Skip to main content
Journal of Central South University Medical Sciences logoLink to Journal of Central South University Medical Sciences
. 2021 Apr 28;46(4):426–431. [Article in Chinese] doi: 10.11817/j.issn.1672-7347.2021.200064

动物模型在肩袖损伤研究中的应用

Animal models for study on rotator cuff injury

LIU Ping 1,2, ZHU Weihong 1, LIU Qian 1,
Editor: 陈 丽文
PMCID: PMC10930316  PMID: 33967091

Abstract

Rotator cuff injuries are the most common cause of shoulder pain and dysfunction. Ideal animal shoulder models should have similar shoulder anatomy and function as human, and are able to replicate the microenvironment change after tendon injury. At present, a variety of animal models including rat, mouse, rabbit, sheep, canine, bovine, and primate have been used to study the mechanism of rotator cuff injury, effects of different repair techniques, and factors affecting tendon to bone healing. Although large animal models are more anatomically similar to humans, small animal models are more convenient in revealing the biological mechanism of rotator cuff injury and healing. Choosing appropriate animal models based on research objectives and establishing new small animal models play a critical role in revealing the mechanism of rotator cuff diseases and developing novel treating strategies.

Keywords: animal model, rotator cuff injury, tendon to bone healing


肩袖损伤是肩关节疼痛和功能障碍的最常见原因[1]。目前已有多种动物模型,如大鼠[2]、小鼠[3]、兔[4]、羊[5]、犬[6]、牛[7]等被应用于肩袖损伤研究。通过标准化的动物模型,我们可以探究肩袖损伤的病因、分子机制并研发新的治疗方法。然而,鉴于不同物种之间的差异性,很难在动物体内完全复制疾病表型。理想的动物肩关节模型应具有与人相近的解剖结构和功能,并能够模拟肌腱损伤后的局部微环境和组织学变化。本文将重点阐述有助于我们深入了解肩袖损伤、修复、愈合及再生过程的动物模型。

1. 动物模型的选择

喙肩弓的存在和至少有一根肌腱在弓下穿过是肩袖模型的结构基础。一项针对33种不同动物的研究[2]表明:基于肩关节解剖和功能相关评价标准,绝大多数动物的肩关节骨骼、韧带和肌肉结构与人不同。在具有肩峰的28种动物中,只有大鼠的肩峰和人一样位于冈上肌上方。尽管大动物模型,如羊[5]、犬[6]、牛[7]和兔[8]等适用于肌肉退变机制、支架修复技术和改良手术方法的研究,但是其花费较高,观察病理生理变化需要较长的随访时间。非人灵长类动物的肩关节较其他动物而言与人在解剖结构、生物力学性质和免疫机制上更为接近,然而高额花费、饲养难度和管理等因素限制了其广泛应用(图1)。

图 1.

图 1

不同动物肩胛骨侧面观

Figure 1 Schematics of the scapula of different animals from a lateral view

S: Scapular spine; A: Acromion; G: Glenoid cavity.

肩袖疾病的研究目标一般包含两个层面:一是宏观层面,如生物力学建模、优化手术技术、评估新器械或设备等,这一类研究要求动物模型在结构和功能上与人高度相近,所以大动物模型,特别是非人灵长类动物模型,通常更为适合;二是微观层面,如腱骨愈合的生物学特征、潜在的信号通路以及疾病的遗传学机制,经验证的小动物模型通常能满足此类研究的需求。当然,在绝大多数情况下上述两个目标并不完全独立,而是宏观和微观层面都要兼顾。因此,研究者需要仔细分析每个动物模型的优缺点以选择最适合其研究工作的动物模型。

