Skip to main content
Journal of Central South University Medical Sciences logoLink to Journal of Central South University Medical Sciences
. 2022 Jul 28;47(7):942–951. [Article in Chinese] doi: 10.11817/j.issn.1672-7347.2022.210779

CagA和VacA抑制胃黏膜上皮细胞的自噬并促进胃癌前病变的恶化

CagA and VacA inhibit gastric mucosal epithelial cell autophagy and promote the progression of gastric precancerous lesions

张 家祥 1,2, 王 文霸 1, 闫 曙光 1,, 李 京涛 2, 魏 海梁 2, 赵 唯含 3
Editor: 傅 希文
PMCID: PMC10930283  PMID: 36039592

Abstract

细胞毒素相关基因A(cytotoxin-associated gene A,CagA)与细胞空泡毒素A(vacuolating cytotoxin A,VacA)是幽门螺杆菌发挥致病作用的关键,也是促进胃癌前病变进展的高危因素。细胞自噬能稳定细胞内环境,抵御幽门螺杆菌感染,防止损伤的DNA累积,并能抑制胃癌前病变异型细胞的增殖。CagA和VacA通过多种方式抑制自噬上游信号活化与自噬溶酶体成熟,使胃癌前病变胃黏膜细胞的自噬受到抑制。这一变化可导致幽门螺杆菌无法被自噬而被有效清除,CagA与VacA也因此持续存在,并促进胃黏膜组织细胞的炎症、氧化应激、凋亡和胃癌前病变异型细胞的糖酵解活性与增殖等一系列恶性生物学过程。特异性抑制CagA和VacA活性的药物研究已成为防治与幽门螺杆菌相关的严重胃部疾病的新方向,并且涌现出了多种可治疗胃癌前病变的药物或成分,这可为未来胃癌前病变的治疗打开新局面。

Keywords: 幽门螺杆菌, 毒力因子, 自噬, 胃癌前病变, 胃癌


幽门螺杆菌是一种革兰氏阴性菌,感染后可通过分泌多种毒力因子与宿主胃微环境相互作用,可引起胃部慢性炎症和更严重的胃部疾病。据统计,2018年全球幽门螺杆菌感染所致的新发胃癌约81万例,而中国与幽门螺杆菌相关的新发胃癌则达到了惊人的34万例[1]。毒力因子细胞毒素相关基因A(cytotoxin-associated gene A,CagA)与细胞空泡毒素A(vacuolar toxin A,VacA)作为幽门螺杆菌发挥致病效应的关键因子能抑制胃黏膜上皮细胞自噬,并引起后续炎症、氧化应激、细胞凋亡等病理反应,这与胃癌前病变的发生及进展密切相关,所以抑制幽门螺杆菌感染及毒力因子发挥作用对防治胃癌前病变甚至胃癌具有重大的意义。

胃癌前病变主要表现为慢性萎缩性胃炎伴不同程度的肠上皮化生与异型增生,是胃癌前由多种因素导致的长期、多阶段的复杂病理过程[2]。胃癌前病变的治疗策略中一直将幽门螺杆菌的根除置于重要地位,近年来针对毒力因子致病机制以及调控胃癌前病变中自噬的研究取得了长足进展,部分研究结果为今后开发临床治疗新靶点、新策略提供了有力的理论与实验基础,具有良好的指导意义。所以,笔者在此对CagA和VacA两种毒力因子调控胃黏膜上皮细胞自噬并影响胃癌前病变的研究进展作一综述。

1. 自噬及其在胃癌前病变中的意义

自噬的过程大致可概括为以下几个方面:1)自噬囊泡的形成与延伸;2)自噬囊泡融合成双层膜结构的自噬小体;3)自噬小体捕获需降解的蛋白质、细胞器等;4)结合溶酶体形成自噬溶酶体,降解内容物以便再利用。该过程伴随与自噬相关的Moesin样B淋巴细胞2基因相互作用蛋白1(moesin-like B lymphocyte 2 gene interacting protein,Beclin-1)、II型蛋白微管相关蛋白1轻链3(microtubule-associated protein 1 light chain 3 II,LC-3II)等表达升高与自噬底物选择性接头蛋白1(sequestosome 1,SQSTM1)/p62表达的下调[3]。自噬可由细菌感染、低氧、营养缺乏等因素激活,参与机体多种病理、生理过程。适当水平的自噬能帮助胃黏膜上皮细胞抵御幽门螺杆菌的持续感染,避免了胃黏膜炎症的氧化应激损伤、异型细胞增殖及基因组紊乱,提早消除了癌变危险[4]。胃癌前病变阶段的胃黏膜组织微环境较为复杂,细菌感染、炎症、缺氧等多种因素交织,为自噬的启动提供了有利条件,但自噬水平在该病理阶段却受到了抑制,特别是发生异型增生时[5]。在轻度至重度胃癌前病变的胃黏膜组织中,Beclin1、LC-3II表达量及自噬小体数量逐渐减少,p62表达量逐渐增加,自噬流减弱[6];透射电镜观察大鼠胃癌前病变的胃黏膜未见自噬小体形成[7],这说明胃黏膜细胞自噬的抑制能使其逃脱自噬清除作用,导致胃癌前病变的持续恶化。研究[8]表明:幽门螺杆菌毒力因子能降低胃黏膜细胞自噬水平,并引发多种病理改变。如前文所述,中国胃癌的高发病率伴随着幽门螺杆菌的高感染率,所以胃癌前病变阶段自噬的抑制可能也与幽门螺杆菌及其毒力因子密切相关。

2. 幽门螺杆菌毒力因子CagAVacA对自噬的调控

幽门螺杆菌包含CagA、VacA、脲酶、脂多糖等多种毒力因子,它们共同促进幽门螺杆菌的定植、侵袭、逃避免疫清除,并主导了由正常胃黏膜向肠上皮化生及胃癌进展的Correa炎症级联反应。其中,CagA和VacA是促进幽门螺杆菌在胃黏膜细胞中存活与致病的最关键因素。

2.1. CagAVacA概述

CagA与VacA能通过调控细菌致病性与宿主胃黏膜细胞相关功能使胃癌前病变逐步恶化[9]。一项关于中国幽门螺杆菌感染的研究[10]发现:较高的CagA、VacA阳性率与感染者炎症发生率高、胃黏膜损伤程度深和胃癌的发生显著相关。

