Skip to main content
Journal of Central South University Medical Sciences logoLink to Journal of Central South University Medical Sciences
. 2022 Jul 28;47(7):839–846. [Article in Chinese] doi: 10.11817/j.issn.1672-7347.2022.210657

加巴喷丁对慢性疼痛和抑郁共病成年大鼠海马齿状回神经发生的影响

Effect of gabapentin on neurogenesis in hippocampal dentate gyrus of adult rats with co-disease of chronic pain and depression

ZENG Wenfei 1,2, TAN Yanmeng 2, YANG Lin 2, JIANG Xinghua 2,
Editor: 郭 征
PMCID: PMC10930290  PMID: 36039579

Abstract

Objective

Chronic pain lasts for more than 3 months and is often associated with negative emotions such as depression and anxiety. Long-term chronic pain stress can lead to plastic changes in hippocampal structure and function. In addition to its analgesic effect, gabapentin also has certain cerebral protective effects. This study aims to observe the effect of gabapentin on neurogenesis in hippocampal dentate gyrus (DG) of the adult rats with co-disease of chronic pain and depression.

Methods

The adult rats were randomly divided into 4 groups: A sham operation (Sham) group, a comorbidity model+normal saline (CCI+Veh) group (1 mL saline), a comorbidity model+low-dose gabapentin (CCI+LG) group (diluting gabapentin with normal saline to 1 mL at the dose of 30 mg/kg), and a comorbidity model+high-dose gabapentin (CCI+HG) group (diluting gabapentin with normal saline to 1 mL at the dose of 100 mg/kg) (8 rats per group). The comorbidity model was established by sciatic nerve encirclement. On the 30th day after operation, normal saline, low-dose gabapentin, and high-dose gabapentin were given intraperitoneally, respetively, for 7 consecutive days. The paw withdrawal mechanical threshold (PWMT) of the right hindlimb was measured before the operation and on the 7th, 14th, 21th, 28th, and 40th day after the operation. The time of immobility and sugar water preference rate were measured by forced swimming test and sugar water preference test, respectively, on the 28th and 40th day after the operation. The number of doublecortin (DCX) positive neurons and the expression of brain-derived neurotrophic factor (BDNF) in hippocampal dentate gyrus were observed by immunohistochemical staining, and the morphological changes of the hippocampal neurons were observed by Golgi staining.

Results

Compared with the Sham group, the PWMT of the CCI comorbidity model rats reached the lowest level on the 7th day after the operation and lasted until the 28th day after the operation, and remained at a low level on the 40th day after the operation (all P<0.05). Compared with the CCI+Veh group, the PWMT in the CCI+LG group and the CCI+HG group was increased on the 40th day after the operation (all P<0.05). Compared with the Sham group, the time of immobility in the CCI comorbidity model rats was increased significantly (all P<0.01) and the sugar water preference rate was decreased significantly (all P<0.01) on the 28th day after the operation. Compared with the CCI+Veh group, the time of immobility in the CCI+HG group was shortened (P<0.05) and the sugar water preference rate was significantly increased (P<0.01) on the 40th day after the operation. Compared with the CCI+Veh group, the number of DCX positive cells in hippocampal DG of the CCI+LG group and the CCI+HG group was increased, and that in the CCI+HG group was increased more significantly (P<0.05). Compared with the Sham group, the expression of BDNF in hippocampal DG was decreased in the CCI+Veh group (P<0.05). Compared with the CCI+Veh group, the expression of BDNF in hippocampal DG and the length of dendritic spines of the hippocampal neurons were increased in the CCI+HG group (all P<0.05).

Conclusion

Gabapentin can relieve chronic pain and depression-like behavior in rats with chronic pain and depression, and promote neurogenesis of hippocampal dentate gyrus neurons.

