Abstract
目的
股骨头坏死(osteonecrosis of the femoral head,ONFH)又被称为股骨头缺血性坏死,多数患者并发脂肪代谢紊乱。本研究探讨不同亚型的ONFH的脂代谢表达谱模式。
方法
将受试者分为酒精性股骨头坏死(alcohol-induced osteonecrosis of the femoral head,AONFH)组(n=16)、激素性股骨头坏死(steroid-induced osteonecrosis of the femoral head,SONFH)组(n=29)、正常对照(normal control,NC)组(n=32)。运用超高效液相色谱-质谱/质谱串联(ultra high performance liquid chromatography-mass spectrometry/mass spectrometry tandem apparatus,UPLC-MS/MS)技术对受试者的外周血标本进行脂质代谢物的检测,鉴定疾病潜在的生物标志物。对代谢物表达谱进行预处理,再通过偏最小二乘法判别分析(partial least squares discriminant analysis,PLS⁃DA)计算变量投影重要度(variable importance for the projection,VIP)来衡量各脂质代谢物的表达模式对各组样本分类判别的影响强度和解释能力。筛选出不同组间倍数改变(fold change,FC)>2、P<0.05且VIP>1的脂质代谢物作为差异脂质物。其中,AONFH组和SONFH组中共同存在的差异脂质物被视为ONFH的共有差异脂质物,单独存在的差异脂质物被视为AONFH组或SONFH组的特异性差异脂质物。在差异脂质物的受试者操作特征(receiver operator characteristic,ROC)曲线分析的基础上,采用二元logistic 回归评价差异脂质物对疾病的诊断价值。依据AONFH组和SONFH组患者的疾病分期信息,分析差异脂质物与疾病分期之间的相关性。
结果
在血浆样本中共检测到1 358种脂质代谢物。与NC组相比,AONFH组和SONFH组脂质代谢谱表达模式均有显著差异。分别在AONFH组和SONFH组患者外周血中筛选出62和64种差异脂质物 (FC>2,P<0.05,VIP>1),且均以上调为主。进一步鉴定出AONFH组和SONFH组共有的差异脂质物有9种,AONFH组有6种脂质物的ROC曲线下面积大于0.7,它们分别为1-myristoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine、次黄嘌呤(hypoxanthin)、血清素(serotonin)、PE(19:0/22:5)、PE(19:0/22:5)、cholest-5-en-3-yl beta-D-glucopyranosiduronic acid;AONFH组鉴定出特异性差异脂质物53种。SONFH组鉴定出特异性差异脂质物55种,SONFH组有6种脂质物的曲线下面积大于0.9,分别为1D-myo-Inositol 1,2-cyclic phosphate、L-pyroglutamic acid、DL-carnitine、8-amino-7-oxononanoic acid、Clobetasol和presqualene diphosphate。AONFH组中有9种差异脂质代谢物与疾病分期有关,分别为LPG 18:1、serotonin、PC (22:4e/23:0)、PC (19:2/18:5)、hypoxanthin、PE(18:1/20:3)、LPE 18:1、1-stearoyl-2-arachidonoyl-sn-glycerol、PE(16:0/18:1);随着AONFH疾病分期由I/II期向III/IV期进展,该9种差异脂质物含量呈升高趋势。SONFH组中有8种差异脂质代谢物与疾病分期有关,分别为TM6076000、4-(1,1-dimethylpropyl)phenol、D-617、asarone、phenylac-gln-OH、肌酸(creatine)、leu-pro、8-amino-7-oxononanoic acid;随着SONFH疾病分期由I/II期向III/IV期进展,该8种差异脂质物含量逐渐升高。
结论
本研究分析了临床工作中常见AONFH和SONFH患者的血浆脂质表达谱特征,鉴定出了与疾病诊断及病情评估有关的差异脂质物,为探索ONFH的脂质代谢变化和挖掘新型敏感性、特异性生物标志物提供了依据。
Keywords: 酒精性股骨头坏死, 激素性股骨头坏死, 脂质组学, ARCO分期, 生物标志物
Abstract
Objective
Osteonecrosis of the femoral head (ONFH), also known as vascular necrosis of the femoral head, is combined with lipid metabolism disorders in most patients. This study aims to explore the lipid metabolism profiles in different subtypes of ONFH.