CagA的致病性主要由Cag致病岛及其碳末端的氨酸-脯氨酸-异亮氨酸-酪氨酸-丙氨酸基序(glu-pro-ile-tyr-ala,EPIYA)主导。首先,Cag致病岛编码了CagA与4型分泌系统(Type IV secretion system,T4SS),T4SS形成菌毛将CagA注入细胞,以便发挥致病作用;之后EPIYA酪氨酸残基可被宿主细胞内的Src和Ab1酪氨酸蛋白激酶家族磷酸化,其与含有Src同源结构域2(src homology domain-2,SH-2)的蛋白质作用后[11],通过模拟磷酸化宿主蛋白质参与多种信号通路激活,影响了自噬及炎症水平,导致肌动蛋白骨架重排、聚集和拉伸,形成“蜂鸟”样变,这些形态学改变易导致细胞恶变[12]。此外,EPIYA多态性也影响着CagA在胃癌前病变中的潜在毒力[13]CagA的前2个EPIYA基序重复区分别为EPIYA-A与EPIYA-B,而第3个区域因东、西方亚型的差异而有所不同,西方型是EPIYA-C,而东方亚型则是EPIYA-D[14]。含有EPIYA-ABD的东方亚型菌株能促进白细胞介素8(interleukin 8,IL-8)等多种促炎因子大量释放,所以普遍认为东方亚型菌株的毒力更强[15],这种不同亚型中CagA致病性的差异可能是造成中国感染者高胃癌发病率的重要原因。

VacA能编码空泡毒素引发细胞空泡样变性,并参与调控自噬、炎症与凋亡,还通过刺激调节性T细胞向效应性T细胞的分化使幽门螺杆菌逃避免疫系统及抗生素清除,延长感染时间[16]VacA基因的多态性影响其致病效应的发挥,且与细菌感染的地区差异密切相关[17]。幽门螺杆菌菌株有4种信号序列(s1as1bs1cs2)和3种中间序列(m1am1bm2),不同的信号、中间序列以不同的组合构成了多样化的VacA基因型[18],这些多态基因分散于高度保守的基因序列中,且可能与细菌中常见的染色体基因重组、互换有关。目前已区分的VacA基因型包括s1s2m1m2s1m1s1m2s2m2s2m1。不同基因型决定了VacA的致病性,体外实验[19]发现VacAs1型菌株能产生空泡毒素,但s2型无法产生,而由于VacA中间序列存在一个可度量基因片断,所以m1m2之间的差异也影响着空泡毒素活性[20]。分离自东亚幽门螺杆菌菌株的VacA基因主要为s1型,而相比于携带VacA s2/m2基因型的菌株,携带VacA s1/m1基因型的菌株更易导致消化性溃疡及胃癌[21]。东亚地区的后续研究[22]也相继印证了VacA s1m1基因型的高致病性,日本胃癌患者中常见VacA m1型菌株感染;且在中国与幽门螺杆菌感染相关的慢性胃炎、胃癌患者的VacA基因型中,s1m1VacA均较为普遍[23]

2.2. CagA调控自噬的相关机制

CagA对自噬的调控主要与其C端的CagA多聚化(CagA multimerization,CM)基序以及肌肉Z线α亚单位1的肌动蛋白封闭蛋白(capping actin protein of muscle Z-line alpha subunit 1,CAPZA1)有关。CM基序通过与胃黏膜上皮细胞内的细胞间质上皮转换因子(cellular-mesenchymal epithelial transition factor,c-Met)相互作用,活化了下游的磷脂酰肌醇3激酶/蛋白激酶B(phosphatidylinositol 3-kimase/protein kinase B,PI3K/Akt)信号通路,该信号通路通常在胃癌前病变过程中被激活[24],能活化哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)而抑制自噬。mTOR是氨基酸、ATP和激素的感受器,能调节细胞生长,并通过激活下游分子核糖体蛋白质S6(p70 ribosomal protein S6,p70S6)抑制自噬启动,起到了“门卫”作用[25]。CAPZA1可在幽门螺杆菌感染时被CagA激活,是一种具有抑制溶酶体表面膜蛋白功能的蛋白质,其对自噬的抑制作用主要是通过阻止自噬溶酶体成熟而实现的[26]。正常来讲,自噬功能的发挥与自噬溶酶体顺利成熟密切相关,这就需要核易位低密度脂蛋白受体相关蛋白1(low-density lipoprotein receptor-related protein-1,LRP1)的胞内结构域(intracellular domain,ICD)与近端溶酶体相关膜蛋白1(lysosome-associated membrane protein 1,LAMP1)启动子区结合,以诱导LAMP1表达上调,促进自噬溶酶体成熟[27]。而当幽门螺杆菌感染时,CagA促进CAPZA1表达上调,之后CAPZA1通过与LRP1-ICD的结合阻止其与LAMP1近端启动子结合,从而抑制LAMP1表达[28],最终导致自噬溶酶体成熟障碍,使自噬作用无法发挥。

2.3. VacA调控自噬相关机制

调控自噬是VacA的主要作用之一,该作用的发挥和最终的致病性将根据细菌暴露于宿主细胞的时间长短而不同。具体来讲,在幽门螺杆菌的感染初期,VacA内化后可在一定程度上促进自噬的发生,此时VacA激活其受体LRP1,并通过胃上皮细胞内质网应激活化LC3Ⅱ以促进自噬[29-30]。然而,这种诱导自噬的作用并不会随着幽门螺杆菌感染时间的延长而持续发生。临床上大多数幽门螺杆菌阳性的GPL患者均经历了长时间的慢性感染,当幽门螺杆菌感染时间延长,VacA逐渐引起了自噬的抑制。这有利于幽门螺杆菌在宿主细胞中持续存活并进一步发挥其致病作用[31]。而关于VacA抑制自噬的机制,主要与其对溶酶体功能的调控有关。溶酶体钙离子通道1(transient receptor potential mucolipin 1,TRPML1)可介导溶酶体内钙的释放,可维持溶酶体离子稳态和内溶酶体途径的膜运输,而组织蛋白酶D(cathepsin D,CTSD)则可促进溶酶体降解,二者均是维持溶酶体功能的关键[32]。VacA通过靶向TRPML1与CTSD并下调其活性,引发溶酶体钙紊乱,这一变化抑制自噬溶酶体的成熟与降解功能,使大量溶酶体样细胞器和自噬空泡积累,导致自噬通量严重受损[33]。VacA下调CTSD活性的具体机制目前尚不清除,但最新研究[34-35]指出VacA对TRPML1的抑制可能与VacA在溶酶体膜上形成的氯离子通道有关,该通道抵消了溶酶体由Cl-/H+交换剂维持的离子梯度,导致溶酶体腔急剧扩大、腔内氯减少,从而引起溶酶体储存障碍。

2.4. CagAVacA间的协同关系

CagA与VacA虽然通过各自不同方式致病及调控自噬,但两种毒力因子间却存在一定的协同关系,影响着胃黏膜的病理进展。研究[36]发现:东亚地区高致病性的CagA和VacA双阳性幽门螺杆菌菌株感染大鼠时,CagA蛋白与VacA蛋白固定结合可造成胃黏膜上皮细胞的严重损伤,并能诱导成纤维细胞向与癌相关的成纤维细胞分化,使大鼠胃上皮细胞向上皮-间充质转化[37];此外,VacA可在幽门螺杆菌感染过程中促进CagA在胃黏膜的累积[38],以上协同致病现象的具体机制尚不清楚,但可能涉及两种毒力因子对炎症与自噬的调控。首先,CagA与VacA可联合诱导树突状细胞活化而促进胃黏膜炎症,同时可加剧胃黏膜病理程度,关于这点将在下文中进行详细论述。其次,研究[39]发现若VacA被清除,本来受抑制的自噬水平会适当恢复正常,蛋白酶体数量也有所增加,这种变化促进了CagA的降解;而VacA的持续存在,会导致CagA累积增多,但前者并不影响蛋白酶体功能,这说明CagA的持续存在似乎依赖于VacA抑制自噬作用的发挥。由此可推测,VacA对自噬的抑制可能为随后CagA与VacA发挥抑制自噬及致病效应创造了条件。

