Abstract
心血管补片作为替代部分心脏或血管组织的人工移植物材料,在心血管手术中起至关重要的作用。传统的心血管补片材料(合成材料和生物材料等)的不足可能导致术后长期效果不理想甚至某些致命的并发症。近年来一些新型材料(如组织工程材料、三维打印材料等)也在积极研发中。补片材料在血管成形术、心脏房室壁或房室间隔修补术、瓣膜置换术等心血管外科手术中已经得到广泛应用。心血管补片材料临床需求较大,但由于该材料需要具有适应正常凝血机制、耐久性、促进术后近期内皮化、抑制术后远期的内膜过度增生等特性,其研发过程较为复杂。总结各类心血管补片材料的特点及其在心血管疾病手术中的应用,对临床中手术材料的选择和心血管补片材料的研发具有一定意义。
Keywords: 补片材料, 生物材料, 组织工程材料, 心血管手术
Abstract
The cardiovascular patch, served as artificial graft materials to replace heart or vascular tissue defect, is still playing a key role in cardiovascular surgeries. The defects of traditional cardiovascular patch materials may determine its unsatisfactory long-term effect or fatal complications after surgery. Recent studies on many new materials (such as tissue engineered materials, three-dimensional printed materials, etc) are being developed. Patch materials have been widely used in clinical procedures of cardiovascular surgeries such as angioplasty, cardiac atrioventricular wall or atrioventricular septum repair, and valve replacement. The clinical demand for better cardiovascular patch materials is still urgent. However, the cardiovascular patch materials need to adapt to normal coagulation mechanism and durability, promote short-term endothelialization after surgery, and inhibit long-term postoperative intimal hyperplasia, its research and development process is relatively complicated. Understanding the characteristics of various cardiovascular patch materials and their application in cardiovascular surgeries is important for the selection of new clinical surgical materials and the development of cardiovascular patch materials.
Keywords: patch materials, biomaterials, tissue engineering materials, cardiovascular surgery
在中国人口老龄化的背景下,心血管疾病患病率处于持续上升阶段。2019年中国农村、城市心血管疾病死亡分别占总死亡原因的46.74%和44.26%,患病人数约达3.3亿[1]。心血管疾病也是全球死亡的主要原因,心血管手术量每年都在增加[2]。目前,心血管补片作为替代心血管缺损部分的重要人工移植物,在心血管手术中应用广泛,起至关重要的作用。传统的补片材料包括合成材料[聚对苯二甲酸乙二酯纤维(又称涤纶)、聚四氟乙烯等]和生物材料(心包补片、血管壁材料等)[3-4],其存在的不足可能导致心血管手术后长期效果不理想甚至某些致命的并发症。目前组织工程材料或三维(three dimensions,3D)打印材料等新型材料也在研发中,但距离其实际的临床应用仍存在一定距离[5-6]。补片材料需要与血液长期接触[7-9],因此对血液相容性要求较高[3]。本文就补片材料及其特点,以及其在心血管疾病手术中的应用进行总结,旨在为补片材料的研发提供一些线索和思路。
1. 补片材料及特点
1.1. 合成材料
1.1.1. 涤纶补片
20世纪50年代,人们使用涤纶材料作为血管移植物[4]。涤纶具有质地薄、张力和弹性强、易修整、相容性好、稳定且不易变质等优点[10-12],可以用于加固血管吻合部位[13],被作为补片材料在心血管手术中广泛应用[14]。但涤纶不够柔软,容易产生皱褶[15],修复后易引起吻合口变形,导致血栓栓塞、溶血和感染等并发症,且自愈的可能性低[16]。通过浸渍肝素-聚对苯二甲酸或胶原蛋白等药物,涤纶补片可获得抗血栓和抗内皮细胞增殖的特性[17]。通过结合银离子可以有效控制感染、高效止血,并加强对薄弱血管的机械支撑[18]。0.25%~0.50%的涤纶补片移植会导致在移植术后的早期或晚期出现炎症[19],长期炎症可能导致吻合口血肿形成等并发症[20]。对于一些年轻的动脉疾病患者,由于其大隐静脉可能用于以后的心脏或外周搭桥手术,因此不能使用自体血管壁作为补片,在此情况下,涤纶补片是最佳的选择[21]。也有学者认为,术后血栓形成与患者本身有关,而与补片类型无关[18]。
1.1.2. 聚四氟乙烯补片