Methods
The subjects were divided into an alcohol-induced osteonecrosis of the femoral head (AONFH) group, a steroid-induced osteonecrosis of the femoral head (SONFH) group, and a normal control (NC) group (n=16, 29, and 32, respectively). Ultra-performance liquid chromatography-mass spectrometry/mass spectrometry (UPLC-MS/MS) was used to detect the lipidomics analysis in the peripheral blood samples of subjects and identify the underlying biomarkers. The samples were preprocessed, the partial least squares discriminant analysis (PLS-DA) was adopted, and the variable importance for the projection (VIP) values were calculated to measure the expression pattern of each lipid metabolite and observe the influence and explanatory power of the expression pattern of each lipid metabolite on the classification and discrimination between the different groups. The lipid metabolites with fold change (FC)>2, P<0.05 and VIP>1 in the different groups were screened as differential lipids. Among them, the differential lipids co-existing in the AONFH group and the SONFH group were regarded as common differential lipids for ONFH, and the differential lipids that exist separately were regarded as specific differential lipids in the AONFH group or the SONFH group. Binary logistic regression was used to evaluate the diagnostic value of differential lipid metabolites on the basis of the receiver operator characteristic (ROC) curve analysis. Based on the disease stage information, the correlation between the differential lipids and the disease stage was analyzed in the AONFH group and the SONFH group.
Results
In this study, 1 358 lipid metabolites were detected in each plasma sample. Compared with the NC group, there were significant difference in the expression patterns of lipid metabolism profiles in the AONFH group and the SONFH group. A total of 62 and 64 differential lipid metabolites were screened in the AONFH and SONFH patients (FC>2, P<0.05, VIP>1) respectively, and these differential lipids were mainly up-regulated in the disease samples. Nine differential lipid metabolites were further identified, which were shared by the AONFH group and the SONFH group; the area under the curve (AUC) in 6 kinds of lipid components was greater than 0.7, including 1-myristoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine, hypoxanthin, serotonin, PE (19:0/22:5), PE (19:0/22:5), and cholest-5-en-3-yl beta-D-glucopyranosiduronic acid. Fifty-three specific differential lipid metabolites were identified in the AONFH group, and 55 specific differential lipid metabolites were identified in the SONFH group. The AUC in 6 kinds of lipid components was greater than 0.9, including 1D-myo-Inositol 1,2-cyclic phosphate, L-pyroglutamic acid, DL-carnitine, 8-amino-7-oxononanoic acid, Clobetasol, and presqualene diphosphate. In the AONFH group, there were 9 differential lipid metabolites related to the disease stages, including LPG 18:1, serotonin, PC (22:4e/23:0), PC (19:2/18:5), hypoxanthin, PE (18:1/20:3), LPE 18:1, 1-stearoyl-2-arachidonoyl-sn-glycerol, and PE (16:0/18:1); with AONFH disease progresses from I/II stages to III/IV stages, the relative content of these 9 differential lipid metabolites was increased. In the SONFH group, 8 differential lipid metabolites were found to be related to the stage of the disease, including TM6076000, 4-(1,1-dimethylpropyl)phenol, D-617, asarone, phenylac-gln-OH, creatine, leu-pro, and 8-amino-7-oxononanoic acid; and with the SONFH progressed from stage I/II to stage III/IV, the content of these 8 differential lipid metabolites were gradually increased.
Conclusion
This study analyzes the characteristics of the plasma lipid metabolism profile in the AONFH and SONFH patients, and which identifies the differential lipid metabolites related to disease diagnosis and evaluation. These results provide evidence for exploring lipid metabolism alterations and the mining of novel lipid biomarkers for the ONFH.