3. CagAVacA引发的自噬抑制后效应可促进胃癌前病变的进展

CagA和VacA可抑制胃黏膜上皮细胞自噬,造成细胞清除幽门螺杆菌及其毒力因子的能力减弱,幽门螺杆菌的存活使CagA和VacA的致病效应得以持续发挥,从而促进胃癌前病变进展,并导致胃炎向胃癌转化。

3.1. 炎症与氧化应激增强

炎症与氧化应激是引起胃黏膜损伤、胃癌前病变进展及胃癌的重要机制。CagA和VacA抑制自噬后造成的损伤线粒体增多使自噬底物SQSTM1/p62累积与活性氧(reactive oxygen species,ROS)释放增加,引起炎症、氧化应激的增强。首先,炎症的增强主要取决于SQSTM1/p62对核因子-κB(nuclear factor kappa B,NF‐κB)信号通路的激活,这促进了IL-1、IL-1β、IL-8、IL-6、肿瘤坏死因子α(tumor necrosis factor α,TNF-α)等促炎因子的释放。其次,ROS的增加能影响线粒体脱氧核糖核酸(mitochondrial DNA,mtDNA)功能的发挥,从而促进氧化应激。mtDNA靠近电子传递链,能促进线粒体功能与损伤修复,由于自噬抑制造成的线粒体损伤修复障碍,导致含有缺陷的mtDNA编码蛋白亚基的呼吸酶电子传递功能受损[40],使胃上皮细胞抵御ROS的能力减弱,造成线粒体氧化应激损伤加重。这一过程能生成更多的ROS,从而形成恶性循环,进一步促进胃癌前病变的恶化。

除了通过抑制自噬增强炎症、氧化应激,CagA和VacA自身也能通过一系列机制促进这一过程。活化NF‐κB与核苷酸结合寡聚化结构域样受体蛋白3(nucleotide binding oligomerization domain-like receptor protein 3,NLRP3)能促进胃黏膜炎症,其中NLRP3是一种多蛋白免疫复合物,参与胃黏膜防御反应,通过对病原体的识别招募和激活促炎的半胱氨酸蛋白酶1(cysteinyl aspartate specific proteinase 1,caspase 1),从而促进IL-1β等的成熟分泌[41]。VacA通过激活Toll样受体4(Toll-like receptor 4,TLR4)/NF‐κB通路使NLRP3活化并发挥促炎作用[42];CagA则诱导T细胞向胃黏膜的活化、迁移[43],进而激活NF‐κB信号通路,增强炎症反应。CD103是免疫细胞表达的黏附分子,有助于免疫细胞的特异性定位,在胃癌前病变胃黏膜中可能促进了免疫细胞在局部高效释放促炎因子,并与VacA与CagA的协同促炎作用有关。Chen等[44]研究发现:采用VacA与CagA联合诱导的树突状细胞刺激胃黏膜单个核细胞12 h后,流式细胞术检测发现CD103+的CD4+T细胞能分泌大量干扰素γ(interferon-γ,INF-γ)、TNF-α与IL-17a。在促进氧化应激方面,CagA通过破坏线粒体电子传递链复合物[45]、提高精胺氧化酶转录活性[46]以及促进谷胱甘肽降解引起ROS的大量累积;VacA也能降解谷胱甘肽引起的氧化应激增强,除此之外,它还通过胞吞作用内化入胃上皮细胞,降低跨膜电位并释放细胞色素C,引起线粒体功能障碍,从而导致胃上皮细胞的氧化应激。

研究[47]发现过多的ROS释放会激活NLRP3炎症小体,进一步促进下游炎症因子释放,这说明炎症与氧化应激之间存在相互作用。实际上,由于部分信号或细胞因子(如ROS)具有促炎、促氧化应激的双重作用,所以二者联系极为紧密,常常存在信号、功能交互协同,可发挥更强的破坏性。一方面,炎症促进了氧化应激水平和胃黏膜炎症浸润,使活化的巨噬细胞、中性粒细胞出现高代谢,从而增加细胞耗氧量,NADPH氧化酶被激活,产生大量的ROS,超出了胃黏膜细胞氧化物的清除能力,导致氧化/抗氧化系统失衡[48];而TNF-α也可刺激白细胞产生ROS,导致氧化应激。另一方面,氧化应激也能加剧炎症,而自由基也能促进血浆趋化因子形成,因而吸引中性粒细胞向胃黏膜炎症局部聚积;ROS能促进花生四烯酸代谢,增加炎症介质分泌。CagA和VacA通过抑制自噬及其他机制可促进胃黏膜炎症、氧化应激及其协同作用,而炎症、氧化应激的增强则对胃癌前病变中的其他病理变化具有深远的影响。

3.2. DNA损伤与胃黏膜细胞凋亡加剧

CagA与VacA引起的胃黏膜细胞自噬抑制、炎症氧化应激作用增强会损坏DNA链,并引起正常胃黏膜细胞凋亡[49],加重胃黏膜损伤;更为严重的是,DNA损伤、修复障碍所引起的G:C→T:A碱基颠换是潜在的致癌因素[50]。众所周知,自噬的激活有利于限制DNA损伤累积,而自噬抑制后产生的过量ROS可通过脱嘌呤、脱氨甲基化或氧化作用破坏DNA,并抑制DNA修复蛋白RAD51的功能[51]。除上述间接机制外,CagA和VacA能降低具有修复DNA作用的核酸内切酶8样蛋白2抗体表达,从而造成ROS增多[52]。而Cag致病岛抑制蛋白酶激活受体1(protease activated receptor 1,PARS1)/微管亲和调节激酶(microtubule affinity-regulating kinase,MARK)通路介导细胞微管功能障碍,导致DNA双键断裂与染色体失稳,这一改变能引起与基因及转录区相关染色体臂末端特异性的DNA损伤积累[53]。目前关于VacA对DNA损伤的研究有限,难以明确VacA对DNA的具体影响,仅有的报道[54]指出若感染VacA阳性幽门螺杆菌菌株的胃黏膜细胞发生损伤,则易在细胞DNA同源重组修复的S期与G2期发生周期阻滞,据此推测VacA可能会通过抑制DNA的同源重组修复,加剧DNA的损伤,但这仍需要得到进一步的验证。