2. 小动物模型

2.1. 大鼠

大鼠模型适用于肩袖病理改变的研究。Soslowsky等[2]开发的大鼠模型具有与人相似的喙肩弓和过头运动,特别适合于研究反复运动或撞击引起的冈上肌腱损伤机制。大鼠模型还被广泛应用于探讨影响肩袖腱骨愈合的因素,如细胞[9-10]、足印区准备[11]、生长因子[12-13]和激素[14-15]。相比之下,大鼠模型较少用于评估手术方式对肩袖修复的作用。既往的研究相继报道了胶原支架[16]、骨髓间充质干细胞联合多层肌腱支架[17]或脱钙骨基质[18],以及负载脂肪间充质干细胞水凝胶[19]对大鼠肩袖愈合的作用。虽然大鼠的肩关节解剖结构和人十分相近,但是其肩峰下穿过的是冈上肌肌肉,而不是肌腱。

2.2. 小鼠

小鼠模型的优势在于能够通过基因敲除检测特定信号转导通路和分子在肌腱退变和修复中的作用。此外,小鼠模型还可以进行体内分子成像。Bell等[3]研究发现小鼠具有和人肩袖类似的结构,包括喙肩弓和止点处的纤维软骨移行区。继Liu等[20]报道小鼠巨大肩袖损伤模型后,Wang等[21]成功开发了小鼠肩袖延迟修复模型。近来,越来越多的学者选择小鼠肩袖损伤模型进行肌腱愈合和肌肉退变的相关研究[22-24]。在肩袖损伤伴随的脂肪浸润、肌肉萎缩和纤维化的发生机制及治疗手段方面,已取得一系列重要进展。研究表明:在小鼠巨大肩袖撕裂后,血管周围干细胞可以显著改善肌肉萎缩[25];在肩袖撕裂后聚二磷酸腺苷核糖聚合酶1(PARP-1)敲除小鼠的肌肉萎缩和脂肪浸润明显减轻,同时伴有相关基因表达水平的显著下调[26]。血小板源生长因子α和β受体阳性细胞导致转基因小鼠巨大肩袖撕裂模型肌肉纤维化和脂肪退变[27]

3. 大动物模型

3.1. 兔

兔是骨科研究的常用模型之一。与大鼠相比,兔的肌腱较大,手术操作更加容易。利用兔冈上肌腱或冈下肌腱撕裂模型,既往研究分析了可吸收缝线[28]、微骨折孔径[29]、去细胞化肌腱片[8]、去端胶原蛋白[30]、转化生长因子β1[31]及足印区保留[32]对腱骨愈合的作用。最近,Kwon等[4]采用兔慢性冈上肌腱撕裂模型明确了真皮成纤维细胞对腱骨愈合的促进作用。Yildiz等[33]利用兔不可修复肩袖撕裂模型比较了两种上关节囊重建移植物的愈合情况。此外,Grumet等[34]提出兔肩胛下肌模型可用于肩袖病变的研究。他们发现兔的盂肱关节前方有一个由盂上结节、喙突和盂下结节形成的骨道,兔的肩胛下肌从该骨道穿过后止于肱骨小结节,类似于人冈上肌腱从肩峰下穿过后止于肱骨大结节。更重要的是,该骨道内穿过的是肩胛下肌的肌腱部分,这一解剖特征较大鼠模型更接近于人。该模型的另一个优点是在切断肌腱后会出现肌肉脂肪浸润。

3.2. 羊

羊是一种实用的大动物模型,具有易获得、易饲养、低成本等特点,已逐渐被用于包括肩袖修复在内的各种骨科研究。绵羊较大的冈下肌腱使其特别适用于体外生物力学研究[35-36]。除此以外,绵羊模型还被用于探讨新型补片材料[37]、带孔锚钉或负载肌腱细胞胶原支架[5]对肩袖修复的作用。Coleman等[38]使用膜包裹绵羊冈下肌腱断端,成功构建了慢性肩袖损伤修复模型。Luan等[39]研究发现绵羊急性肩袖损伤修复后也会出现肌肉脂肪浸润和纤维化。近来,一些学者[40-42]通过绵羊模型进一步揭示了肩袖损伤后肌肉萎缩和退变的可能机制,有望为临床治疗提供新靶点。