Keywords: neuropathic pain, depression, gabapentin, brain-derived neurotrophic factor, doublecortin, neurogenesis


长期的慢性疼痛应激可以导致海马结构和功能上的可塑性改变,出现抑郁、焦虑等负性情绪。研究[1]表明:在慢性疼痛状态下,成年大鼠海马齿状回(dentate gyrus,DG)的神经功能发生紊乱是这种可塑性改变的重要体现。双皮质素(doublecortin,DCX)是一种与微管稳定相关的蛋白质,在海马DG神经元前体细胞的迁移、核易位、轴突和树突的成熟等中起非常重要的作用[2],可作为海马神经发生水平的标志物。抑郁症模型大鼠海马及前额皮层中的脑源性神经营养因子(brain-derived neurotropinc factor,BDNF)表达水平显著降低,且BDNF表达的降低与海马神经发生及树突棘生长的受抑制程度具有明显的相关性[3]。目前仍然缺乏对于慢性疼痛和抑郁共病状态时,海马DG的BDNF表达情况的研究。

加巴喷丁作为一种γ-氨基丁酸(γ-aminobutyric acid,GABA)类似物,可以有效地控制神经病理性疼痛。有研究[4]表明:加巴喷丁可以促进海马DG的神经发生,保护新生神经元细胞,可能具有改善抑郁情绪的作用。本研究建立慢性疼痛和抑郁共病大鼠模型,探讨不同剂量加巴喷丁对慢性疼痛和抑郁共病成年大鼠海马DG神经发生的影响及其可能的机制。

1. 材料与方法

1.1. 材料

健康成年Sprague-Dawley(SD)雄性大鼠32只,质量150~180 g,由湖南斯莱克景达实验动物有限公司提供;动物饲养室温度保持在24 ℃左右,相对湿度55%,通风良好;动物按照自然昼夜节律采光,自由摄食和饮水。

加巴喷丁购自美国Pzifer公司,生物素化羊抗兔IgG、免疫组织化学检测试剂盒购自美国Vector公司,3,3’-二氨基联苯胺(3,3’-diaminobenzidine,DAB)显色剂购自美国Sigma公司产品,Triton X-100、多克隆兔抗BDNF一抗和二抗、多克隆兔抗DCX一抗和二抗购自美国Cell Signaling Technology公司,快速高尔基染色试剂盒购自美国FD NeuroTechnologies公司,冰冻切片机(CM1900)购自德国Leica公司。

1.2. 模型制备和动物分组

参考文献[5]方法通过环扎大鼠坐骨神经造成慢性压迫性损伤(chronic constrictive injury,CCI),建立慢性疼痛和抑郁共病模型。采用腹腔注射苯巴比妥(30 mg/kg)麻醉大鼠后,与大鼠右股骨平行做0.5 cm切口,分离肌肉,暴露坐骨神经,用5-0丝线结扎坐骨神经,缝合皮肤与肌肉。

将大鼠随机分为假手术(Sham)组、共病模型+生理盐水(CCI+Veh)组(1 mL生理盐水)、共病模型+低剂量加巴喷丁(CCI+LG)组(将加巴喷丁用生理盐水稀释至1 mL,加巴喷丁剂量为30 mg/kg)、共病模型+高剂量加巴喷丁(CCI+HG)组(将加巴喷丁用生理盐水稀释至1 mL,加巴喷丁剂量为100 mg/kg),每组8只。于手术后第30天开始每日上午8时经腹腔注射给药,连续7 d。Sham组暴露坐骨神经后不进行结扎,其余步骤相同。

1.3. 疼痛行为学测定

根据Chaplan等[6]描述的von-Frey纤维法,分别于手术前1天和术后第7、14、21、28、40天的固定时间点(上午10至12时)测定各组大鼠右后肢的机械缩足反射阈值(paw withdrawal mechanical threshold,PWMT)。操作如下:将大鼠置于金属笼内避光,并保持其安静30 min,从2 g开始,依次使用不同力度的纤维刺激大鼠右后肢第3与4足趾之间的区域,如10 s内出现缩足、舔脚等则记为阳性。使用翻转法对所得的PWMT进行校正。

1.4. 抑郁模型的评价

分别于术后第28、40天,采用强迫游泳实验和糖水偏爱实验评价各组大鼠抑郁行为学的变化。

强迫游泳实验:参照Porsolt等[7]的方法,采用大鼠在水中被动漂浮时间评价大鼠的行为绝望水平。实验第1天为适应性训练,将大鼠放入强迫游泳桶(桶高50 cm,直径35 cm,桶内水深30 cm,水温25 ℃)中,强迫其游泳15 min后捞出,烘干后放回笼内。在第2天的同一时间,将大鼠再次放入同一强迫游泳桶中,摄像并记录大鼠在6 min内静止不动(大鼠在水中仅有尾巴和前爪的轻微运动)的时间,即被动漂浮时间。