胃癌前病变阶段正常胃黏膜细胞及异型细胞总体呈现“凋亡-增殖”失衡的特点,即正常胃黏膜细胞持续凋亡并伴随异型细胞持续增殖。值得注意的是,造成这一改变的原因除了逐渐增多的异型细胞对正常细胞进行营养掠夺外,也与DNA损伤及VacA和CagA的直接破坏作用有关。首先,DNA损伤增多与错误修复会激活DNA依赖性蛋白激酶并进一步活化p53,使下游凋亡相关因子(recombinant factor related apoptosis,Fas)基因、凋亡相关因子配体(recombinant factor related apoptosis ligand,FasL)基因、B淋巴细胞瘤-2(B-cell lymphoma-2,Bcl-2)基因相关X蛋白(Bcl-2 associated X protein,Bax)等促凋亡基因启动凋亡程序[55]。而长时间的细菌感染使VacA和CagA分别通过形成空泡、促进氧化应激与激活NF-κB信号通路上调p62、Bcl-2及Bax等凋亡因子表达的方式加重了胃黏膜细胞的凋亡[56]

3.3. 糖代谢重编程的启动与异型细胞增殖加快

胃癌前病变异型细胞的过度增殖能大量替代正常胃黏膜上皮细胞,是胃癌发生的必要条件之一。近年来鲜有关于CagA和VacA促进胃癌前病变细胞增殖的研究出现,但它们可能一同促进了胃黏膜细胞的糖代谢重编程,从而改变了能量供给模式与速率,间接促进了病变细胞增殖速率。糖代谢重编程在胃癌前病变中启动,正常的线粒体氧化磷酸化由于缺氧等原因转变为糖酵解代谢供能,虽然生产的ATP数量较少,但提高了生成速率,能更快供给胃癌前病变细胞,从而以促进其生长、增殖。Takeharu等[57]发现糖酵解关键酶M2型丙酮酸激酶(pyruvate kinase isozyme type M2,PKM2)在CagA诱导的早期胃癌组织中上调,这说明CagA可能早在胃癌前病变阶段就已促进其表达增高,上调了糖酵解活性。然而,CagA和VacA对糖酵解的具体影响机制目前尚不清楚,只能对其进行合理推测,即CagA和VacA可引起自噬抑制,通过线粒体损伤及后续氧化应激大幅增加ROS生成数量,促进糖酵解关键信号缺氧诱导因子1α(hypoxia-inducible factor 1α,HIF-1α)的稳定表达,HIF-1α通过识别激素反应元件(hormone response element,HRE)结合域促进PKM2、乳酸转运蛋白1(monocarborxylat transporter 1,MCT1)、MCT4等糖酵解相关靶基因的转录,提升了糖酵解活性。值得注意的是,自噬抑制后较高的炎症、氧化应激水平所引起的促炎因子的大量释放可导致细胞对氧的需求量加大,引起胞内低氧,为HIF-1α的稳定表达提供了良好条件。

除了促进糖酵解,加快胃癌前病变细胞增殖,CagA还能通过CM与EPIYA基序活化mTOR与宿主细胞致癌因子蛋白酪氨酸磷酸酶2,再活化胃黏膜上皮细胞中的Wnt/β-连环蛋白(β-catenin)信号通路[58],从而引起下游基质金属蛋白酶7(matrix metallo-proteinase 7,MMP-7)表达增高,并加快肠上皮化生标志物同源框蛋白1、黏蛋白1 mRNA转录,促进胃癌前病变细胞增殖[59]。MMP-7可降解细胞外基质及基底膜,是重度异型增生细胞及胃癌标志物;β-catenin则能在细胞膜与E-钙黏蛋白(E-cadherin)结合为E-cadherin/β-catenin复合体,通过黏附作用维持细胞间完整性,抑制肿瘤的发生。然而在病理状态下,Wnt通过抑制β-catenin的磷酸化而使其核易位,进而激活MMP-7[60]。实际上,胃癌前病变细胞恶性增殖还关系到胃干细胞恶性转化及多种因素对其生态位的影响。胃干细胞是一类具有较强自我更新、增殖、分化能力的细胞,幽门螺杆菌通过影响其相应标志物,为其提供了恶性转化所需的生态位;CagA致病岛能在感染早期直接加速富含亮氨酸重复序列的G蛋白偶联受体5(leucine-rich repeat unit G protein-coupled receptor 5,Lgr5)阳性的胃腺干细胞增殖,上调胃窦干细胞重组人R-spondin 3表达,进而扩大axis抑制蛋白2(axis inhibition protein 2,Axin2)阳性细胞池,导致其恶性增殖[61],Lgr5、R-spondin 3及Axin2为恶性增殖标志物,其表达的变化影响胃干细胞生态位性质与增殖情况。关于两种毒力因子如何促进胃癌前病变细胞增殖、糖酵解的研究并不丰富,但不可否认的是,糖酵解的激活是增殖过程中重要的一环,靶向糖酵解、抑制异型细胞增殖可能也是治疗胃癌前病变的有效途径。

4. 抑制CagAVacA治疗幽门螺杆菌的研究现状

目前临床根除幽门螺杆菌主要以“四联”(质子泵抑制剂、铋剂和两种抗生素的组合)疗法为主,如奥美拉唑、枸橼酸铋钾、克拉霉素、阿莫西林的药物组合,该疗法能杀灭幽门螺杆菌,并通过改善胃酸环境、降低胃蛋白酶活性、减轻炎症反应以实现对胃黏膜的保护[62]。然而“四联”疗法并不能根除所有患者体内的幽门螺杆菌,抗生素的过度使用也会引发肠道菌群改变,使耐药率及哮喘的发生风险增加[63-64];且VacA介导的细菌逃避机制及宿主先天防御系统也可能会消除其根除作用[65],所以发掘新型抗幽门螺杆菌药物十分必要。有研究[66]提出新型抗幽门螺杆菌药物应是针对其细菌毒性而非生存能力,近年来涌现出了多种具有抑制幽门螺杆菌生物膜、毒力因子潜力的药物,它们能减轻或消除细菌自身致病效力;而特异性地抑制CagA和VacA等毒力因子对宿主微生物群影响小,且易被潜在抑制剂识别清除,进一步提升抑菌效果。抗VacA免疫球蛋白Y(VacA immunoglobulin Y,VacAIgY)[67]、低剂量双硫仑[68]、舒尔甘肽等均能使CagA或VacA蛋白质表达量降低,并能抑制幽门螺杆菌的黏附、侵袭活性[69]和胃黏膜炎症反应。除此之外,发掘传统中药天然活性成分逐渐成为新药研发的热点,许多天然药物成分被证实具有抑制CagA和VacA的功能,如吴茱萸碱[70]、石竹烯[71]、橙皮素[72]、和厚朴酚[73]、氢溴酸槟榔碱[74]等,它们均能抑制幽门螺杆菌的生长、繁殖及其引起的炎症;并能通过阻断CagA和VacA等毒力因子核易位及内化作用,抑制胃癌前病变及胃癌的进展。虽然许多药物通过不同的方式抑制了CagA和VacA的致病效应,但目前还未出现更为精确且不良反应少的靶向药物,所以深入了解两种毒力因子在慢性胃部疾病中的具体调控机制,抑制其存活、内化和致病作用可能有望成为中西医防治胃癌前病变的有效切入点。