Keywords: alcohol-induced osteonecrosis of the femoral head, steroid-induced osteonecrosis of the femoral head, lipidomics, ARCO stage, biomarker
股骨头坏死(osteonecrosis of the femoral head,ONFH)是由多种病因造成的股骨头血液循环障碍,导致股骨头的活力成分不同程度地死亡,形成纤维化及骨小梁空泡,继而引起股骨头塌陷,最终发展成严重的骨关节炎,并出现疼痛、功能障碍等症状的一类疾病。酒精性ONFH(alcohol-induced ONFH,AONFH)和激素性ONFH(steroid-induced ONFH,SONFH)为临床中最常见的非创伤性ONFH。应用较大剂量的糖皮质激素也是目前出现ONFH常见的原因之一。ONFH好发于中壮年,给社会和家庭带来了巨大的经济负担[1-2],提高ONFH的早期检出率并及时预防至关重要。目前,ONFH的临床诊断仍主要依赖于症状、体征、X线、MRI等[3]。尽管MRI在股骨头出现一定程度坏死时即可作出较早期的诊断,但确诊后仍很难阻止坏死进一步的发展,患者最终在2~4年内出现股骨头塌陷;且其干扰较多,价格较高,所以无法对ONFH进行筛查[4]。如何在长期大量饮酒及应用皮质类固醇的人群中检测和筛选出高危人群、对高危人群进行密切监视、探索出有效的干预方法、减少AONFH和SONFH的发生率均具有非常重要的社会学价值[5]。
代谢组学是近年来兴起的一门学科,它与基因组学、蛋白质组学、生物信息组学共同构成了系统生物学,其应用有助于了解疾病的代谢变化及发现疾病的小分子标志物[6]。脂质组学作为代谢组学的一个重要分支,日益受到关注。基于脂质组学分析技术揭示脂质代谢异常与疾病的相关性,寻找潜在的生物标志物是目前研究的热点。本研究运用超高效液相色谱-质谱/质谱串联(ultra high performance liquid chromatography-mass spectrometry/mass spectrometry tandem apparatus,UPLC-MS/MS)技术对AONFH患者、SONFH患者和正常对照者的外周血样本进行脂质组学检测,分析AONFH及SONFH患者疾病状态下的脂质表达谱特征,探讨差异代谢组分对疾病的鉴别诊断效能,旨在为研究ONFH的脂质代谢变化并鉴定新型的诊断性生物标志物提供依据。
1. 对象与方法
1.1. 对象
AONFH患者和SONFH患者的纳入标准:1)X线片、MRI及病理学表现均符合ONFH诊断;2)均符合国际骨循环研究学会(Association Research Circulation Osseous,ARCO)制订的ONFH分期标准[3],诊断为AONFH和SONFH;3)患者不同时存在酗酒和使用类固醇类激素情况。排除标准:1)有代谢性骨病或有代谢性骨病病史者;2)有严重骨质疏松者;3)有器官移植、血液系统疾病、先天性免疫系统疾病等问题者。按上述标准,纳入2019年12月至2020年11月于西安交通大学红会医院髋关节院区确诊的16例AONFH患者(AONFH组)、29例SONFH患者(SONFH组)以及32例健康对照者(NC组)为研究对象,采集所有受试者的外周血并分离血浆,于-80 ℃冻存以便进行脂质组学检测。同时收集参与者年龄、性别、体重指数(body mass index,BMI)、ARCO分期等基本信息。AONFH组、SONFH组和NC组的年龄、BMI差异均无统计学意义(均P>0.05);AONFH组男性比例高于SONFH组及NC组(均P<0.05,表1)。本研究通过西安交通大学红会医院医学伦理委员会审核(审批号:202005002),在研究开始之前所有参与者均签署知情同意书。
表1.
受试者基本临床资料( ±s)
Table 1 Basic clinical data of the participants in this study ( ±s)
组别 | n | 年龄/岁 | 性别/例 | BMI/(kg·m-2) | |
---|---|---|---|---|---|
男性 | 女性 | ||||
NC组 | 32 | 48.50±8.69 | 17 | 15* | 23.16±2.72 |
AONFH组 | 16 | 49.69±13.02 | 14 | 2 | 24.07±2.39 |
SONFH组 | 29 | 49.03±15.24 | 15 | 14* | 23.87±3.14 |
NC:健康对照;AONFH:酒精性股骨头坏死;SONFH:激素性股骨头坏死。与AONFH组相比,*P<0.05。
1.2. 主要仪器和试剂
超高效液相色谱仪、质谱仪、色谱柱(150×2.1 mm,2.6 μm)、ST16R型低温离心机、氮吹仪及乙腈、甲酸、甲醇、异丙醇、乙酸铵、甲基叔丁基醚均购自美国Thermo Scientific公司。
1.3. 代谢物提取