糖水偏爱实验:参照Sun等[8]的方法,采用糖水偏爱率评价大鼠的快感缺失水平。单笼饲养大鼠,每笼放置2个装有1%蔗糖水的饮水瓶进行24 h的适应训练,期间禁食。适应训练完成后,禁水、禁食23 h,之后1 h给予大鼠1瓶1%的蔗糖水和1瓶自来水,记录1 h内蔗糖水消耗量、自来水消耗量,计算糖水偏爱率[糖水偏爱率=蔗糖水消耗量/(蔗糖水消耗量+自来水消耗量)×100%]。

1.5. ABC法免疫组织化学染色

完成动物疼痛行为学测试后,麻醉大鼠,用含4%多聚甲醛的PBS灌注液(0.01 mol/L,pH 7.4)行心脏灌注,断头取脑。随机取一侧大脑半球,从中间分离直至胼质体下缘,可看到侧脑室内呈弯曲白色隆起的海马结构,将其置于上述PBS灌注液中于室温下固定48 h;在4 ℃下,将脑组织置于含30%蔗糖的PBS(0.01 mol/L,pH 7.4)中,使其沉底。对沉底脑组织标本行连续冠状恒冷冰冻切片(厚40 μm),每隔5张切片收集1张置于PBS中,于4 ℃下保存。冠状切片可见一组神经元组成的半环状条带,后半部分内侧为海马齿状回区域。

取在4 ℃下保存的脑组织切片,按照亲和素-生物素-过氧化物酶复合物法(avidin-biotin-peroxidase complex method,ABC法)的步骤进行处理。将切片置于3%H2O2中,在室温下孵育约15 min以灭活内源性过氧化物酶,用PBS洗片。用含5% BSA、0.3% Triton X-100(1꞉1)的封闭液封闭非特异性抗原位点,2 h后直接将切片从封闭液中转移到多克隆兔抗BDNF一抗液(1꞉1 500)、多克隆兔抗DCX一抗液(1꞉500)中,在4 ℃冰箱中孵育过夜。洗片,加入生物素化羊抗兔IgG(1꞉200),于室温下孵育2 h,用PBS洗片,加入生物素-卵白素-辣根过氧化物酶复合物,于室温下孵育2 h,洗片;用含3% H2O2的0.05% DAB显色剂,在室温下避光显色3 min,用PBS终止反应后,进行裱片、自然晾干、脱水、透明、封片处理。

1.6. 高尔基染色

采用高尔基染色观察大鼠海马神经元结构,通过Sholl analysis方法测量DCX阳性神经元(一种海马DG神经元,可反映海马DG神经发生水平)的树突棘长度和树突棘密度。完成动物疼痛行为学测试后,麻醉大鼠,迅速打开颅腔取出大脑,用蒸馏水冲洗大脑表面的血迹,取海马齿状回并将其放入装有快速高尔基染色试剂盒A液和B液(提前24 h配制)的塑料瓶内,在室温下浸泡1周(第2天更换1次A液和B液);1周后将脑组织从A液和B液中转移至装有C液的塑料瓶内,浸泡3~7 d(第2天更换1次C液);用冰冻切片机行冠状切片(厚度150 μm),切片时温度为 -23 ℃,所有切片贴于明胶硫酸铬钾制作的防脱玻片上,自然风干过夜;用蒸馏水漂洗2次,每次4 min,用D液、E液、蒸馏水混和液(1꞉1꞉2)浸泡切片10 min,蒸馏水漂洗2次,每次4 min;用50%、75%、95%乙醇梯度脱水,每次4 min,无水乙醇脱水4次,每次4 min,二甲苯透明3次,每次4 min,用中性树胶封片。

1.7. 统计学处理

采用SPSS 16.0统计学软件分析数据,数据采用均数±标准差( x¯ ±s)表示,多组间差异采用单因素方差分析(one-way ANOVA),两两比较采用Sidak多重比较法,P<0.05为差异有统计学意义。

2. 结 果

2.1. 疼痛行为学比较

术前4组大鼠PWMT差异无统计学意义(P>0.05)。CCI+Veh组、CCI+LG组、CCI+HG组大鼠术后出现抬足、舔足等自发性疼痛行为学表现,右侧(损伤侧)后足出现爪内收、外翻、跛行、悬空、不着地等,Sham组大鼠未出现上述情况。与Sham组大鼠比较,CCI+Veh组、CCI+LG组、CCI+HG组大鼠PWMT第7天达到最低值并持续至术后第28天,第40天仍处于较低水平,差异均有统计学意义(均P<0.05)。第40天时,与CCI+Veh组相比,CCI+LG组、CCI+HG组大鼠PWMT均有提高,差异均有统计学意义(均P<0.05,图1)。

图1.