5. 结 语

CagA和VacA作为幽门螺杆菌最重要的两种毒力因子,其致病效应已被证实。它们能通过抑制自噬的发生引起一系列促进胃癌前病变进展的后效应,并持续促进细菌定植、黏附并能与其他毒力因子协同,进一步强化幽门螺杆菌的致病性,所以对这两种毒力因子的抑制是根除幽门螺杆菌以及逆转胃癌前病变进展的重中之重。目前通过调节CagA和VacA防治幽门螺杆菌感染相关疾病的策略已受到国内外学者的重视与采纳,针对毒力因子的治疗可以减少众多不良反应,根除幽门螺杆菌或使疾病治疗“有的放矢”。尽管对CagA和VacA等幽门螺杆菌毒力因子致病机制的认识已取得了长足进步,但仍应深化针对相关毒力因子的靶向治疗研究,并继续探索此二者与其他毒力因子之间的病理网络的构成与联系。

基金资助

国家自然科学基金(81804082)。

This work was supported by the National Natural Science Foundation of China(81804082).

利益冲突声明

作者声称无任何利益冲突。

作者贡献

张家祥、王文霸 论文构想、撰写;闫曙光、李京涛、魏海梁、赵唯含 论文修改。所有作者阅读并同意最终文本。

原文网址

http://xbyxb.csu.edu.cn/xbwk/fileup/PDF/202207942.pdf

参考文献

  • 1. Martel C, Georges D, Bray F, et al. Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis[J/OL]. Lancet Glob Health, 2020, 8(2): e180-e190 (2019-12-17)[2021-12-23]. https://pubmed.ncbi.nlm.nih.gov/31862245/. [DOI] [PubMed] [Google Scholar]
  • 2. Wang S, Kuang JB, Li GF, et al. Gastric precancerous lesions present in Apc Min/+mice[J]. Biomed Pharmacother, 2020, 121(6): 109534. 10.1016/j.biopha.2019.109534. [DOI] [PubMed] [Google Scholar]
  • 3. Qian X, Li X, Cai Q, et al. Phosphoglycerate kinase 1 phosphorylates Beclin1 to induce autophagy[J]. Mol Cell, 2017, 65(5): 917-922. 10.1016/j.molcel.2017.01.027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4. Nassour J, Radford R, Correia A, et al. Autophagic cell death restricts chromosomal instability during replicative crisis[J]. Nature, 2019, 565(7741): 659-664. 10.1038/s41586-019-0885-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5. Giatromanolaki A, Koukourakis MI, Koutsopoulos AV, et al. Autophagy and hypoxia in colonic adenomas related to aggressive features[J/OL]. Colorectal Dis, 2013, 15(5): e223-e230 (2013-1-26)[2021-12-23]. https://pubmed.ncbi.nlm.nih.gov/23351172/. [DOI] [PubMed] [Google Scholar]
  • 6. Zhou WH, Tang F, Xu J, et al. Low expression of Beclin 1, associated with high Bcl-xL, predicts a malignant phenotype and poor prognosis of gastric cancer[J]. Autophagy, 2012, 8(3): 389-400. 10.4161/auto.18641. [DOI] [PubMed] [Google Scholar]
  • 7. 朱飞叶, 谢冠群, 徐珊. 乐胃饮对胃癌前病变大鼠模型自噬基因Beclin 1的影响[J]. 中华中医药杂志, 2017, 32(1): 282-284. CNKI:SUN:BXYY.0.2017-01-077. [Google Scholar]; ZHU Feiye, XIE Guanqun, XU Shan. Effects of Lewei Drink on autophagy gene Beclin 1 in rats with precancerous lesion of gastric cancer[J]. China Journal of Traditional Chinese Medicine and Pharmacy, 2017, 32(1): 282-284. CNKI:SUN:BXYY.0.2017-01-077. [Google Scholar]
  • 8. 郭凌峰, 周长林, 樊竑冶. 异体自噬的操控: 病原微生物对宿主翻译后修饰的调节作用[J]. 中国生物化学与分子生物学报, 2022, 38(1): 8-14. 10.13865/j.cnki.cjbmb.2021.05.1694. [DOI] [Google Scholar]; GUO Lingfeng, ZHOU Changlin, FAN Hongye. Manipulation of xenophagy: pathogens regulate post-translational modification of host[J]. Chinese Journal of Biochemistry and Molecular Biology, 2022, 38(1): 8-14. 10.13865/j.cnki.cjbmb.2021.05.1694. [DOI] [Google Scholar]
  • 9. Ahmad FS, Mohammad JY, Hamed G, et al. CagA and vacA allelic combination of Helicobacter pylori in gastroduodenal disorders[J]. Microb Pathog, 2018, 122(9): 144-150. 10.1016/j.micpath.2018.06.023. [DOI] [PubMed] [Google Scholar]
  • 10. 何媛, 赵晶, 林泳. 血清幽门螺杆菌抗体分型与胃部疾病的关系研究[[J]. 中国全科医学, 2019, 22(36): 4424-4428. 10.12114/j.issn.1007-9572.2019.00.729. [DOI] [Google Scholar]; HE Yuan, ZHAO Jing, LIN Yong. Relationship between types of serum antibodies against H.pylori and gastric diseases[J]. Chinese General Practice, 2019, 22(36): 4424-4428. 10.12114/j.issn.1007-9572.2019.00.729. [DOI] [Google Scholar]
  • 11. Zhang MC, Jie H, Yuan MX, et al. Cryptotanshinone inhibits cytotoxin-associated gene A-associated development of gastric cancer and mucosal erosions[J]. World J Gastrointest Oncol, 2021, 13(7): 693-705. 10.4251/wjgo.v13.i7.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12. Kwok T. Helicobacter exploits integrin for Type IV secretion and kinase activation[J]. Nature, 2007, 449(7164): 862-866. 10.1038/nature06187. [DOI] [PubMed] [Google Scholar]
  • 13. Mi Y, Dong HB, Sun XD, et al. The association of Helicobacter pylori CagA EPIYA motifs and vacA genotypes with homologous recombination repair markers during the gastric precancerous cascade[J]. Int J Biol Markers, 2020, 35(2): 49-55. 10.1177/1724600820914935. [DOI] [PubMed] [Google Scholar]
  • 14. Hideaki H, Tsutsumi R, Akiko F, et al. Biological activity of the Helicobacter pylori virulence factor CagA is determined by variation in the tyrosine phosphorylation sites[J]. Proc Natl Acad Sci USA, 2002, 99(22): 14428-14433. 10.1073/pnas.222375399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15. Bridge DR, Blum FC, Jang S, et al. Creation and initial characterization of isogenic Helicobacter pylori CagA EPIYA variants reveals differential activation of host cell signaling pathways[J]. Sci Rep, 2017, 7(1): 1-14. 10.1038/s41598-017-11382-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16. Djekic A, Müller A. The immunomodulator VacA promotes immune tolerance and persistent Helicobacter pylori infection through its activities on T-cells and antigen-presenting cells[J]. Toxins, 2016, 8(6): 187. 10.3390/toxins.8060187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17. 贾克东, 林小玉, 王新华, 等. Hp毒力因子抗体检测在幽门螺杆菌感染者精准治疗中的价值[J]. 中国病原生物学杂志, 2019, 14(10): 1190-1193. 10.13350/j.cjpb.191015. [DOI] [Google Scholar]; JIA Kedong, LIN Xiaoyu, WANG Xinhua, et al. Value of detecting anti bodies against CagA and VacA in precise therapy for a Helicobacter pylori in fection[J]. Journal of Pathogen Biology, 2019, 14(10): 1190-1193. 10.13350/j.cjpb.191015. [DOI] [Google Scholar]
