Skip to main content
Journal of Central South University Medical Sciences logoLink to Journal of Central South University Medical Sciences
. 2022 Jul 28;47(7):936–941. [Article in Chinese] doi: 10.11817/j.issn.1672-7347.2022.210647

MicroRNA-21通过自噬影响疾病的研究进展

Progress in the effect of microRNA-21 on diseases via autophagy

ZENG Zhengpeng 1,2,1, CAI Jinwen 2, LIAO Yumei 2, SUN Shenghua 2,, XIE Lihua 2,
Editor: 郭 征
PMCID: PMC10930284  PMID: 36039591

Abstract

Autophagy is a regulatory mechanism that packages damaged organelles, proteins, and pathogens to form vesicles and transports to lysosomes for degradation, enabling the recycle of useful components. Therefore, autophagy plays an important role in biological growth regulation and homeostasis. In the past two decades, growing evidence has shown that microRNA (miRNA) is closely related to autophagy. MiRNA-21 promotes or inhibits autophagy via regulating relevant pathways for different downstream target genes, and plays a role in tumors, ischemia-reperfusion injury, and other diseases.

Keywords: microRNA-21, autophagy, tumor, ischemia-reperfusion injury


自噬又被称为细胞的“自我消化”,是细胞质内清除长寿蛋白、衰老或受损细胞器的主要代谢通路。根据包裹物和运输方式的不同,可将细胞自噬分为大自噬、小自噬和分子伴侣介导的自噬[1]。其中,对大自噬的研究最为深入,小自噬和分子伴侣介导的自噬统称细胞自噬。哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)是自噬的上游启动靶点之一,自噬相关关键蛋白质LC3II被认为是自噬小体形成的标志物,而p62/SQSTMI被认为是自噬溶酶体降解的标志物[2-3]。细胞自噬对细胞内能量变化、氧化、炎症等应激信号敏感,促进细胞在饥饿状态下存活,对于维持内环境稳定是不可或缺的。自噬失调与多种生理病理过程有关,如肥胖、胰岛素抵抗[4]等代谢失调,细胞死亡[5],衰老[6],癌症[7]等。

自噬过程需要非常精确的调控。微RNA(microRNA,miRNA)是一类21~23个核苷酸大小的非蛋白质编码性RNA分子,与靶基因mRNA的3'端非翻译区(3'-untranslated region,3'-UTR)特异性结合,引起mRNA降解或抑制蛋白质翻译,从而确保靶蛋白处于生命体活动的最佳状态。在功能上,miRNA-21参与调控增殖、分化、凋亡等多种细胞分子事件[8]。MiRNA表达失调与慢性阻塞性肺疾病[9]、2型糖尿病[10]、阿尔茨海默病[11]和癌症[12]等多种疾病有关。MiRNA在对不同组织、细胞自噬通路的调控中扮演重要角色,因此研究两者之间的关系显得尤为重要。

1. MiRNA调节PTEN/PI3K/Akt/mTOR通路

MiRNA-21以磷酸酶和人第10号染色体缺失的磷酸酶及张力蛋白同源物(phosphates and tensin homologue deleted on chromosome ten,PTEN)mRNA的3'-UTR为靶点,抑制PTEN蛋白质的表达,同时激活Akt/mTOR信号通路,磷脂酰肌醇3激酶(phosphoinositide 3-kinase,PI3K)/Akt/mTOR信号通路是典型的自噬负调控途径之一,激活的Akt磷酸化下游的mTOR,在细胞肥大、生长、存活和蛋白质合成中起着核心作用[13]