图1

各组大鼠不同时间点机械缩足反射阈值的变化(n=8 x¯ ±s)

Figure 1 Changes of paw withdrawal mechanical threshold (PWMT) in rats of each group at each time point (n=8, x¯ ±s)

*P<0.05 vs the Sham group; †P<0.05 vs the CCI+LG group or the CCI+HG group.

2.2. 抑郁行为学比较

术后第28天时,CCI+Veh组、CCI+LG组、CCI+HG组大鼠的被动漂浮时间显著长于Sham组(P<0.01);术后第40天时,与CCI+Veh组相比,CCI+HG组大鼠的被动漂浮时间缩短(P<0.05),CCI+HG组和CCI+LG组大鼠的被动漂浮时间差异无统计学意义 (P>0.05,图2)。

图2.

图2

各组大鼠加巴喷丁干预前后被动漂浮时间(A)和糖水偏爱率(B)的比较(n=8 x¯ ±s)

Figure 2 Comparison of immobility time (A) and sugar water preference rate (B) of rats in each group before and after gabapentin intervention (n=8, x¯ ±s)

**P<0.01 vs the Sham group; †P<0.05, ††P<0.01 vs the CCI+Veh group.

术后第28天时,CCI+Veh组、CCI+LG组、CCI+HG组大鼠的糖水偏爱率显著低于Sham组(P<0.01);术后第40天时,与CCI+Veh组相比,CCI+HG组大鼠的糖水偏爱率明显增加(P<0.01),CCI+HG组和CCI+LG组大鼠的糖水偏爱率差异无统计学意义(P>0.05,图2)。

2.3. 加巴喷丁显著增加大鼠海马DGDCX阳性细胞数目

免疫组织化学染色结果显示:与CCI+Veh组相比,CCI+LG组和CCI+HG组大鼠的海马DG的DCX表达呈上调趋势,且CCI+HG组大鼠的海马DG的DCX阳性细胞数目增加更加明显,差异具有统计学意义(P<0.05,图3)。

图3.

图3

各组大鼠海马齿状回双皮质素(DCX)的表达

Figure 3 Expression of doublecortin (DCX) in hippocampal dentate gyrus of rats in each group

A: Expression of DCX showed by immunohistochemistry; B: Quantitative analysis of the number of DCX-positive cells. *P<0.05 vs CCI+Veh.

2.4. 加巴喷丁对海马齿状回BDNF的影响

与Sham组相比,CCI+Veh组大鼠的海马DG的BDNF表达下降,差异有统计学意义(P<0.05);与CCI+Veh组相比,CCI+LG组和CCI+HG组大鼠的海马DG的BDNF表达呈上调趋势,且CCI+HG组表达上调更明显,差异具有统计学意义(P<0.05,图4)。

图4.

图4

各组大鼠海马齿状回脑源性神经营养因子(BDNF)的表达

Figure 4 Expression of brain-derived neurotrophic factor (BDNF) in hippocampal dentate gyrus of rats in each group

A: Expression of BDNF showed by immunohistochemistry; B: Quantitative analysis of expression level of BDNF. *P<0.05 vs the Sham; †P<0.05 vs the CCI+Veh group.

2.5. 加巴喷丁对海马树突结构变化的影响

与CCI+Veh组相比,CCI+HG组DCX阳性神经元在50、60、70 µm处树突棘的长度增加(P<0.05);与CCI+Veh组相比,CCI+LG组和CCI+HG组树突棘密度的差异无统计学意义(P>0.05,图5)。

图5.