3.3. 犬

犬类肩袖损伤模型已经被用于多种肩袖修复材料或手术方法的研究[6, 43-45]。Adams等[43]使用犬冈下肌腱全层撕裂模型评估使用人去细胞真皮基质补片加强肩袖修复的效果。他们观察到在6周内自体细胞浸润和新生肌腱形成,12周内补片修复的力学强度与自体肌腱相当,术后6个月,补片修复肌腱在大体观和组织学上与正常肌腱相仿。Derwin等[45]评估犬类肩袖急性全层损伤修复模型的适用性,结果显示术后即刻的修复强度取决于缝线类型和缝合方式,不管采用何种缝线、缝合方法或康复计划,所有修复的肌腱均在术后早期出现再撕裂。同时,该研究提示如果不使用客观的评价方法(术中在肱骨和肌腱内置入钽金属珠并于术后行X线检查),容易将肌腱残端和止点间形成的大量疤痕误认为肌腱组织。此外,犬类模型可以复制人肩袖损伤后的肌肉萎缩和脂肪浸润。Safran等[46]开发了一种犬类肩袖慢性损伤模型以探讨随时间变化的冈下肌被动力学性能、肌肉体积和脂肪浸润。犬类肩袖损伤修复模型还可以较好地耐受石膏固定、悬吊固定和跑步机锻炼等多种术后康复计划[47]。最近,Liu等[48]开发并评估了一种可用于肩袖损伤修复的犬类高位去桡神经支配非负重(non-weight-bearing,NWB)模型(图2)。该模型通过切断肱三头肌神经支配区近端的桡神经,对肘部和腕部的伸肌去神经支配,从而防止术后患肢负重和肌肉收缩。同时由于桡神经分布于肩关节以下水平,去桡神经支配对肩袖修复愈合的影响非常小。虽然NWB模型可有效改善因患肢负重导致的再撕裂,未来仍需在此基础上进一步开发和评估犬类NWB肩袖慢性损伤模型。

图 2.

图 2

犬类高位去桡神经支配非负重模型

Figure 2 Canine non-weight-bearing model constructed by performing high-level radial neurectomy

3.4. 牛

牛肩袖损伤模型主要被用于生物力学研究。既往研究比较了单排和双排肩袖修复后的生物力学差异[49],循环载荷下不同缝合方法的初始固定强度[50],缝线材料对缝线-肌腱界面生物力学的影响[7]以及不同缝线的拔出强度[51]。牛肩袖损伤模型的主要优点是不同个体间肩袖大小和组织质量差异很小,有助于保证复制模型的一致性。

3.5. 非人灵长类动物

从转化医学的角度来看,非人灵长类动物无疑是肩关节研究的最理想物种,其在解剖结构和生理机能上都与人最为接近。尽管如此,灵长类动物的高饲养成本、管理的复杂性和难度,以及伦理学等因素限制了其实验应用[52]。2009年,Sonnabend等[53]比较23种不同动物肩袖肌腱的解剖学特点,对其中部分肌腱的胶原纤维走向和排列进行组织学评价,同时还研究相关物种的行为,特别是上肢的过头运动、前伸频率及幅度。结果显示四足动物的冈上肌腱、冈下肌腱和小圆肌腱分别止于肱骨大结节,并没有形成一个彼此融合的肩袖结构。真正类似人类的肩袖结构只在高级灵长类动物和树袋鼠中被发现。随后,Sonnabend等[54]进一步指出:基于和人肩关节的相似性,狒狒是用于肩袖修复研究的最佳动物模型。最近,Xu等[55]采用非洲绿猴肩袖损伤模型评估一种非交联猪真皮细胞外基质补片的加强修复效果,结果表明该补片与宿主肌腱组织整合良好,并且未引起显著的炎症反应。

4. 结 论

针对动物模型的研究提高了我们对肩袖损伤病理变化和愈合过程的认识,为开发新的治疗措施奠定了基础。虽然大动物,特别是非人灵长类动物模型在解剖上与人更为接近,但是小动物模型更适用于研究影响肩袖损伤和修复的复杂生物学机制。开发并建立新的小动物模型(如小鼠)能够让研究者有效地利用最前沿的细胞和分子学技术研究肩袖疾病。更重要的是,动物肩袖损伤模型能够在明确肩袖损伤机制、评估康复策略和寻求新的治疗策略中发挥重要作用。

基金资助

湖南省自然科学基金(2019JJ30035,2018JJ2590)。

This work was supported by the Natural Science Foundation of Hunan Province, China (2019JJ30035, 2018JJ2590).