聚四氟乙烯是一种应用较多的补片材料,但其存在内皮化慢、血栓发生率高和通畅率低等缺点[2-3, 22],特别是在小直径移植物中,这些缺点更为凸显。也有研究[13]发现聚四氟乙烯补片具有抗血栓形成和支持再内皮化的能力,但这一点仍需更多实验数据支持。研究[23]发现与心包补片组相比,聚四氟乙烯补片术后患者组对正性肌力药的需求较少。聚四氟乙烯补片可以通过药物涂层或与某些药物或分子交联,达到降低术后血栓发生率等效果[24]。Rizwan等[22]开发了1种一锅法,通过靶向交联三偏磷酸钠-聚乙烯醇[sodium trimetaphosphate-poly(vinyl alcohol),STMP-PVA]水凝胶上的残留羟基,使用羰基二咪唑进行羟基-胺偶联,从而结合细胞黏附蛋白,使原代人脐血管内皮细胞更易黏附于STMP-PVA水凝胶上,且其细胞活力和扩散能力显著增加。该研究提示STMP-PVA水凝胶有望作为小直径血管移植物治疗心血管疾病。Bui等[2]研究发现:透明质酸可以与聚四氟乙烯稳定结合,经透明质酸处理后,聚四氟乙烯亲水性增加,血液凝固和血小板活化减少,而其弹性模量、拉伸强度、屈服应力和极限应变等拉伸性能不会改变。在颈动脉内膜切除术中,聚四氟乙烯补片的止血时间比静脉补片或涤纶补片长,而长期病死率、脑卒中率、再狭窄率、手术时长和康复时间相似[25]。
1.2. 生物材料
1.2.1. 自体心包补片
20世纪60年代后期,人类自体心包补片开始被用于主动脉瓣的重建手术[26]。自体心包补片引起感染和血栓形成的风险较低[27-28],且组织相容性较高,术后无需终生使用肝素、华法林等抗凝药物,可以有效降低移植物相关吻合口出血和血栓形成的发生率。此外,心包补片表现出更好的细胞渗透性和保留性[29],是血管重建的理想移植物。但未经处理的自体心包组织会发生增厚和收缩,导致结构和功能退化,因此早期应用时治疗效果并不显著,并需要再次手术治疗[30]。戊二醛处理可以使心包组织具有更大的回缩阻力,使其保持内在柔韧性,并可以通过组织蛋白的交联稳定其形状[4, 31],降低心包的抗原性及血栓发生率,并增加其抗酶解能力[32]。研究[24]表明使用戊二醛处理后的心包组织内皮化程度较高,但会发生一定程度的细胞死亡,核损伤,细胞代谢活性降低,细胞膜通透性增加,炎症因子释放增加。戊二醛处理也可能与术后钙化过程相关[33-34],而新鲜的自体心包可能可以避免这一过程,并能长期地维持瓣膜功能。Quinn等[35]使用超声心动图评估接受新鲜自体心包进行二尖瓣修复的患者的瓣膜功能。结果显示:移植后新鲜自体心包的柔韧性没有显著变化,部分发生轻度钙化,其中少部分患者发生复发性严重二尖瓣关闭不全,再次手术时,补片柔韧,无钙化,厚度与相邻的原生小叶相当,没有观察到斑块裂开、回缩或动脉瘤情况,且10年免再手术率和存活率与戊二醛处理或使用牛心包贴片修复相当。所以使用自体心包补片时是否需要使用戊二醛处理,或什么情况下需要处理仍需进一步探索。
1.2.2. 同种异体移植物
同种异体移植物包括同种异体心包及动脉壁等。其具有血流动力学性能稳定,抗感染能力强,血栓形成及栓塞发生率低的优点[36],且止血效果好,免疫原性较低,弹性好,可以满足一些轮廓不规则部位的需要[37-38]。发生自体组织供给不足或不可使用的情况时,同种异体移植物可以作为安全的替代材料。但同种异体心包的使用也受到一定的限制。市面上的同种异体心包材料不稳定或较为昂贵,并且在缺乏低温保存设施的机构中使用抗生素保存时,其保质期短[39]。作为非自体来源的组织,增加了病原体传播[39]、炎症或免疫反应的潜在风险[40]。同种异体动脉壁容易受到不同压力的影响而发生尺寸的变化,这种变化是较难预测的,可能会影响手术的远期效果[4]。与同种异体肺动脉移植物相比,同种异体主动脉移植物更容易发生钙化和阻塞[36]。药物涂层处理可能达到更满意的效果。Prat-Vidal等[41]针对一种结合间充质干细胞的载药生物移植物进行了实验研究,结果发现该材料方便储存并易于使用(其使用不需要进行宿主免疫抑制),并且表现出核型稳定、免疫调节活性高、肿瘤发生率低及增殖和分化潜力低等优点。Musilkova等[42]研究发现:与京尼平弱交联并通过纤维蛋白和纤连蛋白涂层进行修饰的心包材料,可以获得最高程度的细胞活力,从而促进人心脏同种异体移植物或异种移植物的内皮化。
1.2.3. 异种移植物
最常见的异种移植物是猪主动脉瓣和牛心包[43]。作为一种实心组织,牛心包具有可靠的加工一致性及适合手术处理的特性,如缝合出血较少,没有空气间隙,植入后能够在血管成形术部位立即进行动脉双功能彩色超声的检查[44-45]。Lu等[46]使用猪和牛的脏胸膜作为补片材料,发现其克服了合成补片顺应性差的缺点,并具有非血栓形成表面,有利于保持血管通畅,但异种移植物带来的免疫反应和与戊二醛残留物的结合可能在短时间内导致更为严重的钙化[39, 47]。脱细胞处理可以减轻补片材料的免疫反应,降低病原体传播和炎症发生的风险[48],还可以维持人间充质干细胞、内皮细胞的活力和增殖能力,从而与宿主较好地融合[49],促进宿主细胞渗透进入脱细胞补片,促进心血管形成[50],但这可能会改变天然细胞外基质的组成和行为[51-52]。因此脱细胞是否会改变心包组织的机械性能(如渗透性、顺应性及刚度等)仍需进一步讨论[37, 53]。Baird等[54]报道一种染料介导光氧化的方法,该方法通过交联心包胶原,机械抗拉伸,可以替代戊二醛化学处理,使补片具有较好的生物稳定性,同时避免晚期钙化和细胞毒性。异种移植心包组织钙化的趋势受到植入部位、移植物所替代的功能及与宿主血液和心内膜接触程度的影响[47]。其中,作为左心房壁补片时钙化程度最高,作为心包修补材料时钙化程度最低,作为二尖瓣腱索替代物时钙化程度居中[46]。在Ditkowski等[55]的研究中,牛心包补片与脱细胞同种异体移植物及冷冻保存的同种异体移植物相比,被证实是最容易发生细菌黏附的组织移植物。
1.3. 新型材料
1.3.1. 组织工程材料