  • 18. 何昀, 罗威耀, 刘志刚. 幽门螺杆菌感染和基因型与儿童胃十二指肠溃疡的相关性[J]. 中国妇幼保健, 2022, 37(1): 78-81. 10.19829/j.zgfybj.issn.1001-4411.2022.01.023. [DOI] [Google Scholar]; HE Jun, LUO Weiyao, LIU Zhigang. Association of Helicobacter pylori infection and genotype with gastroduodenal ulcer in children[J]. Maternal and Child Health Care of China, 2022, 37(1): 78-81. 10.19829/j.zgfybj.issn.1001-4411.2022.01.023. [DOI] [Google Scholar]
  • 19. 田一玲, 蒋任举, 杨致邦. 幽门螺杆菌感染途径的探讨[J]. 中国病原生物学杂志, 2009, 4(4): 266-267. 10.13350/j.cjpb.2009.04.021. [DOI] [Google Scholar]; TIAN Yiling, JIANG Renju, YANG Zhibang. Discussion on the infection route of Helicobacter pylori [J]. Journal of Pathogen Biology, 2009, 4(4): 266-267. 10.13350/j.cjpb.2009.04.021. [DOI] [Google Scholar]
  • 20. 张丽, 王芃, 魏莎莉, 等. 幽门螺杆菌毒力基因分型和宿主遗传多态性与胃病关系研究进展[J]. 遗传, 2011, 33(6): 558-566. 10.3724/SP.J.1005.2011.00558. [DOI] [PubMed] [Google Scholar]; ZHANG Li, WANG Fan, WEI Shali, et al. Advances in relationship between gastric disease and polymorphisms in both helicobacter pylori virulence factors and host genetics[J]. Hereditas (Beijing), 2011, 33(6): 558-566. 10.3724/SP.J.1005.2011.00558. [DOI] [PubMed] [Google Scholar]
  • 21. Sugimoto M, Zali MR, Yamaoka Y. The association of vacA genotypes and Helicobacter pylori-related gastroduodenal diseases in the Middle East[J]. Eur J Clin Microbiol Infect Dis, 2009, 28(10): 1227-1236. 10.1007/s10096-009-0772-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22. Seiji S, Kazunari M, Rumiko S, et al. Helicobacter pylori infection in Japan[J]. Expert Rev Gastroenterol Hepatol, 2013, 7(1): 35-40. 10.1586/egh.12.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23. Román RA, Martínez CDN, Atrisco MJ, et al. Helicobacter pylori vacA s1m1 genotype but not cagA or babA2 increase the risk of ulcer and gastric cancer in patients from Southern Mexico[J]. Gut Pathog, 2017, 4(13): 9-18. 10.1186/s13099-017-0167-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24. 潘华峰, 袁冬生, 刘伟, 等. 健脾化瘀解毒方抑制PI3K/AKT/HIF-1α通路阻断胃癌前病变恶性进展的机制[J]. 中华中医药杂志, 2020, 35(6): 2786-2790. 32536455 [Google Scholar]; PAN Huafeng, YUAN Dongsheng, LIU Wei, et al. Mechanism of Jianpi Huayu Jiedu Formula on inhibition PI3K/AKT/HIF-1α pathway and blocking malignant progression of gastric precancerous lesion[J]. China Journal of Traditional Chinese Medicine and Pharmacy, 2020, 35(6): 2786-2790. [Google Scholar]
  • 25. Larisa R, Francesca B, Paola L, et al. mTOR modulates intercellular signals for enlargement and infiltration in glioblastoma multiforme[J]. Cancers (Basel), 2020, 12(9): 2486. 10.3390/cancers12092486. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26. Hitoshi T, Hideki M, Juntaro M, et al. CAPZA1 determines the risk of gastric carcinogenesis by inhibiting Helicobacter pylori CagA-degraded autophagy[J]. Autophagy, 2019, 15(2): 242-258. 10.1080/15548627.2018.1515530. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27. Uemura N, Okamoto S, Yamamoto S, et al. Helicobacter pylori infection and the development of gastric cancer[J]. N Engl J Med, 2001, 345(11): 784-789. 10.1056/NEJMoa001999. [DOI] [PubMed] [Google Scholar]
  • 28. Rossella R, Maria GVC, Antonella C, et al. Role of D-limonene in autophagy induced by bergamot essential oil in SH-SY5Y neuroblastoma cells[J/OL]. PLoS One, 2014, 9(11): e113682 (2014-11-24)[2021-12-23]. https://pubmed.ncbi.nlm.nih.gov/25419658/. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29. Weronika G, Agnieszka K, Anthony PM, et al. Interference of LPS H.pylori with IL-33-driven regeneration of caviae porcellus primary gastric epithelial cells and fibroblasts[J]. Cells, 2021, 10(6): 1385. 10.3390/cells.10061385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30. Zhu P, Xue J, Zhang ZJ, et al. Helicobacter pylori Vac A induces autophagic cell death in gastric epithelial cells via the endoplasmic reticulum stress pathway[J]. Cell Death Dis, 2017, 8(12): 3207. 10.1038/s41419-017-0011-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31. Jacek B, Alicja F, Monika S, et al. Helicobacter pylori virulence factors mechanisms of bacterial pathogenicity in the gastric microenvironment[J]. Cells, 2021, 10(1): 27. 10.3390/cells10010027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32. Raquibul H, Zhang XM. Ca2+ regulation of TRPI on channels[J]. Int J Mol Sci, 2018, 19(4): 1256. 10.3390/ijms19041256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33. Mariana IC, Laura KG, Akriti P, et al. VacA generates a protective intracellular reservoir for Helicobacter pylori that is eliminated by activation of the lysosomal calcium channel TRPML1[J]. Nat Microbiol, 2019, 4(8): 1411-1423. 10.1038/s41564-019-0441-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34. Stauber T, Jentsch TJ. Chloride in vesicular trafcking and function[J]. Annu Rev Physiol, 2013, 75(10): 453-477. 10.1146/annurev-physiol-030212-183702. [DOI] [PubMed] [Google Scholar]
  • 35. Kasper D, Rosa PC, Jens CF, et al. Loss of the chloride channel ClC-7 leads to lysosomal storage disease and neurodegeneration[J]. EMBO J, 2005, 24(5): 1079-1091. 10.1038/sj.emboj.7600576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36. Mounia EK, Samia BA, Dafr-Allah B, et al. VacA genotypes and cagA-EPIYA-C motifs of Helicobacter pylori and gastric histopathological lesions[J]. Int J Cancer, 2020, 147(11): 3206-3214. 10.1002/ijc.33158. [DOI] [PubMed] [Google Scholar]