利益冲突声明

作者声称无任何利益冲突。

原文网址

http://xbyxb.csu.edu.cn/xbwk/fileup/PDF/202104426.pdf

参考文献

  • 1. Rothrauff BB, Pauyo T, Debski RE, et al. The rotator cuff organ: integrating developmental biology, tissue engineering, and surgical considerations to treat chronic massive rotator cuff tears[J]. Tissue Eng Part B Rev, 2017, 23(4): 318-335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2. Soslowsky LJ, Carpenter JE, Banerji I, et al. Development of an animal model for investigations on rotator cuff disease[J]. J Shoulder Elb Surg, 1995, 4: S52. [DOI] [PubMed] [Google Scholar]
  • 3. Bell R, Taub P, Cagle P, et al. Development of a mouse model of supraspinatus tendon insertion site healing[J]. J Orthop Res, 2015, 33(1): 25-32. [DOI] [PubMed] [Google Scholar]
  • 4. Kwon J, Kim YH, Rhee SM, et al. Effects of allogenic dermal fibroblasts on rotator cuff healing in a rabbit model of chronic tear[J]. Am J Sports Med, 2018, 46(8): 1901-1908. [DOI] [PubMed] [Google Scholar]
  • 5. Roßbach BP, Gülecyüz MF, Kempfert L, et al. Rotator cuff repair with autologous tenocytes and biodegradable collagen scaffold: a histological and biomechanical study in sheep[J]. Am J Sports Med, 2020, 48(2): 450-459. [DOI] [PubMed] [Google Scholar]
  • 6. Smith MJ, Pfeiffer FM, Cook CR, et al. Rotator cuff healing using demineralized cancellous bone matrix sponge interposition compared to standard repair in a preclinical canine model[J]. J Orthop Res, 2018, 36(3): 906-912. [DOI] [PubMed] [Google Scholar]
  • 7. Bisson LJ, Manohar LM, Wilkins RD, et al. Influence of suture material on the biomechanical behavior of suture-tendon specimens[J]. Am J Sports Med, 2008, 36(5): 907-912. [DOI] [PubMed] [Google Scholar]
  • 8. Liu GM, Pan J, Zhang Y, et al. Bridging repair of large rotator cuff tears using a multilayer decellularized tendon slices graft in a rabbit model[J]. Arthroscopy, 2018, 34(9): 2569-2578. [DOI] [PubMed] [Google Scholar]
  • 9. Degen RM, Carbone A, Carballo C, et al. The effect of purified human bone marrow-derived mesenchymal stem cells on rotator cuff tendon healing in an athymic rat[J]. Arthroscopy, 2016, 32(12): 2435-2443. [DOI] [PubMed] [Google Scholar]
  • 10. Rothrauff BB, Smith CA, Ferrer GA, et al. The effect of adipose-derived stem cells on enthesis healing after repair of acute and chronic massive rotator cuff tears in rats[J]. J Shoulder Elb Surg, 2019, 28(4): 654-664. [DOI] [PubMed] [Google Scholar]
  • 11. Nakagawa H, Morihara T, Fujiwara H, et al. Effect of footprint preparation on tendon-to-bone healing: a histologic and biomechanical study in a rat rotator cuff repair model[J]. Arthroscopy, 2017, 33(8): 1482-1492. [DOI] [PubMed] [Google Scholar]
  • 12. Arimura H, Shukunami C, Tokunaga T, et al. TGF-β1 improves biomechanical strength by extracellular matrix accumulation without increasing the number of tenogenic lineage cells in a rat rotator cuff repair model[J]. Am J Sports Med, 2017, 45(10): 2394-2404. [DOI] [PubMed] [Google Scholar]
  • 13. Yonemitsu R, Tokunaga T, Shukunami C, et al. Fibroblast growth factor 2 enhances tendon-to-bone healing in a rat rotator cuff repair of chronic tears[J]. Am J Sports Med, 2019, 47(7): 1701-1712. [DOI] [PubMed] [Google Scholar]
