 12(3): 255-263. 10.1038/ni.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18. Boniface K, Blumenschein WM, Brovont-Porth K, et al. Human Th17 cells comprise heterogeneous subsets including IFN-gamma-producing cells with distinct properties from the Th1 lineage[J]. J Immunol, 2010, 185(1): 679-687. 10.4049/jimmunol.1000366. [DOI] [PubMed] [Google Scholar]
- 19. Suryani S,Sutton I. An interferon-gamma-producing Th1 subset is the major source of IL-17 in experimental autoimmune encephalitis[J]. J Neuroimmunol, 2007, 183(1/2): 96-103. 10.1016/j.jneuroim.2006.11.023. [DOI] [PubMed] [Google Scholar]
- 20. Basdeo SA, Cluxton D, Sulaimani J, et al. Ex-Th17 (nonclassical Th1) cells are functionally distinct from classical Th1 and Th17 cells and are not constrained by regulatory T cells[J]. J Immunol, 2017, 198(6): 2249-2259. 10.4049/jimmunol.1600737. [DOI] [PubMed] [Google Scholar]
- 21. Basdeo SA, Moran B, Cluxton D, et al. Polyfunctional, pathogenic CD161+ Th17 lineage cells are resistant to regulatory T cell-mediated suppression in the context of autoimmunity[J]. J Immunol, 2015, 195(2): 528-540. 10.4049/jimmunol.1402990. [DOI] [PubMed] [Google Scholar]
- 22. Zhao J, Lin B, Deng H, et al. Decreased expression of TIM-3 on Th17 cells associated with ophthalmopathy in patients with Graves’ disease[J]. Curr Mol Med, 2018, 18(2): 83-90. 10.2174/1566524018666180705105753. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23. Chen Q. The expression of interleukin-15 and interleukin-17 in tears and orbital tissues of Graves ophthalmopathy patients[J]. J Cell Biochem, 2019, 120(4): 6299-6303. 10.1002/jcb.27916. [DOI] [PubMed] [Google Scholar]
- 24. Xin Z, Hua L, Shi TT, et al. A genome-wide DNA methylation analysis in peripheral blood from patients identifies risk loci associated with Graves’ orbitopathy[J]. J Endocrinol Invest, 2018, 41(6): 719-727. 10.1007/s40618-017-0796-6. [DOI] [PubMed] [Google Scholar]
- 25. Fang S, Huang Y, Wang N, et al. Insights into local orbital immunity: Evidence for the involvement of the Th17 cell pathway in thyroid-associated ophthalmopathy[J]. J Clin Endocrinol Metab, 2019, 104(5): 1697-1711. 10.1210/jc.2018-01626. [DOI] [PubMed] [Google Scholar]
- 26. Fang S, Zhang S, Huang Y, et al. Evidence for associations between Th1/Th17 “hybrid” phenotype and altered lipometabolism in very severe Graves orbitopathy[J]. J Clin Endocrinol Metab, 2020, 105(6): dgaa124. 10.1210/clinem/dgaa124. [DOI] [PubMed] [Google Scholar]
- 27. Fang S, Huang Y, Liu X, et al. Interaction between CCR6+ Th17 cells and CD34+ fibrocytes promotes inflammation: Implications in Graves’ orbitopathy in Chinese population[J]. Invest Ophthalmol Vis Sci, 2018, 59(6): 2604-2614. 10.1167/iovs.18-24008. [DOI] [PubMed] [Google Scholar]
- 28. Siomkajło M, Mizera Ł, Szymczak D, et al. Effect of systemic steroid therapy in Graves’ orbitopathy on regulatory T cells and Th17/Treg ratio[J]. J Endocrinol Invest, 2021, 44(11): 2475-2484. 10.1007/s40618-021-01565-w. [DOI] [PubMed] [Google Scholar]
- 29. Sánchez-Bilbao L, Martínez-López D, Revenga M, et al. Anti-IL-6 receptor Tocilizumab in refractory Graves’ orbitopathy: National multicenter observational study of 48 patients[J]. J Clin Med, 2020, 9(9): 2816. 10.3390/jcm9092816. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30. Fang S, Huang Y, Zhong S, et al. Regulation of orbital fibrosis and adipogenesis by pathogenic Th17 cells in Graves orbitopathy[J]. J Clin Endocrinol Metab, 2017, 102(11): 4273-4283. 10.1210/jc.2017-01349. [DOI] [PubMed] [Google Scholar]