图5

各组大鼠DCX阳性神经元树突棘长度和树突棘密度

Figure 5 Dendrite spinous length and dendrite spinous density of DCX positive neurons in each group

A: Golgi staining picture under the microscope; B: Pattern drawn under the microscope; C: Dendrite spinous length of DCX positive neurons in hippocampal dentate gyrus of rats in each group analyzed by Image J; D: Dendrite spinous density of DCX positive neurons in hippocampal dentate gyrus of rats in each group analyzed by Image J. *P<0.05 vs the CCI+Veh group.

3. 讨 论

成年海马的神经再生水平与学习记忆及情绪状态密切相关[9]。脑功能成像及尸检结果[10]表明:慢性疼痛患者大脑海马、杏仁核、大脑皮质、丘脑及小脑等部位的灰质体积缩小,神经元丢失,特别是与抑郁症状发生密切相关的海马区呈现显著的萎缩性改变。由于大多数成年海马DG的神经前体细胞可以分化为新生神经元,表达成熟神经细胞特异性标志物,并能与海马其他功能区域(如CA3区)的神经元建立广泛的突触联系,因此可能在维持海马神经元和突触的结构和功能完整性方面发挥重要的作用[5]。研究[11]发现:慢性疼痛大鼠的海马前体细胞神经元分化比例明显减少,新生神经元的存活率降低,并且新生神经元的突起生长明显异常。同时,慢性疼痛状态下大鼠抑郁情绪的产生也被认为与海马DG的神经发生受损密切相关[12]。因此,成年海马DG表达的成熟神经细胞特异性标志物与慢性疼痛、抑郁的发生和进展密切相关。然而,当慢性疼痛和抑郁情绪共同发生时,海马神经发生的变化仍不清楚。本研究通过环扎大鼠坐骨神经造成CCI,建立慢性疼痛和抑郁共病模型,结果显示:大鼠术后出现自发性疼痛且PWMT明显降低,术后第7天时被动漂浮时间显著延长,糖水偏爱率降低。这证明大鼠出现了抑郁行为学的改变,慢性疼痛和抑郁共病大鼠模型成功建立。

加巴喷丁作为一种抑制性神经递质发挥镇痛作用外,可能还具有保护中枢神经元的作用[13]。加巴喷丁可能通过调控γ-氨基丁酸A型(gamma-aminobutyric acid subtype A,GABAA)受体α2亚型,诱导神经元分化、迁徙,加快DG颗粒层神经元树突的成熟,从而促进海马神经的发生[14]。同时,也有研究[15]表明加巴喷丁通过调节ATP依赖的钾离子通道发挥抗抑郁的作用。以上提示加巴喷丁对慢性疼痛和抑郁共病有着良好的临床治疗效果。为了明确加巴喷丁对神经元发生的具体作用,本研究对模型大鼠分别给予生理盐水、低剂量加巴喷丁、高剂量加巴喷丁处理,结果表明:高剂量加巴喷丁治疗后,模型大鼠的疼痛行为学及抑郁行为学改变均得到改善;海马DG的DCX阳性神经元数目均有不同程度的增加,且高剂量组增加更加明显。进一步观察DCX阳性神经元突起的形态学改变,与CCI+Veh组相比,CCI+HG组大鼠海马DG的DCX阳性神经元的树突棘长度损伤程度减轻,而树突棘的密度两者之间差异无统计学意义。树突棘密度无明显改善可能与损伤后神经元突起数量的不可逆再生障碍有关。低剂量加巴喷丁治疗后,尽管大鼠海马DG的DCX阳性神经元神经突起的长度损伤有一定程度的减轻,疼痛行为出现改善,但抑郁行为没有明显的变化。产生这一差异的原因,可能与加巴喷丁的剂量有关,或是抑郁行为学的改善需要更长的作用时间。以上研究结果说明加巴喷丁可能直接促进海马DG的神经发生,具有直接改善疼痛和抑郁症状的作用,并对海马DG的DCX阳性神经元树突的形态学改变发挥重要的调控作用[16],但具体的作用机制有待进一步的研究证实。