1.1. 对乳腺癌的影响

他莫昔芬(tamoxifen,TAM)和氟维司群(fulvestrant,FUL)是雌激素受体(estrogen receptor,ER)阳性(ER+)的乳腺癌患者的主要化学治疗药物。然而,乳腺癌细胞对TAM和FUL的耐受是治疗成功的障碍。有研究[14]通过转染miR-21抑制剂敲除ER+乳腺癌细胞中miR-21的表达,再将细胞暴露于TAM或FUL,并测定凋亡和自噬的百分比。结果发现:miR-21的敲除显著增加TAM或FUL诱导的ER+乳腺癌细胞凋亡。此外,在MCF-7细胞中敲除miR-21的表达后,无论是基础水平还是TAM或FUL诱导水平上的细胞自噬均增强。重要的是,miR-21的敲除促进自噬相关细胞死亡,这是TAM诱导的miR-21抑制剂转染细胞死亡的部分原因。进一步研究发现miR-21抑制剂通过抑制PI3K/AKT/mTOR途径增加自噬相关乳腺癌细胞死亡。沉默miR-21通过促进自噬相关的细胞死亡增加ER+乳腺癌细胞对TAM或FUL的敏感性。mTOR为抑制自噬的直接上游蛋白质[15]。由此可知,miRNA-21可作用于PTEN/Akt/mTOR通路抑制自噬,从而增加乳腺癌细胞对化疗药物(TAM或FUL)的敏感性。

1.2. 对肝癌的影响

研究[16]发现:肝癌细胞对索拉非尼的耐药将影响肝癌的治疗效果。肝癌细胞中转染miRNA-21模拟剂后,可通过抑制自噬使其对索拉非尼耐药,而使用miRNA-21抑制剂可通过促进自噬来提高其对索拉非尼的敏感性。体内试验结果同样表明抑制miRNA-21可改善索拉非尼治疗耐药性肝癌的疗效。活化的Akt有助于索拉非尼耐药性的获得,miRNA-21可通过下调Akt活化水平,对PTEN产生负调节,进一步抑制自噬,从而使索拉非尼耐药性细胞对索拉非尼的敏感性降低,而诱导自噬时敏感性增加。因此,miRNA-21可通过PTEN/Akt途径抑制自噬,从而参与肝癌细胞获得对索拉非尼的耐药性。在肝癌治疗中,miRNA-21可以作为对抗索拉非尼耐药性的潜在靶目标。

1.3. 对恶性胶质瘤的影响

放射治疗(以下简称放疗)是恶性胶质瘤治疗的核心部分,往往用于减瘤手术后。然而,大多数患者会发生耐放疗反应,恶性胶质瘤耐放疗的分子机制还未完全阐明。研究[17]发现:不同恶性神经胶质瘤细胞系的耐药率与miRNA-21表达水平密切相关;在放疗后4 h,加入miRNA-21抑制剂的恶性胶质瘤细胞处于G2/M过渡期的比例显著增加;在经过2个或8个放疗周期后,与阴性对照组相比,加入miRNA-21抑制剂处理的恶性胶质瘤细胞的自噬指数均显著增加;加入PI3K磷酸化抑制剂LY294002后,自噬水平显著上升。这些结果表明,miRNA-21抑制剂可以通过抑制PI3K/Akt磷酸化造成放疗后自噬增多并导致癌细胞死亡。由此可以推断,miRNA-21可通过调节自噬增加恶性胶质瘤细胞对放疗的耐受性。另外,在Zhou等[18]的研究中,通过降低miRNA-21的表达可在PTEN的水平抑制人恶性胶质瘤的生长。

1.4. 对宫颈癌的影响

全球范围内宫颈癌的发病率在女性恶性肿瘤中居第2位,持续的HPV感染是其主要发病因素。研究[19]发现:在被HPV16转化的人宫颈癌细胞中,miRNA-21的表达与PTEN的mRNA和蛋白质表达水平呈明显负相关;且荧光素酶报告基因实验发现肿瘤抑制基因PTEN是miRNA-21的作用靶点,为miRNA-21的下游靶基因;沉默miRNA-21后宫颈癌细胞的自噬和凋亡均明显增加。MiRNA-21通过下调PTEN的表达,促进细胞增殖和宫颈癌细胞的存活,它可能是宫颈癌基因治疗的潜在靶点之一。