将100 μL血浆加入到有聚四氟乙烯衬里帽的玻璃离心管中,加入0.75 mL预冷的甲醇,涡旋振荡。加入2.5 mL预冷的甲基叔丁基醚,在摇床上室温孵育1 h。再加入0.625 mL质谱级水混匀,使有机相分层。室温孵育10 min后,1 000 g离心10 min,收集上层有机相,向下层(水和甲醇)加入1 mL混合溶剂[甲基叔丁基醚/甲醇/水(10꞉3꞉2.5,体积分数)]再次萃取,收集上层有机相。将两次收集的有机相用氮吹仪进行氮吹浓缩。用100 μL异丙醇进行复溶,之后将样本置UPLC-MS/MS系统中进行脂质组学检测。实验分为NC组、AONFH组和SONFH组,另外还从每个已处理好的样本中取等量上清液混匀作为质控(qualiy control,QC)样本(QC组)。
1.4. 样品检测
色谱条件:采用Thermo Accucore C30型色谱柱,柱温为40 ℃,流速为0.35 mL/min,进样量为5 μL。流动相A为(乙腈꞉水=60꞉40)+0.1%甲酸+10 mmol/L乙酸铵;流动相B为(异丙醇꞉乙腈=90꞉10)+0.1%甲酸+10 mmol/L乙酸铵。质谱条件:正负离子模式下的鞘气流速为20任意单位,吹扫气流速为1任意单位,辅助气流速为5任意单位(负离子:7),喷雾电压为 3 kV,毛细管温度为350 ℃,加热器温度为400 ℃,质谱扫描范围为114~1 700 m/z,自动增益控制目标为1e6,归一化碰撞能量参数设置为25、30(负离子:20、24、28),进样时间为100 ms,隔离窗口为1 m/z,MS2自动增益控制目标为1e5,动态排除时间为15 s。使用CD 3.1数据处理软件对样本中检测到的色谱峰进行积分处理,其中每个特征峰的峰面积表示一个化合物的相对定量值,使用总峰面积对定量结果进行标准化,最后得到定量结果。
1.5. 数据处理
将原始下机数据(后缀为.raw格式的数据)文件导入CD搜库软件中,进行保留时间(retension time,RT)、质荷比等参数的简单筛选,然后对不同样品根据保留时间偏差0.2 min和质量偏差5 ppm(一种百万分之一的质量单位)进行峰对齐,使鉴定更准确,随后根据设置的质量偏差5 ppm、信号强度偏差30%、信噪比3、最小信号强度100 000、加和离子等信息进行峰提取,同时对峰面积进行定量,再整合目标离子,然后通过分子离子峰和碎片离子进行分子式的预测,并与Lipidmaps、Lipidblast和HMDB数据库进行比对,用空白样本去除背景离子,并对定量结果进行归一化,对脂质数据结果进行定性和定量分析。脂质组学检测由北京诺禾致源科技股份有限公司协助完成。研究所得原始数据文件已上传至代谢组学资料库MetaboLights(https://www.ebi.ac.uk/metabolights/)(编号:MTBLS2262)。
1.6. 统计学处理
采用SPSS 22.0软件、R4.0.2平台、MeldCalc 19.0.4软件进行数据处理、统计学分析及图形绘制。在R平台中进行脂质谱的偏最小二乘法判别分析(partial least⁃squares discriminant analysis,PLS⁃DA),获取变量投影重要度(variable importance for the projection,VIP)来衡量各代谢物的表达模式对样本分类判别的影响强度和解释能力。筛选不同组间倍数改变(fold change,FC)>2、P<0.05、VIP>1的脂质组分为差异脂质物。对差异脂质物进行受试者工作特征(receiver operator characteristic,ROC)曲线分析,获取敏感度、特异度及曲线下面积(area under the curve,AUC)。受试者基本信息中的计量资料以均数±标准差( ±s)表示,两组间比较采用t检验;计数资料采用秩和检验,以P<0.05为差异有统计学意义。
2. 结 果
2.1. ONFH血浆脂质组学分析
实验中3组样本的UPLC-MS/MS检测谱图如图1A(阳离子模式)、图1B(阴离子模式)所示。经过定量分析后,分别在阳离子模式、阴离子模式下得到脂质物分别为852种、506种,即共检测到1 358种脂质代谢物。对不同组样本的脂质表达谱进行PLS-DA分析显示:AONFH组和SONFH组脂质谱与NC组区分较为明显(图1C,1D)。同时,QC组样本聚集在一起,位于各组的中间,表明实验所用仪器分析系统的稳定性较好,试验数据稳定可靠,重复性较好(图1C,1D)。
图1.
脂质组谱图及偏最小二乘法判别分析
Figure 1 Lipdomic profiling and the partial least squares discriminant analysis (PLS-DA)
A: Lipid spectrograms of samples in the 3 groups in positive mode. The vertical axis represents ionic intensity, the horizontal axis represents retention time (RT). B: Lipid spectrograms samples in the 3 groups in negative mode. C, D: PLS-DA plots of lipidomic profiling is based on the positive mode (POS mode) (C) and the negative mode (NEG mode) (D).