  • 14. Yoon JP, Chung SW, Jung JW, et al. Is a local administration of parathyroid hormone effective to tendon-to-bone healing in a rat rotator cuff repair model?[J]. J Orthop Res, 2020, 38(1): 82-91. [DOI] [PubMed] [Google Scholar]
  • 15. Tanaka K, Kanazawa T, Gotoh M, et al. Effects of estrogen-deficient state on rotator cuff healing[J]. Am J Sports Med, 2019, 47(2): 389-397. [DOI] [PubMed] [Google Scholar]
  • 16. Zhu M, Tay ML, Callon K, et al. Overlay repair with a synthetic collagen scaffold improves the quality of healing in a rat rotator cuff repair model[J]. J Shoulder Elb Surg, 2019, 28(5): 949-958. [DOI] [PubMed] [Google Scholar]
  • 17. Omi R, Gingery A, Steinmann SP, et al. Rotator cuff repair augmentation in a rat model that combines a multilayer xenograft tendon scaffold with bone marrow stromal cells[J]. J Shoulder Elb Surg, 2016, 25(3): 469-477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18. Thangarajah T, Sanghani-Kerai A, Henshaw F, et al. Application of a demineralized cortical bone matrix and bone marrow-derived mesenchymal stem cells in a model of chronic rotator cuff degeneration[J]. Am J Sports Med, 2018, 46(1): 98-108. [DOI] [PubMed] [Google Scholar]
  • 19. Kaizawa Y, Franklin A, Leyden J, et al. Augmentation of chronic rotator cuff healing using adipose-derived stem cell-seeded human tendon-derived hydrogel[J]. J Orthop Res, 2019, 37(4): 877-886. [DOI] [PubMed] [Google Scholar]
  • 20. Liu XH, Laron D, Natsuhara K, et al. A mouse model of massive rotator cuff tears[J]. J Bone Joint Surg Am, 2012, 94(7): e41. [DOI] [PubMed] [Google Scholar]
  • 21. Wang ZL, Liu XH, Davies MR, et al. A mouse model of delayed rotator cuff repair results in persistent muscle atrophy and fatty infiltration[J]. Am J Sports Med, 2018, 46(12): 2981-2989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22. Lebaschi AH, Deng XH, Camp CL, et al. Biomechanical, histologic, and molecular evaluation of tendon healing in a new murine model of rotator cuff repair[J]. Arthroscopy, 2018, 34(4): 1173-1183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23. Takase F, Inui A, Mifune Y, et al. Effect of platelet-rich plasma on degeneration change of rotator cuff muscles: In vitro and in vivo evaluations[J]. J Orthop Res, 2017, 35(8): 1806-1815. [DOI] [PubMed] [Google Scholar]
  • 24. Sharma AK, Levian B, Shah P, et al. Aged mice demonstrate greater muscle degeneration of chronically injured rotator cuff[J]. J Orthop Res, 2020, 38(2): 320-328. [DOI] [PubMed] [Google Scholar]
  • 25. Eliasberg CD, Dar A, Jensen AR, et al. Perivascular stem cells diminish muscle atrophy following massive rotator cuff tears in a small animal model[J]. J Bone Join Surg Am, 2017, 99(4): 331-341. [DOI] [PubMed] [Google Scholar]
  • 26. Kuenzler MB, Nuss K, Karol A, et al. Neer Award 2016: reduced muscle degeneration and decreased fatty infiltration after rotator cuff tear in a poly(ADP-ribose) polymerase 1 (PARP-1) knock-out mouse model[J]. J Shoulder Elbow Surg, 2017, 26(5): 733-744. [DOI] [PubMed] [Google Scholar]
  • 27. Jensen AR, Kelley BV, Mosich GM, et al. Neer Award 2018: Platelet-derived growth factor receptor α co-expression typifies a subset of platelet-derived growth factor receptor β-positive progenitor cells that contribute to fatty degeneration and fibrosis of the murine rotator cuff[J]. J Shoulder Elb Surg, 2018, 27(7): 1149-1161. [DOI] [PubMed] [Google Scholar]