理想的组织工程材料应具备来源充足、易于操作、生物相容性好、顺应性高、经久耐用、抗原性低,血栓形成和扩张成瘤倾向风险低的特点,以及一定的韧性和抗拉伸性,并且不易与周围组织粘连[56-58],最好能达到与同源天然组织相匹配的机械强度。经多步ADAPT®工艺(脱脂、脱细胞、脱核、固定和解毒)处理的CardioCel补片,具有机械性能保留时间长、不易发生钙化的优点[59-60]。组织工程心脏瓣膜可能可以随着患者的成长而生长、重塑和自我修复,且不会引起血栓形成并具有良好的抗感染特性[61]。另外,可降解材料使宿主的感染风险降低,允许宿主组织向内生长且粘连形成更少[62],具有广泛的机械性能和良好的生物相容性,易于定制以适应天然组织的特殊需求[63-64],并可减少血小板沉积,从而抑制动脉瘤或血栓形成[65],因此作为组织工程材料受到广泛关注。目前,可降解材料包括聚己内酯、聚癸二酸甘油酯、聚乳酸-羟基乙酸共聚物、聚氨酯(polyurethane,PU)、聚左旋乳酸和ε-己内酯/L-丙交酯等。选择适当的降解速率对于设计此类补片至关重要。研究[66]发现降解速率快的移植物显著促进内皮细胞增生。而且长时间的降解可能引发持续的异物反应,进而产生钙沉积和增加补片刚度,导致与自体血管的顺应性不匹配、血流动力学不利的变化,从而增加血管纤维化或狭窄的风险[67-68]。Fujimoto等[69]将聚酯聚氨酯脲(polyester urethane urea,PEUU)补片植入心肌梗死大鼠的左心室后,发现可以保留左心室的几何形状并改善其收缩功能,PEUU可通过降解避免感染、钙化等潜在并发症。PEUU还具备一定的载药能力,可辅助药物达到更好的治疗效果[70]。
1.3.2. 3D打印材料
目前发现PU瓣膜血流动力学稳定、钙化程度低、血栓发生率低[32],且孔隙率高、内在柔韧性好,具有机械性能灵活,降解速度快,以及利于新组织长入的特点[71-72]。研究[3]表明该材料可以引起早期内皮化,但这种作用并不持久。
1.3.3. 其他材料
Zhu等[73]研发了一种类心包补片结构,即在心包内注射生物相容性水凝胶,利用心包腔作为原位心脏补片形成的天然“模具”,有效且安全地递送含有祖细胞或间充质干细胞衍生的外泌体,减轻免疫反应并延长治疗药物在心脏的潴留时间,抑制心肌重塑并改善心肌梗死后的心脏功能,从而达到较好的治疗效果。另外,家蚕丝素蛋白可能是小直径血管移植物的优良材料[74]。Maleckis等[75]开发了一种具有动脉调谐非线性顺应性的弹性纳米纤维移植物,这种材料可以较好地维持类似动脉的机械性能且在实验中显现出更好的愈合反应。
1.3.4. 补片与载药纳米颗粒
在血管疾病治疗过程中,直接给药方式具有一定的局限性(如药物容易快速洗脱、靶部位血浆半衰期短和严重的全身性不良反应)。目前纳米技术的进步为血管疾病和癌症等各种疾病的早期发现、预防和治疗提供了良好的手段[76]。在药物递送系统(如聚合物纳米载体、脂质体纳米载体、树枝状大分子、纳米凝胶)中,只有聚合物和脂质体纳米载体已被广泛研究用于血管疾病的药物递送,它们具有高度的生物相容性和生物可降解性,并有可能进行多种表面修饰和高药物封装。相比之下,聚合物纳米颗粒具有作用效果更持久、药物包裹性更好的优点[77-78]。不同的纳米粒子作用效果不同[79],纳米材料的体内动力学主要取决于粒径[80]。
2. 补片材料在心血管手术中的应用
2.1. 血管成形术
在血管成形术中,自体大隐静脉是最常见的补片材料类型,其次是自体心包[81],体外循环和上腔静脉重建时,也可以使用牛心包补片[82]。补片移植术后患者发生脑卒中或死亡、动脉闭塞、门静脉节段性狭窄或血栓形成等的风险均降低[83-86],并且可能可以替代冠脉旁路移植术用于治疗孤立开口左冠状动脉主干狭窄[12, 87]。补片修补在儿童中也得到了很好的应用。1例永存左上腔静脉伴右上腔静脉缺如,合并房间隔缺损的6岁女性患儿使用新鲜的自体心包补片修补房间隔缺损后恢复良好[88]。在Fontan手术中使用补片可以维持较好的中期开窗通畅率,从而降低了Fontan术后并发症的风险[89-90]。然而,这一方法仍需积累更多的治疗经验以进行长期评估。此外,心包补片还可用于封堵某些瘘口,如动脉导管未闭[91]、冠状动脉瘘的瘘口[92]等。
2.2. 心脏房室壁或房室间隔修补术
补片材料可以用于心包或心脏肿瘤患者的房室壁或房室间隔修补[93-95],修复心肌梗死后的室间隔破裂[3, 96],改善心室功能[20],或用于左心耳封闭术治疗房颤[97],该方法安全有效,出血风险低。近年来使用双层或多层补片治疗心血管疾病的案例逐渐增加,3层补片可以使缺损完整而持久地闭合,并且保证了对缝合应力的抵抗力,降低了渗漏和血栓形成的风险[98-99]。自体心包补片可用于封闭婴儿孤立性室间隔缺损,其治疗效果与涤纶补片相当。使用自体心包时术后即刻轻微或少量残余室间隔缺损的发生率较高,但这种差异会随着时间的推移而消失[100]。自体心包补片可能可以允许宿主组织生长[101],但仍未被证实,因此对于婴幼儿来说,需要进一步研究最佳手术时机。Sadeghi等[102]认为对于病情稳定的患儿,可在2~3岁前进行全修复,病死率最低;对于患有严重充血性心力衰竭的患儿,应考虑早期纠正;对于主动脉缩窄的患儿,需要在心内修补前切除。
2.3. 瓣膜置换术
使用补片进行瓣膜置换可以用治疗感染性心内膜炎等疾病,自体心包是作为瓣膜替代物的良好选择[103],其血流动力学较为稳定[104-105],有望降低术后发生心衰的风险[106],但瓣膜钙化、缝合部位破裂、感染风险较高[107-109],可能导致瓣膜置换术后1年生存率较低[110],住院率和晚期病死率较高[111-112]。
3. 结 语
补片材料作为替代心血管缺损部分的人工移植物已广泛应用于心血管手术中。除传统的合成材料和生物材料外,组织工程材料、3D打印材料等新型材料也在持续研发中,并在临床应用中显示出巨大潜力。但目前没有证据证明何种补片材料治疗效果为最佳,每种补片材料均具有其优势和劣势,血栓形成、钙化、感染等近、远期并发症仍然是材料开发过程中急需解决的难题。另外,在治疗中要达到理想的手术效果及远期治疗效果,需考虑患者的实际情况。组织工程或生物材料结合纳米颗粒载药技术、药物涂层或分子交联技术可能是未来补片材料发展的方向。
基金资助
国家自然科学基金(82120108005)。
This work was supported by the National Natural Science Foundation of China (82120108005).