2.2. ONFH血浆差异脂质物分析
结果显示:与NC组相比,AONFH组有62种差异脂质代谢物(上调51种,下调11种);SONFH组有64种差异脂质代谢物(上调54种,下调10种,图2A)。详细的差异脂质物列表已上传至Figshare数据库(https://figshare.com/),本研究数据具体链接网址为https://doi.org/10.6084/m9.figshare.20001737.v1。在两组差异脂质物中,有9种共有差异脂质物,其中血清素(serotonin)、次黄嘌呤(hypoxanthin)、TAG(16:0-18:0- 18:0)、Cer-NDS(d18:0/18:0)及cholest-5-en-3-yl beta-D-glucopyranosiduronic acid这5种脂质物在AONFH组和SONFH组中的丰度升高(均P<0.05),1-myristoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine、PC(18:3/18:3)、PE (18:3/20:3)及PE(19:0/22:5)4种脂质物在AONFH组和SONFH组中的丰度下降(P<0.05,图2B)。运用该9种共有差异脂质物进行双聚类分析,结果显示:NC组样本相对聚集,且与AONFH组和SONFH组样本区分较为明显(图2C)。
图2.
股骨头坏死外周血差异脂质物分析
Figure 2 Analysis of differential lipids in peripheral blood of patients with osteonecrosis of the femoral head
A: Number of different lipid metabolites in the AONFH group and the SONFH group. The vertical axis represents the number of differential lipids. B: Venn diagram of the different lipid metabolites between the the AONFH group and the SONFH group. There was 9 common differential lipids in the 2 groups (FC>2, P<0.05), the red represents 5 up-regulated lipids, and the green represents 4 down-regulated lipids. C: Nine common different lipid metabolites by bi-cluster analysis.
2.3. 差异脂质物鉴别的效果分析
对差异脂质物进行ROC分析,以评估其做为潜在疾病诊断标志物的应用价值。对AONFH组和SONFH组中共有的9种差异脂质物进行分析,结果显示:6种脂质物的AUC均大于0.7(均P<0.01),分别为1-myristoyl-2-docosahexaenoyl-sn-glycero-3-phospho-choline(敏感度为66.7%,特异度为71.9%,AUC=0.710)、hypoxanthin(敏感度为75.6%,特异度为90.6%,AUC=0.863)、serotonin(敏感度为64.4%,特异度为81.2%,AUC=0.790)、PE(19:0/22:5)(敏感度为93.3%,特异度为53.1%,AUC=0.790)、Cer-NDS(d18:0/18:0)(敏感度为71.1%,特异度为65.6%,AUC=0.723)、cholest-5-en-3-yl beta-D-glucopyranosiduronic acid(敏感度为73.3%,特异度为84.4%,AUC=0.822;图3A)。此外,研究进一步鉴定了AONFH组和SONFH组的特异性脂质标志物。其中,AONFH组特有差异脂质物有53种(排除9种共有差异脂质物),脂质组分LPG 18:1(敏感度为93.7%,特异度为75.0%,AUC=0.908)对于鉴别区分AONFH组和NC组的AUC>0.9(P<0.001,图3B)。SONFH组特有差异脂质物55种(排除9种共有差异脂质物),AUC>0.9的差异脂质物有6种(P<0.001),分别为1D-myo-inositol 1,2-cyclic phosphate(敏感度为89.7%,特异性为93.7%,AUC=0.934)、L-pyroglutamic acid(敏感度为93.1%,特异度为84.4%,AUC=0.909)、DL-carnitine(敏感度为89.7%,特异度为87.5%,AUC=0.918)、8-amino-7-oxononanoic acid(敏感度为86.2%,特异度为93.7%,AUC=0.913)、CLOBETASOL(敏感度为89.7%,特异度为90.6%,AUC=0.936)、presqualene diphosphate(敏感度为89.7%,特异度为90.6%,AUC=0.923,图3C)。
图3.
显著性差异脂质物鉴别的ROC分析
Figure 3 ROC analysis of the differential lipids in discriminating the AONFH group and SONFH group from the NC group
A: Six differential lipids (the common differential lipids) were differentiated from the AONFH group and SONFH group (AUC>0.7, P<0.01). B: AONFH specific diagnostic marker, with AUC>0.9 in distinguishing between the AONFH group and the NC group (P<0.001). C: SONFH specific diagnostic marker, with AUC>0.9 in distinguishing between the SONFH group and the NC group (AUC>0.9, P<0.001). A: 1-Myristoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine; B: Hypoxanthin; C: Serotonin; D: PE (19:0/22:5); E: Cer-NDS (d18:0/18:0); F: Cholest-5-en-3-yl beta-D-glucopyranosiduronic acid; G: LPG 18:1; H: 1D-myo-Inositol 1,2-cyclic phosphate; I: L-Pyroglutamic acid; J: DL-carnitine; K: 8-Amino-7-oxononanoic acid; L: Clobetasol; M: Presqualene diphosphate.