  • 28. Su W, Qi WX, Li XX, et al. Effect of suture absorbability on rotator cuff healing in a rabbit rotator cuff repair model[J]. Am J Sports Med, 2018, 46(11): 2743-2754. [DOI] [PubMed] [Google Scholar]
  • 29. Sun Y, Kwak JM, Kholinne E, et al. Small subchondral drill holes improve marrow stimulation of rotator cuff repair in a rabbit model of chronic rotator cuff tear[J]. Am J Sports Med, 2020, 48(3): 706-714. [DOI] [PubMed] [Google Scholar]
  • 30. Suh DS, Lee JK, Yoo JC, et al. Atelocollagen enhances the healing of rotator cuff tendon in rabbit model[J]. Am J Sports Med, 2017, 45(9): 2019-2027. [DOI] [PubMed] [Google Scholar]
  • 31. Yoon JP, Lee CH, Jung JW, et al. Sustained delivery of transforming growth factor β1 by use of absorbable alginate scaffold enhances rotator cuff healing in a rabbit model[J]. Am J Sports Med, 2018, 46(6): 1441-1450. [DOI] [PubMed] [Google Scholar]
  • 32. Su W, Li XX, Zhao S, et al. Native enthesis preservation versus removal in rotator cuff repair in a rabbit model[J]. Arthroscopy, 2018, 34(7): 2054-2062. [DOI] [PubMed] [Google Scholar]
  • 33. Yildiz F, Bilsel K, Pulatkan A, et al. Comparison of two different superior capsule reconstruction methods in the treatment of chronic irreparable rotator cuff tears: a biomechanical and histologic study in rabbit models[J]. J Shoulder Elb Surg, 2019, 28(3): 530-538. [DOI] [PubMed] [Google Scholar]
  • 34. Grumet RC, Hadley S, Diltz MV, et al. Development of a new model for rotator cuff pathology: the rabbit subscapularis muscle[J]. Acta Orthop, 2009, 80(1): 97-103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35. Guo Q, Li CB, Qi W, et al. A novel suture anchor constructed of cortical bone for rotator cuff repair: a biomechanical study on sheep humerus specimens[J]. Int Orthop, 2016, 40(9): 1913-1918. [DOI] [PubMed] [Google Scholar]
  • 36. Camenzind RS, Wieser K, Fessel G, et al. Tendon collagen crosslinking offers potential to improve suture pullout in rotator cuff repair: an ex vivo sheep study[J]. Clin Orthop Relat Res, 2016, 474(8): 1778-1785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37. Novakova SS, Mahalingam VD, Florida SE, et al. Tissue-engineered tendon constructs for rotator cuff repair in sheep[J]. J Orthop Res, 2018. 36(1): 289-299. [DOI] [PubMed] [Google Scholar]
  • 38. Coleman SH, Fealy S, Ehteshami JR, et al. Chronic rotator cuff injury and repair model in sheep[J]. J Bone Joint Surg Am, 2003, 85(12): 2391-2402. [DOI] [PubMed] [Google Scholar]
  • 39. Luan T, Liu X, Easley JT, et al. Muscle atrophy and fatty infiltration after an acute rotator cuff repair in a sheep model[J]. Muscles Ligaments Tendons J, 2015, 5(2): 106-112. [PMC free article] [PubMed] [Google Scholar]
  • 40. Gerber C, Meyer DC, Flück M, et al. Muscle degeneration associated with rotator cuff tendon release and/or denervation in sheep[J]. Am J Sports Med, 2017, 45(3): 651-658. [DOI] [PubMed] [Google Scholar]