1.5. 对糖尿病肾病的影响

乌索酸是一种包含在中药材中的五环三萜化合物,具有抑制活性氧生成、抗血管生成、抗肿瘤、护肝和降脂等作用,也有一些毒性作用和不良反应[20-21]。Lu等[22]研究发现:将大鼠肾小球系膜细胞在5.5 mmol/L葡萄糖(正常葡萄糖浓度)、25 mmol/L葡萄糖(高糖)、高糖+LY294002、高糖+乌索酸4种不同条件下培养,与正常葡萄糖浓度条件下培养的肾小球系膜细胞相比,暴露于高糖环境的细胞miRNA-21表达增加,PTEN在mRNA和蛋白质水平的表达均减少,PI3K、磷酸化的Akt(phosphorylated Akt,p-Akt)、磷酸化的mTOR(phosphorylated mammalian target of rapamycin,p-mTOR)表达增加,自噬水平降低,I型胶原增多;使用乌索酸或LY294002后可逆转上述改变,并且抑制高糖诱导的肾小球系膜细胞肥大和增殖。该研究表明乌索酸可抑制miRNA-21的表达,进而上调PTEN的表达水平,通过PI3K/Akt/mTOR通路,缓解对自噬的抑制作用,从而减少细胞外基质的积累,改善细胞肥大和增殖,减轻高糖对肾脏的损伤。此机制可能为糖尿病肾病的治疗提供新的思路。

1.6. 对心肌缺血再灌注损伤的影响

心肌缺血再灌注损伤是一个复杂的病理生理过程,往往伴随着心肌细胞的坏死、凋亡及自噬,也会引起miRNA的异常表达。心肌细胞缺血再灌注损伤模型大鼠心肌细胞miRNA-21表达水平下降,而自噬水平上升,细胞活性下降,细胞凋亡增加[23],由此证明缺血再灌注损伤可诱发心肌细胞过度自噬,从而导致凋亡增加。为进一步证实miRNA-21通过PTEN/Akt/mTOR通路影响自噬,使用miRNA-21模拟剂干预心肌细胞缺血再灌注损伤模型大鼠,p-Akt/总Akt(total Akt,t-Akt)明显高于未加模拟剂干预组。因此,miRNA-21可能通过调控PTEN/Akt/mTOR通路,抑制缺血再灌注时心肌细胞的过度自噬和凋亡,有助于减轻心肌细胞的缺血再灌注损伤。

2. MiRNA-21通过调节PTEN/ERK通路

影响亚砷酸盐诱导的肝癌

目前已知PTEN参与自噬的信号通路包括mTOR和细胞外信号调节蛋白激酶(extracellular regulated protein kinases,ERK)1/2。I类PI3K作用于mTOR通路负调控自噬,III类PI3K作用于ERK通路正调控自噬[24-25]。在癌症中,调节细胞增殖、生存、生长和死亡的这些信号通路被激活。研究[26]发现:ERK的激活参与了亚砷酸盐(砷的一种致癌形式)诱导的细胞转化。在人正常肝细胞L-02中,亚砷酸盐可导致自噬相关蛋白及自噬囊泡增多,细胞中miRNA-21也呈现出过表达,并且miRNA-21的靶蛋白PTEN、程序性细胞死亡因子4(programmed cell death 4,PDCD4)和侧支发芽因子同源物1(sprouty homolog 1,SPRY1)的表达水平下降;但是,在使用miRNA-21抑制剂后,PTEN的表达明显增加,ERK表达明显减少,同时亚砷酸盐诱导的自噬增加。

3. MiRNA-21通过调节Rab11a影响肾缺血再灌注损伤

Rab蛋白是RAS GTP酶的一个超家族,是膜运输和融合的主要调控因子。目前已有大量研究[27-29]集中于Rab蛋白对自噬的调控上。例如,Rab1、Rab11、Rab32和Rab33参与自噬小体组装位点(phagophore assembly site,PAS)的形成。Rab4、Rab7、Rab8、Rab32和Rab33参与自噬小体的形成和成熟[28]。Rab11a是一种小分子GTP酶,主要参与调节细胞内吞再循环过程,还与细胞自噬、胞外分泌、信号转导等生命活动相关。在自噬过程中,自噬小体的形成需要Rab11,Rab11参与自噬小体形成过程中囊泡从循环核内体(recycling endosome,REs)到自噬小体的运输过程[30-31]。Rab11a是Rab11亚家族的成员,被证实在自噬中发挥作用[32]