- 31. 王萍, 符宇, 蒋敏敏, 等. Th17和Treg细胞及其平衡对甲状腺相关眼病的影响[J]. 国际眼科杂志, 2022, 22(7): 1137-1142. 10.3980/j.issn.1672-5123.2022.7.14. [DOI] [Google Scholar]; WANG Ping, FU Yu, JIANG Minmin, et al. Effects of Th17 and Treg cells with their balance on thyroid associated ophthalmopathy[J]. International Journal of Ophthalmology, 2022, 22 (7): 11371142. 10.3980/j.issn.1672-5123.2022.7.14. [DOI] [Google Scholar]
- 32. 鲁奕, 黄雅琢, 李寅炜, 等. IL-17A和IFN-γ对甲状腺相关眼病患者CD34-眼眶成纤维细胞纤维化的作用[J]. 中华实验眼科杂志, 2020, 38(11): 923-928. 10.3760/cma.j.cn115989-20200719-00513. [DOI] [Google Scholar]; LU Yi, HUANG Yazhuo, LI Yinwei, et al. Effects of IL-17A and IFN-γ on the fibrosis of CD34- orbital fibroblast in Graves ophthalmopathy[J]. Chinese Journal of Experimental Ophthalmology, 2020, 38(11): 923-928. 10.3760/cma.j.cn115989-20200719-00513. [DOI] [Google Scholar]
- 33. Huang Y, Wu Y, Zhang S, et al. Immunophenotype of lacrimal glands in Graves orbitopathy: Implications for the pathogenesis of Th1 and Th17 immunity[J]. Thyroid, 2022, 32(8): 949-961. 10.1089/thy.2021.0671. [DOI] [PubMed] [Google Scholar]
- 34. Han R, Smith TJ. T helper type 1 and type 2 cytokines exert divergent influence on the induction of prostaglandin E2 and hyaluronan synthesis by interleukin-1beta in orbital fibroblasts: implications for the pathogenesis of thyroid-associated ophthalmopathy[J]. Endocrinology, 2006, 147(1): 13-19. 10.1210/en.2005-1018. [DOI] [PubMed] [Google Scholar]
- 35. Ferrari SM, Ragusa F, Paparo SR, et al. Differential modulation of CXCL8 versus CXCL10, by cytokines, PPAR-gamma, or PPAR-alpha agonists, in primary cells from Graves’ disease and ophthalmopathy[J]. Autoimmun Rev, 2019, 18(7): 673-678. 10.1016/j.autrev.2019.05.004. [DOI] [PubMed] [Google Scholar]
- 36. Li B, Guo J, Wang F, et al. Effect of Prunella vulgaris polysaccharides on cultured orbit fibroblasts in vitro from patients with thyroid-associated ophthalmopathy[J]. Exp Eye Res, 2020, 201: 108276. 10.1016/j.exer.2020.108276. [DOI] [PubMed] [Google Scholar]
- 37. 李红林, 刘艳秋, 郑绍同, 等. 甲状腺相关眼病患者血清IL-17和IL-23的表达及临床意义[J]. 中国现代医学杂志, 2018, 28(30): 105-108. 10.3969/j.issn.1005-8982.2018.30.020. [DOI] [Google Scholar]; LI Honglin, LIU Yanqiu, ZHENG Shaotong, et al. Expression and clinical significance of IL-17 and IL-23 in serum of patients with thyroid associated ophthalmopathy[J]. China Journal of Modern Medicine, 2018, 28 (30): 105-108. 10.3969/j.issn.1005-8982.2018.30.020. [DOI] [Google Scholar]
- 38. Pan Y, Wang M, Chen X, et al. Effects of Th17 and Treg cells and their balance on thyroid associated ophthalmopathy[J]. Int Immunopharmacol, 2021, 91: 107300. 10.1016/j.intimp.2020.107300. [DOI] [PubMed] [Google Scholar]
- 39. 王朝晖. 糖皮质激素改善活动期甲状腺相关眼病患者IL-17和IL-21的意义及其与效果的相关性[J]. 国际眼科杂志, 2017, 17(9): 1643-1645. 10.3980/j.issn.1672-5123.2017.9.09. 28714915 [DOI] [Google Scholar]; WANG Zhaohui. Changes of IL-17 and IL-21 in glucocorticoid therapy of active TAO and its relation with the results[J]. International Journal of Ophthalmology, 2017, 17 (9): 1643-1645. 10.3980/j.issn.1672-5123.2017.9.09. [DOI] [Google Scholar]
- 40. Long D, Chen Y, Wu H, et al. Clinical significance and immunobiology of IL-21 in autoimmunity[J]. J Autoimmun, 2019, 99: 1-14. 10.1016/j.jaut.2019.01.013. [DOI] [PubMed] [Google Scholar]
- 41. Jia HY, Zhang ZG, Gu XJ, et al. Association between interleukin 21 and Graves’ disease[J]. Genet Mol Res, 2011, 10(4): 3338-3346. 10.4238/2011. [DOI] [PubMed] [Google Scholar]