利益冲突声明
作者声称无任何利益冲突。
作者贡献
邵茹冰 文献收集及论文撰写;李杰华、王伦常 论文审阅、修订;李鑫、舒畅 论文指导。所有作者阅读并同意最终的文本。
原文网址
http://xbyxb.csu.edu.cn/xbwk/fileup/PDF/202302285.pdf
参考文献
- 1. 中国心血管健康与疾病报告编写组 . 中国心血管健康与疾病报告2021概要[J]. 中国循环杂志, 2022, 37(6): 553-578. 10.3969/j.issn.1000-3614.2022.06.001. [DOI] [Google Scholar]; The Writing Committee of the Report on Cardiovascular Health and Diseases in China . Report on cardiovascular health and diseases in China 2021: an updated summary. Chinese Circulation Journal, 2022, 37(6): 553-578. 10.3969/j.issn.1000-3614.2022.06.001. [DOI] [Google Scholar]
- 2. Bui HT, Friederich AR, Li E, et al. Hyaluronan enhancement of expanded polytetrafluoroethylene cardiovascular grafts[J]. J Biomater Appl, 2018, 33(1): 52-63. 10.1177/0885328218776807. [DOI] [PubMed] [Google Scholar]
- 3. De Martino A, Milano AD, Bortolotti U. Use of pericardium for cardiac reconstruction procedures in acquired heart diseases-a comprehensive review[J]. Thorac Cardiovasc Surg, 2021, 69(1): 83-91. 10.1055/s-0039-1697918. [DOI] [PubMed] [Google Scholar]
- 4. Talwar S, Das A, Siddarth B, et al. Patch materials for right ventricular outflow reconstruction: past, present, and future[J]. Indian J Thorac Cardiovasc Surg, 2019, 35(1): 41-50. 10.1007/s12055-017-0621-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5. Sohn SH, Kim TH, Kim TS, et al. Evaluation of 3D templated synthetic vascular graft compared with standard graft in a rat model: potential use as an artificial vascular graft in cardiovascular disease[J]. Materials (Basel), 2021, 14(5): 1239. 10.3390/ma14051239. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6. Iop L, Palmosi T, Dal Sasso E, et al. Bioengineered tissue solutions for repair, correction and reconstruction in cardiovascular surgery[J]. J Thorac Dis, 2018, 10(Suppl 20): S2390-S2411. 10.21037/jtd.2018.04.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7. Sun HR, Tang H, Song HB. Ball thrombus in the right atrium after patch closure of atrial septal defect[J/OL]. Heart Lung Circ, 2014, 23(6): e152-e153[2022-08-15]. 10.1016/j.hlc.2014.02.001. [DOI] [PubMed] [Google Scholar]
- 8. Mani MP, Jaganathan SK, Faudzi AAM, et al. Engineered electrospun polyurethane composite patch combined with bi-functional components rendering high strength for cardiac tissue engineering[J]. Polymers (Basel), 2019, 11(4): 705. 10.3390/polym11040705. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9. Sabade S, Vagrali A, Patil S, et al. Anaesthetic management of a child with “cor-triatriatum” and multiple ventricular septal defects - A rare congenital anomaly[J]. Indian J Anaesth, 2010, 54(3): 242-245. 10.4103/0019-5049.65375. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10. Vaideeswar P, Mishra P, Nimbalkar M. Infective endocarditis of the Dacron patch-a report of 13 cases at autopsy[J/OL]. Cardiovasc Pathol, 2011, 20(5): e169-e175[2022-08-15]. 10.1016/j.carpath.2010.07.001. [DOI] [PubMed] [Google Scholar]
- 11. Skulstad H, Erikssen G, Estensen ME, et al. Insufficient long term follow up and risk for aneurism in patients operated with Dacron patch for coarctatio aortae[J]. Eur Heart J, 2013, 34(suppl 1): P2117. 10.1093/eurheartj/eht308.p2117 [DOI] [Google Scholar]
- 12. Muto A, Nishibe T, Dardik H, et al. Patches for carotid artery endarterectomy: current materials and prospects[J]. J Vasc Surg, 2009, 50(1): 206-213. 10.1016/j.jvs.2009.01.062. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13. Mousa A, Abdelmohsen AA, Nasr MA, et al. Adjunctive proximal aortic and aortodistal prosthetic wrapping of vascular anastomoses for Adamantiadis-Behçet’s aortic/aortoiliac aneurysms: a revisit[J]. Asian J Surg, 2023, 46(1): 483-491. 10.1016/j.asjsur.2022.05.167. [DOI] [PubMed] [Google Scholar]
- 14. Deng M, Yang Q. Efficacy and safety of dacron patch in surgical treatment of congenital disease by echocardiography[J]. J Infect Public Health, 2020, 13(12): 2067-2071. 10.1016/j.jiph.2019.08.009. [DOI] [PubMed] [Google Scholar]
- 15. Knox G, West JP. Dacron grafts in the treatment of arteriosclerotic occlusion of the superficial femoral artery;report of seven cases[J]. Ann Surg, 1957, 145(1): 59-67. 10.1097/00000658-195701000-00005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16. Walhout RJ, Braam RL, Schepens MA, et al. Aortic aneurysm formation following coarctation repair by Dacron patch aortoplasty[J]. Neth Heart J, 2010, 18(7/8): 376-377. 10.1007/BF03091796. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17. Chou D, Tulloch A, Cossman DV, et al. The influence of collagen impregnation of a knitted Dacron patch used in carotid endarterectomy[J]. Ann Vasc Surg, 2017, 39: 209-215. 10.1016/j.avsg.2016.08.011. [DOI] [PubMed] [Google Scholar]
- 18. Hayes PD, Allroggen H, Steel S, et al. Randomized trial of vein versus Dacron patching during carotid endarterectomy: influence of patch type on postoperative embolization[J]. J Vasc Surg, 2001, 33(5): 994-1000. 10.1067/mva.2001.115005. [DOI] [PubMed] [Google Scholar]
- 19. Knight BC, Tait WF. Dacron patch infection following carotid endarterectomy: a systematic review of the literature[J]. Eur J Vasc Endovasc Surg, 2009, 37(2): 140-148. 10.1016/j.ejvs.2008.10.016. [DOI] [PubMed] [Google Scholar]
- 20. Alawy M, Tawfick W, ElKassaby M, et al. Late Dacron patch inflammatory reaction after carotid endarterectomy[J]. Eur J Vasc Endovasc Surg, 2017, 54(4): 423-429. 10.1016/j.ejvs.2017.06.015. [DOI] [PubMed] [Google Scholar]