  • 37. Noto JM, Rose KL, Hachey AJ, et al. Carcinogenic Helicobacter strains selectively dysregulate the in vivo gastric proteome, which may be associated with stomach cancer progression[J]. Mol Cell Proteomics, 2018, 18(2): 352-371. 10.1074/mcp.RA118.001181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38. 涂宏飞, 费素娟. 幽门螺杆菌CagA及VacA致病机制的研究进展[J]. 中国中西医结合消化杂志, 2019, 27(5): 399-402. CNKI:SUN:ZXPW.0.2019-05-021. [Google Scholar]; TU Hongfei, FEI Sujuan. Research progress on pathogenic mechanism of Helicobacter pylori CagA and VacA[J]. Chinese Journal of Integrated Traditional and Western Medicine on Digestion, 2019, 27(5): 399-402. CNKI:SUN:ZXPW.0.2019-05-021. [Google Scholar]
  • 39. Abdullah M, Greenfield LK, Bronte TD, et al. VacA promotes CagA accumulation in gastric epithelial cells during Helicobacter pylori infection[J]. Sci Rep, 2019, 9(1): 38. 10.1038/s41598-018-37095-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40. Cui QB, Wang JQ, Yehuda GA, et al. Modulating ROS to overcome multidrug resistance in cancer[J]. Drug Resist Updat, 2018, 41(11): 1-25. 10.1016/j.drup.2018.11.001. [DOI] [PubMed] [Google Scholar]
  • 41. Mathur A, Hayward JA, Man SM. Molecular mechanisms of inflammasome signaling[J]. J Leukoc Biol, 2018, 103(2): 233-257. 10.1189/jlb.3MR0617-250R. [DOI] [PubMed] [Google Scholar]
  • 42. 王廷义, 左钱飞, 张意, 等. 幽门螺杆菌空泡毒素VacA促进胃上皮细胞NLRP3炎性小体激活[J]. 免疫学杂志, 2020, 36(1): 58-68. 10.13431/j.cnki.immunol.j.20200011. [DOI] [Google Scholar]; WANG Tingyi, ZOU Qianfei, ZHANG Yi, et al. H. pylori vacuolating cytotoxin A (VacA) promotes NLRP3 inflammasome activation in gastric epithelial cells[J]. Immunological Journal, 2020, 36(1): 58-68. 10.13431/j.cnki.immunol.j.20200011. [DOI] [Google Scholar]
  • 43. Kido M, Watanabe N, Aoki N, et al. Dual roles of CagA protein in Helicobacter pylori-induced chronic gastritis in mice[J]. Biochem Biophys Res Commun, 2011, 412(2): 266-272. 10.1016/j.bbrc.2011.07.081. [DOI] [PubMed] [Google Scholar]
  • 44. Chen PY, Ming SQ, Lao JF, et al. CD103 promotes the pro-inflammatory response of gastric resident CD4+ T Cell in Helicobacter pylori-positive gastritis[J]. Front Cell Infect Microbiol, 2020, 8(10): 436. 10.3389/fcimb.2020.00436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45. Hahn A, Zuryn S. Mitochondrial genome (mtDNA) mutations that generate reactive oxygen species[J]. Antioxidants, 2019, 8(9): 392. 10.3390/antiox8090392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46. Li F, Chuan X. A lucid review of Helicobacter pylori-induced DNA damage in gastric cancer[J/OL]. Helicobacter, 2019, 24(5): e12631 (2019-07-11)[2021-12-23]. https://pubmed.ncbi.nlm.nih.gov/31295756/. [DOI] [PubMed] [Google Scholar]
  • 47. An X, Zhang Y, Cao Y, et al. Punicalagin protects diabetic nephropathy by inhibiting pyroptosis based on TXNIP/NLRP3 pathway[J]. Nutrients, 2020, 12(5): 1516. 10.3390/nu12051516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48. Mittal M, Siddiqui MR, Tran K, et al. Reactive oxygen species in inflammation and tissue injury[J]. Antioxid Redox Signal, 2014, 20(7): 1126-1167. 10.1089/ars.2012.5149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49. Butcher LD, Hartog G, Ernst PB, et al. Oxidative stress resulting from Helicobacter pylori infection contributes to gastric carcinogenesis[J]. Cell Mol Gastroenter, 2017, 3(3): 316- 322. 10.1016/j.jcmgh.2017.02.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50. Zamperone A, Cohen D, Stein M, et al. Inhibition of polarity-regulating kinase PAR1b contributes to Helicobacter pylori inflicted DNA double strand breaks in gastric cells[J]. Cell Cycle, 2019, 18(3): 299-311. 10.1080/15384101.2018.1560121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51. Chuan X, Li NS, Wang H, et al. Inhibition of autophagy aggravates DNA damage response and gastric tumorigenesis via Rad51 ubiquitination in response to Hp infection[J]. Gut Microbes, 2020, 11(6): 1567-1589. 10.1080/19490976.2020.1774311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52. Ibrahim MS, Ayse ZS, Tatiana V, et al. Helicobacter pylori infection down-regulates the DNA glycosylase NEIL2, resulting in increased genome damage and inflammation in gastric epithelial cells[J]. J Biol Chem, 2020, 295(32): 11082-11098. 10.1074/jbc.RA119.009981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53. Hanada KUT, Tomohisa U, Tsukamoto Y, et al. Helicobacter pylori infection introduces DNA double-strand breaks in host cells[J]. Infect Immun, 2014, 82(10): 4182-4189. 10.1128/IAI.02368-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54. 周震, 叶冠男, 彭进, 等. Wnt3、β-catenin、MMP-7在胃癌和癌前病变中的表达及其与幽门螺杆菌感染的相关性[J]. 中南大学学报(医学版), 2021, 46(6): 575-582. 10.11817/j.issn.1672-7347.2021.200733. [DOI] [PMC free article] [PubMed] [Google Scholar]; ZHOU Zhen, YE Guannan, PENG Jin, et al. Expression of Wnt3, β-catenin and MMP-7 in gastric cancer and precancerous lesions and their correlations with Helicobacter pylori infection[J]. Journal of Central South University. Medical Science, 2021, 46(6): 575-582. 10.11817/j.issn.1672-7347.2021.200733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55. Mathew R, Karp CM, Beaudoin B, et al. Autophagy suppresses tumorigenesis through elimination of p62[J]. Cell, 2009, 137(6): 1062-1075. 10.1016/j.cell.2009.03.048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56. 沈书旭. 幽门螺杆菌通过NF-κB信号通路调控胃上皮细胞自噬及凋亡的机制研究[J]. 安徽医药, 2018, 22(6): 1058-1063. 10.3969/j.issn.1009-6469.2018.06.014. [DOI] [Google Scholar]; SHEN Shuxu. Regulation of autophagy and apoptosis of gastric epithelial cells by Helicobacter pylori through NF-κB signaling pathway[J]. Anhui Med Pharm J, 2018, 22(6): 1058-1063. 10.3969/j.issn.1009-6469.2018.06.014. [DOI] [Google Scholar]