在体外试验[33]中,用miR-21模拟物转染大鼠肾小管导管上皮细胞NRK-52E并进行缺血再灌注处理。结果表明:miR-21模拟物抑制NRK-52E细胞活力并诱导细胞凋亡。miR-21模拟物从蛋白质水平抑制Rab11a,但不抑制mRNA水平。荧光素酶活性测定表明miR-21直接靶向Rab11a 3'-UTR。过表达Rab11a可减弱miR-21模拟物对细胞活力和细胞凋亡的影响。在大鼠肾缺血再灌注模型中,miR-21水平升高。注射miR-21抑制剂可减轻肾损伤,增加自噬相关蛋白质的表达。在肾缺血再灌注时,miR-21通过靶向Rab11a抑制自噬,表明Rab11a可能是治疗肾缺血再灌注损伤的一个新靶点。

4. MiRNA-21通过调节SH3结构域蛋白2 影响脓毒性心肌病

SH3结构域蛋白2(sorbin and SH3 domain containing 2,SORBS2)是一种适配器蛋白,在细胞骨架组织、细胞黏附和信号通路中发挥作用。SORBS2存在于人类心脏组织中,且在心脏发生病理改变时表达受到抑制[34]。SORBS2定位于成熟肌原纤维的z带,调控心肌细胞肌原纤维的组装或z带水平的信号转导调控。SORBS2可与酪氨酸激酶和细胞骨架分子等众多结合因子相互作用[35]。在心肌细胞的蛋白质组学分析中,发现miRNA-21调控心肌细胞中SORBS2的表达,并进一步证明SORBS2是miRNA-21诱导心肌成纤维细胞肥厚表型的主要中介,因此SORBS2是miRNA-21的主要直接靶点[36]。研究[37]发现:给予小鼠脂多糖,诱导其出现脓毒症相关心脏功能障碍时,小鼠心脏组织中miRNA-21的表达明显增加;此外,miRNA-21抑制剂可以增加脂多糖处理小鼠的射血分数和心脏收缩力,并且使线粒体超微结构免受损伤,避免发生过度自噬,而使用miRNA-21模拟剂则上述情况出现相反的变化;同时,在小鼠的心脏中SORBS2表达水平与miRNA-21呈负相关。这些发现均提示SORBS2是miRNA-21的靶基因。

5. MiRNA-21通过调节氨基末端激酶影响 恶性胶质瘤

目前的治疗手段对恶性胶质瘤的效果较差,主要是由于其对细胞死亡的固有抵抗性。TAM可在体外抑制ER+细胞的生长,诱导细胞死亡。研究TAM诱导人胶质瘤细胞死亡的分子机制将有助于识别靶向诱导肿瘤细胞特异性死亡的通路。TAM可下调抗自噬蛋白Bcl-2的表达,上调促自噬蛋白Bcl-xS和Bak的表达,且伴随氧化应激诱导的氨基末端激酶(c-Jun N-terminal kinase,JNK)活化。MiRNA-21被广泛认为在恶性胶质瘤中高表达,使用miRNA-21抑制剂诱导JNK激活,促进TAM诱导的人恶性胶质瘤细胞自噬死亡[37]。JNK可能成为miRNA-21治疗恶性脑胶质瘤的另一有效靶点。