BDNF主要表达于大脑前脑和海马DG的CA1和CA2区的锥体细胞和颗粒细胞,与海马神经发生的调节密切相关[17]。BDNF表达水平的下降直接参与抑郁症发生的病理生理过程[18-19]。慢性疼痛时海马DG的BDNF的表达水平下调,导致神经发生受阻,神经突起长度缩短且密度下降,海马神经元在应激反应中的坏死过程加速[20]。抗抑郁药物可通过上调脑区BDNF的表达逆转神经元的坏死[21]。直接给予外源性BDNF可以促进实验动物海马的神经发生和新生神经元分枝的形成,并防止海马萎缩[22]。然而,加巴喷丁的作用机制是否与BDNF的表达相关仍不清楚。本研究对模型大鼠给予不同剂量的加巴喷丁干预后,模型大鼠尤其是高剂量加巴喷丁组模型大鼠海马DG的BDNF的表达水平明显上调,新生神经元的突起长度增加。因此,我们推测加巴喷丁可能通过上调海马DG的BDNF表达来促进海马的神经发生,继而改善疼痛及合并的抑郁症状。

综上,本研究初步表明加巴喷丁可以通过上调慢性疼痛合并抑郁成年大鼠海马DG神经元DCX和BDNF的表达来诱导神经发生,从而有效改善慢性疼痛反应和抑郁情绪;并从另一个角度阐释了慢性疼痛与抑郁之间的共存关系。本研究为加巴喷丁改善抑郁和疼痛提供了证据,有利于阐明其作用机制,但具体的调控通路仍需进一步的研究。

基金资助

湖南省自然科学基金(2019JJ40423)。

This work was supported by the Natural Science Foundation of Hunan Province, China (2019JJ40423).