  • 41. Ruoss S, Kindt P, Oberholzer L, et al. Inhibition of calpain delays early muscle atrophy after rotator cuff tendon release in sheep[J]. Physiol Rep, 2018, 6(21): e13833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42. Ruoss S, Möhl CB, Benn MC, et al. Costamere protein expression and tissue composition of rotator cuff muscle after tendon release in sheep[J]. J Orthop Res, 2018, 36(1): 272-281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43. Adams JE, Zobitz ME, Reach JS, et al. Rotator cuff repair using an acellular dermal matrix graft: an in vivo study in a canine model[J]. Arthroscopy, 2006, 22(7): 700-709. [DOI] [PubMed] [Google Scholar]
  • 44. Roller BL, Kuroki K, Bozynski CC, et al. Use of a novel magnesium-based resorbable bone cement for augmenting anchor and tendon fixation[J/OL]. Am J Orthop, 2018(2018-02-13)[2020-01-03]. https://www.mdedge.com/surgery/article/198541/shoulder-elbow/use-novel-magnesium-based-resorbable-bone-cement-augmenting?sso=true. DOI: 10.12788/ajo.2018.0010. [DOI] [PubMed] [Google Scholar]
  • 45. Derwin KA, Baker AR, Codsi MJ, et al. Assessment of the canine model of rotator cuff injury and repair[J]. J Shoulder Elb Surg, 2007, 16(5): S140-S148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46. Safran O, Derwin KA, Powell K, et al. Changes in rotator cuff muscle volume, fat content, and passive mechanics after chronic detachment in a canine model[J]. J Bone Joint Surg Am, 2005, 87(12): 2662-2670. [DOI] [PubMed] [Google Scholar]
  • 47. Lebaschi A, Deng XH, Zong JC, et al. Animal models for rotator cuff repair[J]. Ann NY Acad Sci, 2016, 1383(1): 43-57. [DOI] [PubMed] [Google Scholar]
  • 48. Liu Q, Yu YX, Reisdorf RL, et al. Engineered tendon-fibrocartilage-bone composite and bone marrow-derived mesenchymal stem cell sheet augmentation promotes rotator cuff healing in a non-weight-bearing canine model[J]. Biomaterials, 2019, 192: 189-198. [DOI] [PubMed] [Google Scholar]
  • 49. Mahar A, Tamborlane J, Oka R, et al. Single-row suture anchor repair of the rotator cuff is biomechanically equivalent to double-row repair in a bovine model[J]. Arthroscopy, 2007, 23(12): 1265-1270. [DOI] [PubMed] [Google Scholar]
  • 50. Anderl W, Heuberer PR, Laky B, et al. Superiority of bridging techniques with medial fixation on initial strength[J]. Knee Surg Sports Traumatol Arthrosc, 2012, 20(12): 2559-2566. [DOI] [PubMed] [Google Scholar]
  • 51. Bisson LJ, Manohar LM. A biomechanical comparison of the pullout strength of No. 2 FiberWire suture and 2-mm FiberWire tape in bovine rotator cuff tendons[J]. Arthroscopy, 2010, 26(11): 1463-1468. [DOI] [PubMed] [Google Scholar]
  • 52. Warden SJ. Animal models for the study of tendinopathy[J]. Br J Sports Med, 2007, 41(4): 232-240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53. Sonnabend DH, Young AA. Comparative anatomy of the rotator cuff[J]. J Bone Joint Surg Br, 2009, 91(12): 1632-1637. [DOI] [PubMed] [Google Scholar]
  • 54. Sonnabend DH, Howlett CR, Young AA. Histological evaluation of repair of the rotator cuff in a primate model[J]. J Bone Joint Surg Br, 2010, 92(4): 586-594. [DOI] [PubMed] [Google Scholar]
  • 55. Xu H, Sandor M, Qi SJ, et al. Implantation of a porcine acellular dermal graft in a primate model of rotator cuff repair[J]. J Shoulder Elb Surg, 2012, 21(5): 580-588. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Central South University Medical Sciences are provided here courtesy of Central South University

RESOURCES