6. 结 语

自噬可以通过miRNAs的表达来调节,一些miRNAs已被确定为参与自噬不同阶段的抑制因子,而部分miRNAs可以诱导自噬的产生[14, 38]。MiRNA-21在包括肺癌在内的所有人类恶性肿瘤中的表达上调[39],它参与肿瘤的发生、进展和转移等过程,其表达与恶性肿瘤的临床病理特征和预后相关[40]。抑制miRNA-21可诱导细胞周期阻滞,并增加对抗肿瘤药物的化学敏感性[41]。MiRNA-21也在自噬中发挥作用,沉默miRNA-21可使自噬细胞死亡增多。重要的是,miRNA-21过表达可以通过I类PI3K和mTOR通路(如PTEN/Akt/mTOR信号通路)抑制自噬,而当激活III类PI3K和ERK通路时可以激活Beclin-1活性,从而促进自噬囊泡形成[24-25]

放疗、化学治疗是恶性肿瘤的主要治疗手段,但对放疗抵抗或对化学治疗耐药,会影响这些治疗手段在临床应用中的效果。如何提高恶性肿瘤细胞对放疗、化学治疗的敏感性已成为研究热点。MiRNA-21可增加恶性肿瘤细胞的抗辐射性,miRNA-21抑制剂可有效逆转这种抗辐射性[17] PTEN为miRNA-21的靶基因之一,当miRNA-21作用于PTEN后,PI3K/AKT/mTOR通路活性增加,进一步抑制自噬,从而增加肿瘤细胞的耐药性,并且使肿瘤的增殖及侵袭性增加[19]。Rab11a 3'-UTR含有miRNA-21的结合位点,Rab11a是miRNA-21的靶基因之一。在心、肾的缺血再灌注损伤模型中,miRNA-21可能通过负调控Rab11a后抑制自噬,加重组织的损伤,而使用miRNA-21抑制剂或者过表达Rab11a可减轻组织损伤的程度[32]。此外,在小鼠慢性阻塞性肺疾病模型中,miRNA-21和自噬相关蛋白的表达水平均增高[9];而白血病患者及人口腔伤口中miRNA-21的表达与自噬呈负相关[42-43],但miRNA-21的具体下游作用靶点及机制有待进一步研究阐明。

总之,miRNA-21通过调控不同下游靶基因激活相关通路,进而促进或抑制自噬,在肿瘤、缺血再灌注损伤等疾病中发挥作用。相信随着研究的深入,人们对于miRNA-21与自噬对肿瘤耐药性以及缺血再灌注损伤等影响的研究会有更多的突破,并进一步对这些疾病的治疗提供新的思路。

基金资助

国家自然科学基金(82070048)。

This work was supported by the National Natural Science Foundation of China (82070048).