- 21. Khwaja HA, Omotoso PO. Bifurcated Dacron patch for simultaneous superficial femoroplasty and profundoplasty: a case report[J]. J Med Case Rep, 2009, 3: 9294. 10.1186/1752-1947-3-9294. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22. Rizwan M, Yao Y, Gorbet MB, et al. One-pot covalent grafting of gelatin on poly(vinyl alcohol) hydrogel to enhance endothelialization and hemocompatibility for synthetic vascular graft applications[J]. ACS Appl Bio Mater, 2020, 3(1): 693-703. 10.1021/acsabm.9b01026. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23. Talwar S, Selvam M, Rajasekhar P, et al. Polytetrafluoroethylene patch versus autologous pericardial patch for right ventricular outflow tract reconstruction[J]. J Pract Cardiovasc Sci, 2016, 2(3): 175-180. 10.4103/2395-5414.201372. [DOI] [Google Scholar]
- 24. Wang D, Xu Y, Wang L, et al. Expanded poly(tetrafluoroethylene) blood vessel grafts with embedded reactive oxygen species (ROS)-responsive antithrombogenic drug for elimination of thrombosis[J]. ACS Appl Mater Interfaces, 2020, 12(26): 29844-29853. 10.1021/acsami.0c07868. [DOI] [PubMed] [Google Scholar]
- 25. Ren S, Li X, Wen J, et al. Systematic review of randomized controlled trials of different types of patch materials during carotid endarterectomy[J/OL]. PLoS One, 2013, 8(1): e55050[2022-08-15]. 10.1371/journal.pone.0055050. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26. Bjoerk VO, Hultquist G. Teflon and pericardial aortic valve prostheses[J]. J Thorac Cardiovasc Surg, 1964, 47(6): 693-701. 10.1016/S0022-5223(19)33497-X. [DOI] [PubMed] [Google Scholar]
- 27. D’Andrilli A, Ibrahim M, Venuta F, et al. Glutaraldehyde preserved autologous pericardium for patch reconstruction of the pulmonary artery and superior vena cava[J]. Ann Thorac Surg, 2005, 80(1): 357-358. 10.1016/j.athoracsur.2004.02.012. [DOI] [PubMed] [Google Scholar]
- 28. Spaggiari L, Leo F, Veronesi G, et al. Superior vena cava resection for lung and mediastinal malignancies: a single- center experience with 70 cases[J]. Ann Thorac Surg, 2007, 83(1): 223-229; discussion 229-230. 10.1016/j.athoracsur.2006.07.075. [DOI] [PubMed] [Google Scholar]
- 29. Perea-Gil I, Gálvez-Montón C, Prat-Vidal C, et al. Head-to-head comparison of two engineered cardiac grafts for myocardial repair: from scaffold characterization to pre-clinical testing[J]. Sci Rep, 2018, 8(1): 6708. 10.1038/s41598-018-25115-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30. Gardin C, Morciano G, Ferroni L, et al. Biological characterization of human autologous pericardium treated with the ozaki procedure for aortic valve reconstruction[J]. J Clin Med, 2021, 10(17): 3954. 10.3390/jcm10173954. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31. Hofferberth SC, Baird CW, Hoganson DM, et al. Mechanical properties of autologous pericardium change with fixation time: implications for valve reconstruction[J]. Semin Thorac Cardiovasc Surg, 2019, 31(4): 852-854. 10.1053/j.semtcvs.2019.03.001. [DOI] [PubMed] [Google Scholar]
- 32. Maizato MJ, Higa OZ, Mathor MB, et al. Glutaraldehyde- treated bovine pericardium: effects of lyophilization on cytotoxicity and residual aldehydes[J]. Artif Organs, 2003, 27(8): 692-694. 10.1046/j.1525-1594.2003.07275.x. [DOI] [PubMed] [Google Scholar]
- 33. Simionescu DT. Prevention of calcification in bioprosthetic heart valves: challenges and perspectives[J]. Expert Opin Biol Ther, 2004, 4(12): 1971-1985. 10.1517/14712598.4.12.1971. [DOI] [PubMed] [Google Scholar]
- 34. Schoen FJ, Levy RJ. Calcification of tissue heart valve substitutes: progress toward understanding and prevention[J]. Ann Thorac Surg, 2005, 79(3): 1072-1080. 10.1016/j.athoracsur.2004.06.033. [DOI] [PubMed] [Google Scholar]
- 35. Quinn RW, Wang L, Foster N, et al. Long-term performance of fresh autologous pericardium for mitral valve leaflet repair[J]. Ann Thorac Surg, 2020, 109(1): 36-41. 10.1016/j.athoracsur.2019.05.045. [DOI] [PubMed] [Google Scholar]
- 36. Youn YN, Park HK, Kim DK, et al. Mid-term results of reconstruction of the right ventricular outflow tract using cryopreserved homografts[J]. Yonsei Med J, 2007, 48(4): 639-644. 10.3349/ymj.2007.48.4.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37. Hruby J, Spunda R, Mericka P, et al. Influence of the new standardized clinical cryopreservation/slow thawing protocol on immunogenicity of arterial allografts in rats[J/OL]. PLoS One, 2020, 15(3): e0230234 [2022-08-15]. 10.1371/journal.pone.0230234. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38. Pukacki F, Jankowski T, Gabriel M, et al. The mechanical properties of fresh and cryopreserved arterial homografts[J]. Eur J Vasc Endovasc Surg, 2000, 20(1): 21-24. 10.1053/ejvs.2000.1120. [DOI] [PubMed] [Google Scholar]
- 39. Greenwald MA, Kuehnert MJ, Fishman JA. Infectious disease transmission during organ and tissue transplantation[J/OL]. Emerg Infect Dis, 2012, 18(8): e1[2022-08-15]. 10.3201/eid1808.120277. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40. Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes[J]. Biomaterials, 2011, 32(12): 3233-3243. 10.1016/j.biomaterials.2011.01.057. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41. Prat-Vidal C, Rodríguez-Gómez L, Aylagas M, et al. First-in-human PeriCord cardiac bioimplant: Scalability and GMP manufacturing of an allogeneic engineered tissue graft[J]. E Bio Medicine, 2020, 54: 102729. 10.1016/j.ebiom.2020.102729. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42. Musilkova J, Filova E, Pala J, et al. Human decellularized and crosslinked pericardium coated with bioactive molecular assemblies[J]. Biomed Mater, 2019, 15(1): 015008. 10.1088/1748-605X/ab52db. [DOI] [PubMed] [Google Scholar]