利益冲突声明

作者声称无任何利益冲突。

作者贡献

曾文飞 设计研究方案,起草论文;谭燕梦 操作实验,查阅文献;杨林 收集并分析数据;江兴华 提出研究思路,修改、审阅论文。所有作者阅读并同意最终的文本。

原文网址

http://xbyxb.csu.edu.cn/xbwk/fileup/PDF/202207839.pdf

参考文献

  • 1. Tyrtyshnaia AA, Egorova EL, Starinets AA, et al. N-docosahexaenoylethanolamine attenuates neuroinflammation and improves hippocampal neurogenesis in rats with sciatic nerve chronic constriction injury[J]. Mar Drugs, 2020, 18(10): 516. 10.3390/md18100516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2. Rusanescu G, Mao J. Peripheral nerve injury induces adult brain neurogenesis and remodelling[J]. J Cell Mol Med, 2017, 21(2): 299-314. 10.1111/jcmm.12965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3. Chen LB, Qiu FM, Zhong XM, et al. Promoting neurogenesis in hippocampal dentate gyrus of chronic unpredictable stress-induced depressive-like rats with paeoniflorin[J]. J Integr Neurosci, 2019, 18(1): 43-49. 10.31083/j.jin.2019.01.116. [DOI] [PubMed] [Google Scholar]
  • 4. Ostadhadi S, Kordjazy N, Haj-Mirzaian A, et al. Involvement of NO/cGMP pathway in the antidepressant-like effect of gabapentin in mouse forced swimming test[J]. Arch Pharmacol, 2016, 389(4): 393-402. 10.1007/s00210-015-1203-5. [DOI] [PubMed] [Google Scholar]
  • 5. Somelar K, Jürgenson M, Jaako K, et al. Development of depression-like behavior and altered hippocampal neurogenesis in a mouse model of chronic neuropathic pain[J]. Brain Res, 2021, 1758: 147329. 10.1016/j.brainres.2021.147329. [DOI] [PubMed] [Google Scholar]
  • 6. Chaplan SR, Bach FW, Pogrel JW, et al. Quantitative assessment of tactile allodynia in the rat paw[J]. J Neurosci Methods, 1994, 53(1): 55-63. 10.1016/0165-0270(94)90144-9. [DOI] [PubMed] [Google Scholar]
  • 7. Porsolt RD, Anton G, Blavet N, et al. Behavioural despair in rats: a new model sensitive to antidepressant treatments[J]. Eur J Pharmacol, 1978, 47(4): 379-391. 10.1016/0014-2999(78)90118-8. [DOI] [PubMed] [Google Scholar]
  • 8. Sun B, Lv Y, Xu H, et al. Effects of vortioxetine on depression model rats and expression of BDNF and Trk B in hippocampus[J]. Exp Ther Med, 2020, 20(3): 2895-2902. 10.3892/etm.2020.9026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9. Sheline YI, Conor Liston C, McEwen BS. Parsing the hippocampus in depression: chronic stress, hippocampal volume, and major depressive disorder[J]. Biol Psychiatry, 2019, 85(6): 436-438. 10.1016/j.biopsych.2019.01.011. [DOI] [PubMed] [Google Scholar]
  • 10. Apkarian AV, Mutso AA, Centeno MV, et al. Role of adult hippocampal neurogenesis in persistent pain[J]. Pain, 2016, 157(2): 418-428. 10.1097/j.pain.0000000000000332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11. Valente MM, Bortolotto V, Cuccurazzu B, et al. alpha 2 delta ligands act as positive modulators of adult hippocampal neurogenesis and prevent depression-like behavior induced by chronic restraint stress[J]. Mol Pharmacol, 2012, 82(2): 271-280. 10.1124/mol.112.077636. [DOI] [PubMed] [Google Scholar]
  • 12. Lempel AA, Coll L, Schinder AF, et al. Chronic pregabalin treatment decreases excitability of dentate gyrus and accelerates maturation of adult-born granule cells[J]. J Neurochem, 2017, 140(2): 257-267. 10.1111/jnc.13740. [DOI] [PubMed] [Google Scholar]
  • 13. Duveau V, Laustela S, Barth L, et al. Spatiotemporal specificity of GABAA receptor-mediated regulation of adult hippocampal neurogenesis[J]. Eur J Neurosci, 2011, 34(3): 362-373. 10.1111/j.1460-9568.2011.07782.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14. Bikbaev A, Ciuraszkiewicz-Wojciech A, Heck J, et al. Auxiliary α2δ1 and α2δ3 subunits of calcium channels drive excitatory and inhibitory neuronal network development[J]. J Neurosci, 2020, 40(25): 4824-4841. 10.1523/JNEUROSCI.1707-19.2020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15. Godínez-Chaparro B, Quiñonez-Bastidas GN, Rojas-Hernández IR, et al. Synergistic interaction of a gabapentin- mangiferin combination in formalin-induced secondary mechanical allodynia and hyperalgesia in rats is mediated by activation of NO-cyclic GMP-ATP-sensitive K+ channel pathway[J]. Drug Dev Res, 2017, 78(8): 390-402. 10.1002/ddr.21411. [DOI] [PubMed] [Google Scholar]
  • 16. Fu B, Wen SN, Wang B, et al. Gabapentin regulates dopaminergic neuron firing and theta oscillation in the ventral tegmental area to reverse depression-like behavior in chronic neuropathic pain state[J]. J Pain Res, 2018, 11: 2247-2256. 10.2147/JPR.S170167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17. Kishi T, Yoshimura R, Ikuta T, et al. Brain-derived neurotrophic factor and major depressive disorder: evidence from meta-analyses[J]. Front Psychiatry, 2018, 8: 308. 10.3389/fpsyt.2017.00308. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18. Sun D, Milibari L, Pan JX, et al. Critical roles of embryonic born dorsal dentate granule neurons for activity-dependent increases in BDNF, adult hippocampal neurogenesis, and antianxiety-like behaviors[J]. Biol Psychiatry, 2021, 89(6): 600-614. 10.1016/j.biopsych.2020.08.026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19. Zhu JX, Hu WQ, Dong SQ, et al. Hippocampal BDNF signaling is required for the antidepressant effects of perillaldehyde[J]. Pharmacol Rep, 2019, 71(3): 430-437. 10.1016/j.pharep.2019.01.009. [DOI] [PubMed] [Google Scholar]
  • 20. Xia SH, Hu SW, Ge DG, et al. Chronic pain impairs memory formation via disruption of neurogenesis mediated by mesohippocampal brain-derived neurotrophic factor signaling[J]. Biol Psychiatry, 2020, 88(8): 597-610. 10.1016/j.biopsych.2020.02.013. [DOI] [PubMed] [Google Scholar]
  • 21. Zanos P, Gould TD. Mechanisms of ketamine action as an antidepressant[J]. Mol Psychiatry, 2018, 23(4): 801-811. 10.1038/mp.2017.255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22. von Bohlen Und Halbach O, von Bohlen Und Halbach V . BDNF effects on dendritic spine morphology and hippocampal function[J]. Cell Tissue Res, 2018, 373(3): 729-741. 10.1007/s00441-017-2782-x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Central South University Medical Sciences are provided here courtesy of Central South University

RESOURCES