利益冲突声明

作者声称无任何利益冲突。

作者贡献

曾征鹏 论文的构思、撰写和修改;蔡金文、廖毓梅 对文章的文字表达及知识性内容作批评性审阅;孙圣华、谢丽华 论文修改。所有作者阅读并同意最终的文本。

原文网址

http://xbyxb.csu.edu.cn/xbwk/fileup/PDF/202207936.pdf

参考文献

  • 1. Gonzalez CD, Lee MS, Marchetti P, et al. The emerging role of autophagy in the pathophysiology of diabetes mellitus[J]. Autophagy, 2011, 7(1): 2-11. 10.3390/life11020165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2. Ravikumar B, Sarkar S, Davies JE, et al. Regulation of mammalian autophagy in physiology and pathophysiology[J]. Physiol Rev, 2010, 90(4): 1383-1435. 10.3390/molecules27041210. [DOI] [PubMed] [Google Scholar]
  • 3. Bjorkoy G, Lamark T, Brech A, et al. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death[J]. J Cell Biol, 2005, 171(4): 603-614. 10.1083/jcb.200507002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4. Quan W, Hur KY, Lim Y, et al. Autophagy deficiency in beta cells leads to compromised unfolded protein response and progression from obesity to diabetes in mice[J]. Diabetologia, 2012, 55(2): 392-403. 10.1007/s00125-011-2350-y. [DOI] [PubMed] [Google Scholar]
  • 5. Sauler M, Bazan IS, Lee PJ. Cell death in the lung: the apoptosis-necroptosis axis[J]. Annu Rev Physiol, 2019, 81: 375-402. 10.1146/annurev-physiol-020518-114320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6. Salminen A, Kaarniranta K, Kauppinen A. Beclin 1 interactome controls the crosstalk between apoptosis, autophagy and inflammasome activation: impact on the aging process[J]. Ageing Res Rev, 2013, 12(2): 520-534. 10.1016/j.arr.2012.11.004. [DOI] [PubMed] [Google Scholar]
  • 7. Cristofani R, Montagnani M, Cicardi ME, et al. Dual role of autophagy on docetaxel-sensitivity in prostate cancer cells. [J]. Cell Death Dis, 2018, 9(9): 889. 10.1038/s41419-018-0866-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8. 侯丽娟, 汤华. 细胞周期中MicroRNA的调控作用[J]. 中国生物化学与分子生物学报, 2008, 24(5): 403-407. 10.13865/j.cnki.cjbmb. [DOI] [Google Scholar]; HOU Lijuan, TANG Hua. Regulatory role of microRNA in the cell cycle[J]. Journal of China Biochemistry and Molecular Biology, 2008, 24(5): 403-407. 10.13865/j.cnki.cjbmb. [DOI] [Google Scholar]
  • 9. Zeng Z, He S, Lu J, et al. MicroRNA-21 aggravates chronic obstructive pulmonary disease by promoting autophagy[J]. Exp Lung Res, 2018, 44(2): 89-97. 10.1080/01902148.2018.1439548. [DOI] [PubMed] [Google Scholar]
  • 10. Roggli E, Gattesco S, Caille D, et al. Changes in microRNA expression contribute to pancreatic beta-cell dysfunction in prediabetic NOD mice[J]. Diabetes, 2012, 61(7): 1742-1751. 10.2337/db11-1086. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11. Lee ST, Chu K, Jung KH, et al. MiR-206 regulates brain-derived neurotrophic factor in Alzheimer disease model[J]. Ann Neurol, 2012, 72(2): 269-277. 10.1002/ana.23588. [DOI] [PubMed] [Google Scholar]
  • 12. Patnaik SK, Dahlgaard J, Mazin W, et al. Expression of microRNAs in the NCI-60 cancer cell-lines[J/OL]. PLoS One, 2012, 7(11): e49918 [2021-10-13] 10.1371/journal.pone.0049918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13. Garcia Z, Kumar A, Marques M, et al. Phosphoinositide 3-kinase controls early and late events in mammalian cell division[J]. EMBO J, 2006, 25(4): 655-661. 10.1038/sj.emboj.7600967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14. Yu X, Li R, Shi W, et al. Silencing of microRNA-21 confers the sensitivity to tamoxifen and fulvestrant by enhancing autophagic cell death through inhibition of the PI3K-AKT-mTOR pathway in breast cancer cells[J]. Biomed Pharmacother, 2016, 77: 37-44. 10.1016/j.biopha.2015.11.005. [DOI] [PubMed] [Google Scholar]