- 43. Rajput FA, Zeltser R. Aortic valve replacement[M]. Treasure Island(FL): StatPearls Publishing, 2022. [PubMed] [Google Scholar]
- 44. Li X, Guo Y, Ziegler KR, et al. Current usage and future directions for the bovine pericardial patch[J]. Ann Vasc Surg, 2011, 25(4): 561-568. 10.1016/j.avsg.2010.11.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45. Crawford FA, Sade RM, Spinale F. Bovine pericardium for correction of congenital heart defects[J]. Ann Thorac Surg, 1986, 41(6): 602-605. 10.1016/s0003-4975(10)63068-8. [DOI] [PubMed] [Google Scholar]
- 46. Lu X, Han L, Guo X, et al. Novel biomaterial for artery patch in swine model with high-fat diet[J]. Front Bioeng Biotechnol, 2021, 9: 679466. 10.3389/fbioe.2021.679466. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 47. Gabbay S, Bortolotti U, Factor S, et al. Calcification of implanted xenograft pericardium. Influence of site and function [J]. J Thorac Cardiovasc Surg, 1984, 87(5): 782-787. [PubMed] [Google Scholar]
- 48. Dohmen PM. Clinical results of implanted tissue engineered heart valves[J]. HSR Proc Intensive Care Cardiovasc Anesth, 2012, 4(4): 225-231. [PMC free article] [PubMed] [Google Scholar]
- 49. Guhathakurta S, Balasubramanian V, Ananthakrishnan B, et al. Thrombogenicity studies of three different variants of processed bovine pericardium[J]. IRBM, 2008, 29: 223-230. 10.1016/j.rbmret.2007.07.003. [DOI] [Google Scholar]
- 50. Shah M, Kc P, Zhang G. In vivo assessment of decellularized porcine myocardial slice as an acellular cardiac patch[J]. ACS Appl Mater Interfaces, 2019, 11(27): 23893-23900. 10.1021/acsami.9b06453. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 51. Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs[J]. Biomaterials, 2006, 27(19): 3675-3683. 10.1016/j.biomaterials.2006.02.014. [DOI] [PubMed] [Google Scholar]
- 52. Wollmann L, Suss P, Mendonça J, et al. Characterization of decellularized human pericardium for tissue engineering and regenerative medicine applications[J]. Arq Bras Cardiol, 2019, 113(1): 11-17. 10.5935/abc.20190094. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53. Min BJ, Kim YJ, Choi JW, et al. Histologic characteristics and mechanical properties of bovine pericardium treated with decellularization and α-galactosidase: a comparative study[J]. Korean J Thorac Cardiovasc Surg, 2012, 45(6): 368-379. 10.5090/kjtcs.2012.45.6.368. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 54. Baird CW, Myers PO, Piekarski B, et al. Photo-oxidized bovine pericardium in congenital cardiac surgery: single-centre experience[J]. Interact Cardiovasc Thorac Surg, 2017, 24 (2): 240-244. 10.1093/icvts/ivw315. [DOI] [PubMed] [Google Scholar]
- 55. Ditkowski B, Leeten K, Jashari R, et al. Staphylococcus aureus adheres avidly to decellularised cardiac homograft tissue in vitro in the fibrinogen-dependent manner[J]. Cardiol Young, 2020, 30(12): 1783-1787. 10.1017/S1047951120002772. [DOI] [PubMed] [Google Scholar]
- 56. Wang F, Xue Y, Zhao SS, et al. Suturing-free artificial dura with Dacron heart patch in decompressive craniectomy and cranioplasty[J]. Indian J Surg, 2015, 77(Suppl 3): 1008-1011. 10.1007/s12262-014-1111-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 57. Matteucci ML, Rescigno G, Capestro F, et al. Aortic arch patch aortoplasty for Ortner’s syndrome in the age of endovascular stented grafts[J]. Tex Heart Inst J, 2012, 39(3): 401-404. [PMC free article] [PubMed] [Google Scholar]
- 58. Koduganti SC, Maddury J, Patnaik A, et al. Balloon mitral valvuloplasty by antegrade technique in a postoperative patient who underwent Dacron patch closure of ASD[J]. Indian Heart J, 2006, 58(1): 68-69. [PubMed] [Google Scholar]
- 59. Brizard CP, Brink J, Horton SB, et al. New engineering treatment of bovine pericardium confers outstanding resistance to calcification in mitral and pulmonary implantations in a juvenile sheep model[J]. J Thorac Cardiovasc Surg, 2014, 148(6): 3194-3201. 10.1016/j.jtcvs.2014.08.002. [DOI] [PubMed] [Google Scholar]
- 60. Neethling W, Brizard C, Firth L, et al. Biostability, durability and calcification of cryopreserved human pericardium after rapid glutaraldehyde-stabilization versus multistep ADAPT(R) treatment in a subcutaneous rat model[J/OL]. Eur J Cardiothorac Surg, 2014, 45(4): e110-e117 [2022-08-15]. 10.1093/ejcts/ezt623. [DOI] [PubMed] [Google Scholar]
- 61. Geelhoed WJ, Moroni L, Rotmans JI. Utilizing the foreign body response to grow tissue engineered blood vessels in vivo [J]. J Cardiovasc Transl Res, 2017, 10(2): 167-179. 10.1007/s12265-017-9731-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 62. Hashizume R, Hong Y, Takanari K, et al. The effect of polymer degradation time on functional outcomes of temporary elastic patch support in ischemic cardiomyopathy[J]. Biomaterials, 2013, 34(30): 7353-7363. 10.1016/j.biomaterials.2013.06.020. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 63. McMahan S, Taylor A, Copeland KM, et al. Current advances in biodegradable synthetic polymer based cardiac patches[J]. J Biomed Mater Res A, 2020, 108(4): 972-983. 10.1002/jbm.a.36874. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 64. Guan J, Sacks MS, Beckman EJ, et al. Synthesis, characterization, and cytocompatibility of elastomeric, biodegradable poly(ester-urethane)ureas based on poly(caprolactone) and putrescine[J]. J Biomed Mater Res, 2002, 61(3): 493-503. 10.1002/jbm.10204. [DOI] [PubMed] [Google Scholar]