2.4. 与疾病分期相关的差异脂质物分析
研究继续分析并鉴定了与疾病分期有关的差异脂质物。在AONFH组中,有9种差异脂质物的含量随着疾病分期而增加;在SONFH组中,有8种差异脂质物的含量随着疾病分期而增加(图4)。
图4.
与疾病分期有关的差异脂质物
Figure 4 Differential lipids related to the disease stages
A: AONFH group; B: SONFH group. The relative abundance of the lipids increases as the disease progresses. *P<0.05, **P<0.01, ***P<0.001 vs the NC group.
3. 讨 论
脂质物参与调节多种生命活动的过程,如能量转换、物质运输、信息识别与传递、细胞发育和分化以及细胞凋亡等[7-11]。这是其结构多样性所赋予它的生物学功能。例如构成生物膜的重要组分是磷脂类化合物,甘油脂类可以作为机体代谢所需燃料的存和运输载体,能为动物机体提供必需的脂肪酸和脂溶性维生素;维生素A、D、E、K,胆酸及类间醇激素具有营养、代谢及调节功能,作为细胞的表面物质与细胞识别、特异性和组织免疫等存在密切关系;机体表面的脂类物质具有防止机械损伤与热量散发等保护作用[12-15]。脂质类化合物的异常代谢与某些疾病(如动脉硬化症、糖尿病、肥胖症、阿尔茨海默病以及肿瘤)的发生、发展等密切相关[16-17]。
以往研究[18-20]表明大量饮酒、应用皮质激素均可引起脂质代谢紊乱。Motomura等[21]对4例早期ONFH的研究发现:早期SONFH患者脂肪细胞体积增大;另有研究[22]报道应用大剂量激素后发生骨坏死患者的股骨颈脂肪髓体积明显大于未发生骨坏死患者。Kabata等[23]发现骨内脂肪栓塞的发生是通过影响激素诱导的骨坏死兔模型的骨修复和重建而成为骨坏死的原因之一;Wang等[24]发现ApoB和ApoA1基因多态性与酒精诱导的ONFH发生风险有关。可见ONFH患者脂质代谢异常在组织形态学上存在差异。尽管脂质代谢紊乱与ONFH的发生和发展之间存在联系,但ONFH的脂质组学特征仍不清楚,需要在临床样本中加以分析。
本研究将非靶向脂质组学分析方法应用于29例SONFH组、16例AONFH组以及32例NC组的外周血标本中,旨在获得全面、完整的脂质类代谢物变化信息,发现并寻找非创伤性ONFH诊断与治疗密切相关的生物标志物,避免丢失代谢途径中重要的差异中间产物。在实验中,首先对ONFH组和NC组的脂质谱进行分析,发现ONFH组与NC组间脂质代谢谱存在较大差异。进一步发现AONFH组和SONFH组中大量差异脂质物表现为上调模式,表明该2种ONFH的分子特征存在着共性的变化。研究进一步鉴定出了13种ONFH相关性差异性脂质代谢物,这13种脂质代谢物代表了SONFH组和AONFH组之间的差异,并且可能通过不同的代谢途径参与了疾病发生,为后续ONFH机制研究及生物标志物确认提供了基础。其中LPG 18:1被筛选出作为AONFH 的诊断性生物标志物,1D-myo-Inositol 1,2-cyclic phosphate、L-Pyroglutamic acid、DL-Carnitine、8-Amino-7-oxononanoic acid、Clobetasol、presqualene diphosphate被筛选出作为SONFH的诊断性生物标志物。其AUC均大于0.9,具有较高的诊断价值。
近年来随着代谢组学的发展,一些基于质谱的分析表明:脂质分子有助于加强现有的生物化学和组织病理学方法,用于疾病的诊断、分期和预后分析。本研究分别在AONFH组、SONFH组中鉴定出了与疾病分期呈正相关的差异脂质物,如随着疾病ARCO分期的进展,LPG 18:1、serotonin、PC (22:4E/23:0)等9种脂质物在AONFH中呈升高趋势;D-617、asarone、creatine等8种脂质物在SONFH中含量增加。尽管如此,以上差异脂质物在ONFH早期诊断中的应用尚待进一步的研究与证实,这也是课题组未来的工作目标之一。此外,研究中的差异性脂质物需要在更大样本量的临床标本中进一步验证,并进行定性、定量分析,从而发现最可靠的诊断性生物标志物。
基金资助
陕西省自然科学基金(2020JM-691);西安市科技计划项目[2019115013YX005SF038(10)]。
This work was supported by the Natural Science Foundation of Shaanxi Province (2019JJ50929) and the Science and Technology Plan Projects of Xi’an [2019115013YX005SF038(10)], China.