  • 15. Nakahira K, Cloonan SM, Mizumura K, et al. Autophagy: a crucial moderator of redox balance, inflammation, and apoptosis in lung disease[J]. Antioxid Redox Signal, 2014, 20(3): 474-494. 10.1089/ars.2013.5373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16. He C, Dong X, Zhai B, et al. MiR-21 mediates sorafenib resistance of hepatocellular carcinoma cells by inhibiting autophagy via the PTEN/Akt pathway[J]. Oncotarget, 2015, 6(30): 28867-28881. 10.18632/oncotarget.4814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17. Gwak HS, Kim TH, Jo GH, et al. Silencing of microRNA-21 confers radio-sensitivity through inhibition of the PI3K/AKT pathway and enhancing autophagy in malignant glioma cell lines[J/OL]. PLoS One, 2012, 7(10): e47449 [2021-10-13]. 10.1371/journal.pone.0047449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18. Zhou X, Ren Y, Moore L, et al. Downregulation of miR-21 inhibits EGFR pathway and suppresses the growth of human glioblastoma cells independent of PTEN status[J]. Lab Invest, 2010, 90(2): 144-155. 10.1038/labinvest.2009.126. [DOI] [PubMed] [Google Scholar]
  • 19. Peralta-Zaragoza O, Deas J, Meneses-Acosta A, et al. Relevance of miR-21 in regulation of tumor suppressor gene PTEN in human cervical cancer cells[J]. BMC Cancer, 2016, 16: 215. 10.1186/s12885-016-2231-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20. Jayaprakasam B, Olson LK, Schutzki RE, et al. Amelioration of obesity and glucose intolerance in high-fat-fed C57BL/6 mice by anthocyanins and ursolic acid in Cornelian cherry (Cornus mas)[J]. J Agric Food Chem, 2006, 54(1): 243-248. 10.1021/jf0520342. [DOI] [PubMed] [Google Scholar]
  • 21. Liobikas J, Majiene D, Trumbeckaite S, et al. Uncoupling and antioxidant effects of ursolic acid in isolated rat heart mitochondria[J]. J Nat Prod, 2011, 74(7): 1640-1644. 10.1021/np200060p. [DOI] [PubMed] [Google Scholar]
  • 22. Lu X, Fan Q, Xu L, et al. Ursolic acid attenuates diabetic mesangial cell injury through the up-regulation of autophagy via miRNA-21/PTEN/Akt/mTOR suppression[J/OL]. PLoS One, 2015, 10(2): e117400 [2021-10-13]. 10.1371/journal.pone.0117400. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23. Huang Z, Wu S, Kong F, et al. MicroRNA-21 protects against cardiac hypoxia/reoxygenation injury by inhibiting excessive autophagy in H9c2 cells via the Akt/mTOR pathway[J]. J Cell Mol Med, 2017, 21(3): 467-474. 10.1111/jcmm.12990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24. Armour SM, Baur JA, Hsieh SN, et al. Inhibition of mammalian S6 kinase by resveratrol suppresses autophagy[J]. Aging (Albany NY), 2009, 1(6): 515-528. 10.18632/aging.100056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25. Huang YC, Yu HS, Chai CY. Roles of oxidative stress and the ERK1/2, PTEN and p70S6K signaling pathways in arsenite-induced autophagy[J]. Toxicol Lett, 2015, 239(3): 172-181. 10.1016/j.toxlet.2015.09.022. [DOI] [PubMed] [Google Scholar]
  • 26. Liu X, Luo F, Ling M, et al. MicroRNA-21 activation of ERK signaling via PTEN is involved in arsenite-induced autophagy in human hepatic L-02 cells[J]. Toxicol Lett, 2016, 252: 1-10. 10.1016/j.toxlet.2016.04.015. [DOI] [PubMed] [Google Scholar]
  • 27. Dey N, Ghosh-Choudhury N, Kasinath BS, et al. TGF beta-stimulated microRNA-21 utilizes PTEN to orchestrate AKT/mTORC1 signaling for mesangial cell hypertrophy and matrix expansion[J/OL]. PLoS One, 2012, 7(8): e42316 [2021-10-13]. 10.1371/journal.pone.0042316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28. Szatmari Z, Sass M. The autophagic roles of Rab small GTPases and their upstream regulators: a review[J]. Autophagy, 2014, 10(7): 1154-1166. 10.4161/auto.29395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29. Chua CE, Gan BQ, Tang BL. Involvement of members of the Rab family and related small GTPases in autophagosome formation and maturation[J]. Cell Mol Life Sci, 2011, 68(20): 3349-3358. 10.1007/s00018-011-0748-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30. Fader CM, Sanchez D, Furlan M, et al. Induction of autophagy promotes fusion of multivesicular bodies with autophagic vacuoles in k562 cells[J]. Traffic, 2008, 9(2): 230-250. 10.1111/j.1600-0854.2007.00677.x. [DOI] [PubMed] [Google Scholar]