- 65. Fujimoto KL, Guan J, Oshima H, et al. In vivo evaluation of a porous, elastic, biodegradable patch for reconstructive cardiac procedures[J]. Ann Thorac Surg, 2007, 83(2): 648-654. 10.1016/j.athoracsur.2006.06.085. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 66. Sugiura T, Tara S, Nakayama H, et al. Fast-degrading bioresorbable arterial vascular graft with high cellular infiltration inhibits calcification of the graft[J]. J Vasc Surg, 2017, 66(1): 243-250. 10.1016/j.jvs.2016.05.096. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 67. Agarwal R, Blum KM, Musgrave A, et al. Degradation and in vivo evaluation of polycaprolactone, poly(ε-caprolactone-co-L- lactide), and poly-L-lactic acid as scaffold sealant polymers for murine tissue-engineered vascular grafts[J]. Regen Med, 2019, 14(7): 627-637. 10.2217/rme-2018-0069. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 68. Miller KS, Khosravi R, Breuer CK, et al. A hypothesis-driven parametric study of effects of polymeric scaffold properties on tissue engineered neovessel formation[J]. Acta Biomater, 2015, 11: 283-294. 10.1016/j.actbio.2014.09.046. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 69. Fujimoto KL, Tobita K, Merryman WD, et al. An elastic, biodegradable cardiac patch induces contractile smooth muscle and improves cardiac remodeling and function in subacute myocardial infarction[J]. J Am Coll Cardiol, 2007, 49(23): 2292-2300. 10.1016/j.jacc.2007.02.050. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 70. Hong Y, Ye SH, Pelinescu AL, et al. Synthesis, characterization, and paclitaxel release from a biodegradable, elastomeric, poly (ester urethane) urea bearing phosphorylcholine groups for reduced thrombogenicity[J]. Biomacromolecules, 2012, 13(11): 3686-3694. 10.1021/bm301158j. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 71. Wainwright JM, Hashizume R, Fujimoto KL, et al. Right ventricular outflow tract repair with a cardiac biologic scaffold [J]. Cells Tissues Organs, 2012, 195(1/2): 159-170. 10.1159/000331400. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 72. Remlinger NT, Gilbert TW, Yoshida M, et al. Urinary bladder matrix promotes site appropriate tissue formation following right ventricle outflow tract repair[J]. Organogenesis, 2013, 9(3): 149-160. 10.4161/org.25394. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 73. Zhu D, Li Z, Huang K, et al. Minimally invasive delivery of therapeutic agents by hydrogel injection into the pericardial cavity for cardiac repair[J]. Nat Commun, 2021, 12(1): 1412. 10.1038/s41467-021-21682-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 74. Asakura T, Tanaka T, Tanaka R. Advanced silk fibroin biomaterials and application to small-diameter silk vascular grafts[J]. ACS Biomater Sci Eng, 2019, 5(11): 5561-5577. 10.1021/acsbiomaterials.8b01482. [DOI] [PubMed] [Google Scholar]
- 75. Maleckis K, Kamenskiy A, Lichter EZ, et al. Mechanically tuned vascular graft demonstrates rapid endothelialization and integration into the porcine iliac artery wall[J]. Acta Biomater, 2021, 125: 126-137. 10.1016/j.actbio.2021.01.047. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 76. Agyare E, Kandimalla K. Delivery of polymeric nanoparticles to target vascular diseases[J]. J Biomol Res Ther, 2014, 3(1): S1-S001. 10.4172/2167-7956.s1-001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 77. Gupta AS. Nanomedicine approaches in vascular disease: a review[J]. Nanomedicine, 2011, 7(6): 763-779. 10.1016/j.nano.2011.04.001. [DOI] [PubMed] [Google Scholar]
- 78. Ding BS, Dziubla T, Shuvaev VV, et al. Advanced drug delivery systems that target the vascular endothelium[J]. Mol Interv, 2006, 6(2): 98-112. 10.1124/mi.6.2.7. [DOI] [PubMed] [Google Scholar]
- 79. Wang L, Xin X, Li P, et al. Stepwise immobilization of keratin- dopamine conjugates and gold nanoparticles on PET sheets for potential vascular graft with the catalytic generation of nitric oxide[J]. Colloids Surf B Biointerfaces, 2021, 205: 111855. 10.1016/j.colsurfb.2021.111855. [DOI] [PubMed] [Google Scholar]
- 80. Koga J, Matoba T, Egashira K. Anti-inflammatory nanoparticle for prevention of atherosclerotic vascular diseases[J]. J Atheroscler Thromb, 2016, 23(7): 757-765. 10.5551/jat.35113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 81. Sepehripour AH, Harling L, Ashrafian H, et al. Pediatric applications of surgical patch angioplasty of the main coronary trunks[J]. World J Pediatr Congenit Heart Surg, 2014, 5(2): 283-290. 10.1177/2150135113508795. [DOI] [PubMed] [Google Scholar]
- 82. Morales MM, Anacleto A, Ferreira Leal JC, et al. Saccular superior vena cava aneurysm: case report and comprehensive review[J/OL]. Ann Vasc Surg, 2021, 72: 666.e23-666. e32[2022-08-10]. 10.1016/j.avsg.2020.10.033. [DOI] [PubMed] [Google Scholar]
- 83. Bond R, Rerkasem K, AbuRahma AF, et al. Patch angioplasty versus primary closure for carotid endarterectomy[J]. Cochrane Database Syst Rev, 2004(2): CD000160. 10.1002/14651858.CD000160.pub2. [DOI] [PubMed] [Google Scholar]