利益冲突声明
作者声称无任何利益冲突。
作者贡献
闫玉珠 实验操作,数据分析,撰写论文;于燕 修改、审核论文;刘俊叶 标本采集与处理;赵和平、王冀邯 课题设计与规划。所有作者阅读并同意最终的文本。
原文网址
http://xbyxb.csu.edu.cn/xbwk/fileup/PDF/202207872.pdf
参考文献
- 1. Zhang Y, Liu Y, Zhou G, et al. Fibular allograft for osteonecrosis prevention in the management of femoral neck fractures: clinical outcome and biomechanical evaluation[J]. Biomater Tissue Eng, 2015, 5(12): 937-941. 10.1166/jbt.2015.1399. [DOI] [Google Scholar]
- 2. 王本杰, 赵德伟, 郭林, 等. 非症状性股骨头坏死病情转归的影响因素分析[J]. 中华医学杂志, 2014, 94(21): 1627-1630. [PubMed] [Google Scholar]; WANG Benjie, ZHAO Dewei, GUO Lin, et al. Analysis of factors influencing the outcome of asymptomatic necrosis of femoral head[J]. Chinese Journal of Medicine, 2014, 94(21): 1627-1630. [PubMed] [Google Scholar]
- 3. 中华医学会骨科分会显微修复学组 . 成人股骨头坏死诊疗标准专家共识(2012年版)[J]. 中华骨科杂志, 2012, 32(6): 606-610. [Google Scholar]; Chinese Medical Association Orthopaedic Branch of Microscopic Repair Group . Expert consensus on diagnosis and treatment of osteonecrosis of the femoral head in adult [J]. Chinese Journal of Orthopaedics, 2012, 32(6): 606-610. [Google Scholar]
- 4. Mont MA, Zywiel MG, Marker DR, et al. The natural history of untreated asymptomatic osteonecrosis of the femoral head: a systematic literature review[J]. Bone Joint Surg Am, 2010, 92(12): 2165-2170. 10.2106/JBJS.I.00575. [DOI] [PubMed] [Google Scholar]
- 5. Algarni AD, Al Moallem HM. Clinical and radiological outcomes of extracorporeal shock wave therapy in early-stage femoral head osteonecrosis[J]. Adv Orthop, 2018, 8(19): 7410246. 10.1155/2018/7410246. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6. Wang A, Ren M, Wang JC. The pathogenesis of steroid-induced osteonecrosis of the femoral head: A systematic review of the literature[J]. Gene, 2018, 671(10): 103-109. 10.1016/j.gene.2018.05.091. [DOI] [PubMed] [Google Scholar]
- 7. Piuzzi NS, Chahla J, Jiandong H, et al. Analysis of cell therapies used in clinical trials for the treatment of osteonecrosis of the femoral head: a systematic review of the literature[J]. Arthroplasty, 2017, 32(8): 2612-2618. 10.1016/j.arth.2017.02.075. [DOI] [PubMed] [Google Scholar]
- 8. Yao C, Yi N, Shen J, et al. Clinical reports of surgical dislocation of the hip with sequestrum clearance and impacting bone graft for grade IIIA-IIIB aseptic necrosis of femoral head (ANFH) patients[J]. Oncotarget, 2017, 8(30): 50084-50090. 10.18632/oncotarget.15095. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9. Liu X, Li Q, Sheng J, et al. Unique plasma metabolomic signature of osteonecrosis of the femoral head[J]. Orthop Res, 2016, 34(7): 1158-1167. 10.1002/jor.23129. [DOI] [PubMed] [Google Scholar]
- 10. 姚征, 董永辉, 李真, 等. 粗通道髓芯减压联合同种异体骨植入术治疗激素性与酒精性股骨头坏死的疗效分析[J]. 中华实用诊断与治疗杂志, 2020, 34(12): 1217-1219. 10.13507/j.issn.1674-3474.2020.12.007. [DOI] [Google Scholar]; YAO Zheng, DONG Yonghui, LI Zhen, et al. Treatment of steroid-induced osteonecrosis of the femoral head by extensive pulp core decompression combined with allograft bone grafting [J]. Journal of Chinese Practical Diagnosis and Therapy, 2020, 34 (12) : 1217-1219. 10.13507/j.issn.1674-3474.2020.12.007. [DOI] [Google Scholar]
- 11. Zhu WW,Chen TM,Ding SJ,et al. Metabolomic study of the bone trabecula of osteonecrosis femoral head patients based on UPLC -MS/MS[J]. Metabolomics, 2016, 12(3): 48. 10.1007/s11306-016-0965-1. [DOI] [Google Scholar]