  • 31. Longatti A, Lamb CA, Razi M, et al. TBC1D14 regulates autophagosome formation via Rab11- and ULK1-positive recycling endosomes[J]. J Cell Biol, 2012, 197(5): 659-675. 10.1083/jcb.201111079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32. Kelly EE, Horgan CP, Mccaffrey MW. Rab11 proteins in health and disease[J]. Biochem Soc Trans, 2012, 40(6): 1360-1367. 10.1042/BST20120157. [DOI] [PubMed] [Google Scholar]
  • 33. Liu X, Hong Q, Wang Z, et al. MiR-21 inhibits autophagy by targeting Rab11a in renal ischemia/reperfusion[J]. Exp Cell Res, 2015, 338(1): 64-69. 10.1016/j.yexcr.2015.08.010. [DOI] [PubMed] [Google Scholar]
  • 34. Kakimoto Y, Ito S, Abiru H, et al. Sorbin and SH3 domain-containing protein 2 is released from infarcted heart in the very early phase: proteomic analysis of cardiac tissues from patients[J/OL]. J Am Heart Assoc, 2013, 2(6): e565 [2021-10-13]. 10.1161/JAHA.113.000565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35. Kioka N, Ueda K, VinexinAmachi T., CAP/ponsin, ArgBP . 2. : a novel adaptor protein family regulating cytoskeletal organization and signal transduction[J]. Cell Struct Funct, 2002, 27(1): 1-7. 10.1247/csf.27.1. [DOI] [PubMed] [Google Scholar]
  • 36. Bang C, Batkai S, Dangwal S, et al. Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy[J]. J Clin Invest, 2014, 124(5): 2136-2146. 10.1172/JCI70577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37. Wang H, Bei Y, Shen S, et al. miR-21-3p controls sepsis-associated cardiac dysfunction via regulating SORBS2[J]. J Mol Cell Cardiol, 2016, 94: 43-53. 10.1016/j.yjmcc.2016.03.014. [DOI] [PubMed] [Google Scholar]
  • 38. Zheng B, Zhu H, Gu D, et al. MiRNA-30a-mediated autophagy inhibition sensitizes renal cell carcinoma cells to sorafenib[J]. Biochem Biophys Res Commun, 2015, 459(2): 234-239. 10.1016/j.bbrc.2015.02.084. [DOI] [PubMed] [Google Scholar]
  • 39. Yang X, Guo Y, Du Y, et al. Serum microRNA-21 as a diagnostic marker for lung carcinoma: a systematic review and meta-analysis[J/OL]. PLoS One, 2014, 9(5): e97460 [2021-10-13]. 10.1371/journal.pone.0097460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40. Markou A, Tsaroucha EG, Kaklamanis L, et al. Prognostic value of mature microRNA-21 and microRNA-205 overexpression in non-small cell lung cancer by quantitative real-time RT-PCR[J]. Clin Chem, 2008, 54(10): 1696-1704. 10.1373/clinchem.2007.101741. [DOI] [PubMed] [Google Scholar]
  • 41. Papagiannakopoulos T, Shapiro A, Kosik KS. MicroRNA-21 targets a network of key tumor-suppressive pathways in glioblastoma cells[J]. Cancer Res, 2008, 68(19): 8164-8172. 10.1158/0008-5472.CAN-08-1305. [DOI] [PubMed] [Google Scholar]
  • 42. Ma R, Li X, Tewari N, et al. MicroRNA-21 ameliorates the impairment of autophagy in palatal wound healing[J]. J Physiol Pharmacol, 2020, 71(6): 911-918. 10.26402/jpp.2020.6.14. [DOI] [PubMed] [Google Scholar]
  • 43. Seca H, Lima RT, Lopes-Rodrigues V, et al. Targeting miR-21 induces autophagy and chemosensitivity of leukemia cells[J]. Curr Drug Targets, 2013, 14(10): 1135-1143. 10.2174/13894501113149990185. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Central South University Medical Sciences are provided here courtesy of Central South University

RESOURCES