  • 57. Takeharu S, Misa Y, Nobuhiro T, et al. Enhanced impression of the M2 isofrom of pyruvate kinase is involved in gastric cancer development by regulating cancer specific metabolism[J]. Cancer Sci, 2017, 108(5): 931-940. 10.3969/j.issn.1009-6469.2018.06.014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58. Hiroko N, Masanori H. Sequence polymorphism and intrinsic structural disorder as related to pathobiological performance of the Helicobacter pylori CagA oncoprotein[J]. Toxins, 2017, 9(4): 136-150. 10.3390/toxins9040136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59. Taciak B, Pruszynska I, Kiraga L, et al. Wnt signaling pathway in development and cancer[J]. J Physiol Pharmacol, 2018, 69(2): 185-196. 10.26402/jpp.2018.2.07. [DOI] [PubMed] [Google Scholar]
  • 60. Li D, Tian B, Jin X. miR-630 inhibits epithelial-tome-senchymal transition (EMT) by regulating the Wnt/β-catenin pathway in gastric cancer cells[J]. Oncol Res, 2018, 27(1): 9-17. 10.3727/096504018X15178732625479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61. Sigal M, Logan CY, Kapalczynska M, et al. Stromal R-spondin orchestrates gastric epithelialstem cells and gland homeostasis[J]. Nature, 2017, 548(7668): 451-455. 10.1038/nature23642. [DOI] [PubMed] [Google Scholar]
  • 62. 王燕, 王雯菁. 雷贝拉唑四联疗法治疗幽门螺杆菌阳性消化性溃疡的临床效果[J]. 临床医学研究与实践, 2021, 6(36): 49-51. 10.19347/j.cnki.2096-1413.202136015. [DOI] [Google Scholar]; WANG Yan, WANG Wenqing. Clinical effect of rabeprazole quadruple therapy on peptic ulcer with positive Helicobacter pylori [J]. Clinical Research and Practice, 2021, 6(36): 49-51. 10.19347/j.cnki.2096-1413.202136015. [DOI] [Google Scholar]
  • 63. Liou JM, Lee YC, El-Omar EM, et al. Efficacy and long-term safety of H. pylori eradication for gastric cancer prevention[J]. Cancers, 2019, 11(5): 593. 10.3390/cancers.11050593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64. Zuo ZT, Ma Y, Sun Y, et al. The protective effects of Helicobacter pylori infection on allergic asthma[J]. Int Arch Allergy Immunol, 2021, 182(1): 53-64. 10.1159/000508330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65. Shamshul A, Yoshio Y. Role of vacuolating cytotoxin A in Helicobacter pylori infection and its impact on gastric pathogenesis[J]. Expert Rev Anti-Infect Ther, 2020, 18(10): 987-996. 10.1080/14787210.2020.1782739. [DOI] [PubMed] [Google Scholar]
  • 66. Paula RJ, Marta IW, Elżbieta K, et al. Helicobacter pylori treatment in the post-antibiotics era—searching for new drug targets[J]. Appl Microbiol Biotechnol, 2020, 14(10): 10954. 10.1007/s00253-020-10945-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67. 程瑶, 黄丽珊, 闫梦茹, 等. 卵黄免疫球蛋白治疗幽门螺旋杆菌感染研究进展[J]. 海峡药学, 2019, 31(11): 5-8. CNKI:SUN:HAIX.0.2019-11-002. [Google Scholar]; CHENG Yao, HUANG Lishan, YAN Mengru, et al. Advances in research of yolk immunoglobulin in the treatment of Helicobacter pylori infection[J]. Strait Pharmaceutical Journal, 2019, 31(11): 5-8. CNKI:SUN:HAIX.0.2019-11-002. [Google Scholar]
  • 68. Tomomi K, Keiki O, Hiroyuki S, et al. Antibacterial effects of disulfiram in Helicobacter pylori [J]. Infect Drug Resist, 2021, 14(5): 1757-1764. 10.2147/IDR.S299177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69. Ji YY, Kim P, Jeong SH, et al. The effects of sulglycotide on the adhesion and the inflammation of Helicobacter Pylori [J]. Int J Environ Res Public Health, 2020, 17(8): 2918. 10.3390/ijerph17082918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70. Ji YY, Kim JB, Lee P, et al. Evodiamine inhibits Helicobacter pylori growth and Helicobacter pylori-induced inflammation[J]. Int J Mol Sci, 2021, 22(7): 3385. 10.3390/ijms22073385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71. Hyun JW, Ji YY, Lee MH, et al. Inhibitory effects of β-caryophyllene on Helicobacter pylori infection in vitro and in vivo[J]. Int J Mol Sci, 2020, 21(3): 1008. 10.3390/ijms21031008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72. Kim HW, Hyun JW, Ji YY, et al. Hesperetin inhibits expression of virulence factors and growth of Helicobacter pylori [J]. Int J Mol Sci, 2021, 22(18): 10035. 10.3390/ijms221810035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73. 刘丹, 廖顺花, 王莉新, 等. 和厚朴酚对幽门螺杆菌生长和空泡毒素A表达及活性的影响[J]. 微生物学通报, 2013, 40(9): 1657-1663. 10.13344/j.microbiol.china.2013.09.013. [DOI] [Google Scholar]; LIU Dan, LIAO Shunhua, WANG Lixin, et al. Effect of honokiol on Helicobacter pylori growth and the expression and activity of vacuolating cytotoxin A[J]. Microbiology China, 2013, 40(9): 1657-1663. 10.13344/j.microbiol.china.2013.09.013. [DOI] [Google Scholar]
  • 74. 刘丹, 廖顺花, 王莉新, 等. 氢溴酸槟榔碱对幽门螺杆菌生长和空泡毒素A表达和活性的影响[J]. 中国药理学通报, 2013, 29(8): 1163-1167. 10.3969/j.issn.1001-1978.2013.08.028. 23386175 [DOI] [Google Scholar]; LIU Dan, LIAO Shunhua, WANG Lixin, et al. Effect of arecoline hydrobromide on H. pylori growth and expression and activity of vacuolating cytotoxin A[J]. Chinese Pharmacological Bulletin, 2013, 29(8): 1163-1167. 10.3969/j.issn.1001-1978.2013.08.028. [DOI] [Google Scholar]

Articles from Journal of Central South University Medical Sciences are provided here courtesy of Central South University

RESOURCES