- 12. 张恩景, 廖文, 蔡进奎, 等. 非创伤性股骨头坏死的基因多态性研究进展[J]. 中国骨质疏松杂志, 2018, 24(4): 543-546, 551. [Google Scholar]; ZHANG Enjing, LIAO Wen, CAI Jinkui, et al. Research progress of gene polymorphism in nontraumatic osteonecrosis of femoral head [J]. Chinese Journal of Osteoporosis, 2018, 24(4): 543-546. [Google Scholar]
- 13. Song HM, Wei YC, Li N, et al. Effects of Wenyangbushen formula on the expression of VEGF, OPG, RANK and RANKL in rabbits with steroid-induced femoral head avascular necrosis[J]. Mol Med Rep, 2015, 12(6): 8155-8161. 10.3892/mmr.2015.4478. [DOI] [PubMed] [Google Scholar]
- 14. Hernigou P, Trousselier M, Roubineau F, et al. Stem cell therapy for the treatment of hip osteonecrosis: a 30-year review of progress[J]. Clin Orthop Surg, 2016, 8(1): 1-8. 10.4055/cios.2016.8.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15. Arlachov Y. Ibrahem Adam R. Acute hip pain: mimics of a femoral neck fracture[J]. Clin Radiol, 2018, 73(9): 773-781. 10.1016/j.crad.2018.05.008. [DOI] [PubMed] [Google Scholar]
- 16. Yuan HF, Christina VR, Guo CA, et al. Involvement of microRNA-210 demethylation in steroid-associated osteonecrosis of the femoral head[J]. Sci Rep, 2016, 6(1): 142-146. 10.1038/srep20046. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17. Li G, Liu HF, Zhang XG, et al. The protective effects of microRNA-26a in steroid-induced osteonecrosis of the femoral head by repressing EZH2[J]. Cell Cycle, 2020, 19(5): 551-566. 10.1080/15384101.2020.1717043. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18. Yuan L, Li W, Wang X, et al. The relationship between genetic polymorphisms in apolipoprotein E (ApoE) gene and osteonecrosis of the femoral head induced by steroid in Chinese Han population[J]. Genes Genomics, 2018, 40(2): 225-231. 10.1007/s13258-017-0625-5. [DOI] [PubMed] [Google Scholar]
- 19. 李欢欢, 李军, 王秋霞, 等. 基于股骨头坏死数据库分析激素性股骨头坏死的发病特征[J]. 中国骨质疏松杂志, 2020, 26(7): 988-991. [Google Scholar]; LI Huanhuan, LI Jun, WANG Qiuxia, et al. Analysis of the pathogenesis of steroid-induced necrosis of the femoral head based on the database of femoral head necrosis[J]. Chinese Journal of Osteoarthritis, 2020, 26(7): 988-991. [Google Scholar]
- 20. Yang J, Jing M, Yang X. Association between genetic polymorphisms and osteonecrosis in steroid treatment populations: a detailed stratified and dose-response meta-analysis[J]. Biosci Rep, 2019, 39(5): BSR20190024. 10.1042/BSR20190024. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21. Motomura G, Yamamoto T, Miyanishi K, et al. Bone marrow fat-cell enlargement in early steroid-induced osteonecrosis-a histomorphometric study of autopsy cases[J]. Pathol Res Pract, 2005, 200(11/12): 807-811. 10.1016/j.prp.2004.10.003. [DOI] [PubMed] [Google Scholar]
- 22. Xu JZ, Gong HP, Lu ST, et al. Animal models of steroid-induced osteonecrosis of the femoral head-a comprehensive research review up to 2018[J]. Int Orthop, 2018, 42(7): 1729-1737. 10.1007/s00264-018-3956-1. [DOI] [PubMed] [Google Scholar]
- 23. Kabata T, Kubo T, Matsumoto T, et al. Onset of steroid-induced osteonecrosis in rabbits and its relationship to hyperlipaemia and increased free fatty acids[J]. Rheumatology(Oxford), 2005, 44(10): 1233-1237. 10.1093/rheumatology/keh721. [DOI] [PubMed] [Google Scholar]
- 24. Wang Y, Cao Y, Li Y, et al. Genetic association of the ApoB and ApoA1 gene polymorphisms with the risk for alcohol-induced osteonecrosis of femoral head[J]. Int J Clin Exp Pathol, 2015, 8(9): 11332-11339. [PMC free article] [PubMed] [Google Scholar]