- 84. Jara M, Malinowski M, Bahra M, et al. Bovine pericardium for portal vein reconstruction in abdominal surgery: a surgical guide and first experiences in a single center[J]. Dig Surg, 2015, 32(2): 135-141. 10.1159/000370008. [DOI] [PubMed] [Google Scholar]
- 85. Ho KJ, Nguyen LL, Menard MT. Intermediate-term outcome of carotid endarterectomy with bovine pericardial patch closure compared with Dacron patch and primary closure[J]. J Vasc Surg, 2012, 55(3): 708-714. 10.1016/j.jvs.2011.10.007. [DOI] [PubMed] [Google Scholar]
- 86. Olsen SB, Mcquinn WC, Feliciano P. Results of carotid endarterectomy using bovine pericardium patch closure, with a review of pertinent literature[J]. Am Surg, 2016, 82(3): 221-226. [PubMed] [Google Scholar]
- 87. Harling L, Sepehripour AH, Ashrafian H, et al. Surgical patch angioplasty of the left main coronary artery[J]. Eur J Cardiothorac Surg, 2012, 42(4): 719-727. 10.1093/ejcts/ezs324. [DOI] [PubMed] [Google Scholar]
- 88. Luo ZQ, Liu KY, Han Z, et al. Surgical management of persistent left superior vena cava associated with an absent right superior vena cava[J]. J Card Surg, 2012, 27(1): 117-118. 10.1111/j.1540-8191.2011.01376.x. [DOI] [PubMed] [Google Scholar]
- 89. Guariento A, Pradegan N, Castaldi B, et al. Modified extracardiac Fontan with a fenestrated pericardial patch[J]. J Card Surg, 2020, 35(7): 1618-1620. 10.1111/jocs.14595. [DOI] [PubMed] [Google Scholar]
- 90. Tchervenkov CI, Chedrawy EG, Korkola SJ. Fontan operation for patients with severe distal pulmonary artery stenosis, atresia, or a single lung[J]. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu, 2002, 5: 68-75. 10.1053/pcsu.2002.31505. [DOI] [PubMed] [Google Scholar]
- 91. Hosono M, Suehiro S, Shibata T, et al. Surgical treatment for patient ductus arteriosus in an aged patient[J]. Nihon Kyobu Geka Gakkai Zasshi, 1996, 44(12): 2200-2204. [PubMed] [Google Scholar]
- 92. Tsukamoto S, Shiono M, Orime Y, et al. Congenital coronary artery fistula treated surgically in the right atrium and the atrial septum[J]. Ann Thorac Cardiovasc Surg, 1998, 4(6): 359-362. [PubMed] [Google Scholar]
- 93. Dobritoiu F, Moldovan H, Oncica R, et al. Giant cavernous hemangioma of the right atrium-A rare case and literature review[J]. Chirurgia (Bucur), 2020, 115(2): 267-273. 10.21614/chirurgia.115.2.267. [DOI] [PubMed] [Google Scholar]
- 94. Takagi M, Kugimiya T, Fujii T, et al. Extensive surgery for primary malignant lymphoma of the heart[J]. J Cardiovasc Surg (Torino), 1992, 33(5): 570-572. [PubMed] [Google Scholar]
- 95. Stiru O, Geana RC, Nayyerani R, et al. Endoventricular pericardial patch repair of a giant left posterior ventricular aneurysm[J]. In Vivo, 2021, 35(3): 1901-1905. 10.21873/invivo.12455. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 96. Asai T. Postinfarction ventricular septal rupture: can we improve clinical outcome of surgical repair?[J]. Gen Thorac Cardiovasc Surg, 2016, 64(3): 121-130. 10.1007/s11748-015-0620-1. [DOI] [PubMed] [Google Scholar]
- 97. Ginty OK, Khaliel FH, Adams C, et al. Pericardial patch exclusion technique for left atrial appendage closure[J]. Innovations (Phila), 2018, 13(2): 144-146. 10.1097/IMI.0000000000000484. [DOI] [PubMed] [Google Scholar]
- 98. Pacini D, Costantino A, Votano D, et al. Postinfarction posterobasal ventricular septal defect closure with a triple-layer patch[J]. Multimed Man Cardiothorac Surg, 2021, 2021. 10.1510/mmcts.2021.011. [DOI] [PubMed] [Google Scholar]
- 99. Simek M, Steriovsky A, Kalab M. A double Dacron patch repair for right ventricle rupture during negative-pressure wound therapy of deep sternal wound infection[J]. Asian Cardiovasc Thorac Ann, 2021, 29(1): 47-48. 10.1177/0218492320957813. [DOI] [PubMed] [Google Scholar]
- 100. Desai MH, Hachana S, Bukhari SM, et al. A comparison of autologous pericardium with DacronTM for closure of ventricular septal defect in infants[J/OL]. Eur J Cardiothorac Surg, 2022, 62(4): ezac022[2022-08-15]. 10.1093/ejcts/ezac022. [DOI] [PubMed] [Google Scholar]
- 101. Amórtegui HLR, Cristancho JP, Donís-Gómez I. Tricuspid valve repair with autologous pericardium in a patient with infective endocarditis[J]. Braz J Cardiovasc Surg, 2021, 36(1): 137-139. 10.21470/1678-9741-2019-0287. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 102. Sadeghi AM, Laks H, Pearl JM. Primum atrial septal defect[J]. Semin Thorac Cardiovasc Surg, 1997, 9(1): 2-7. [PubMed] [Google Scholar]
- 103. Elsner M, Kasper W, Oelert H. Perforation eines rechtskoronaren sinus-valsalvae-aneurysmas in den rechten vorhof[J]. Dtsch Med Wochenschr, 2008, 120(50): 1728-1733. 10.1055/s-2008-1055534. [DOI] [PubMed] [Google Scholar]
- 104. Benedetto U, Sinha S, Dimagli A, et al. Aortic valve neocuspidization with autologous pericardium in adult patients: UK experience and meta-analytic comparison with other aortic valve substitutes[J]. Eur J Cardiothorac Surg, 2021, 60 (1): 34-46. 10.1093/ejcts/ezaa472. [DOI] [PubMed] [Google Scholar]
- 105. Krane M, Boehm J, Prinzing A, et al. Excellent hemodynamic performance after aortic valve neocuspidization using autologous pericardium[J]. Ann Thorac Surg, 2021, 111(1): 126-133. 10.1016/j.athoracsur.2020.04.108. [DOI] [PubMed] [Google Scholar]
- 106. Liu H, Liu S, Zaki A, et al. Pulmonary valve replacement in primary repair of tetralogy of Fallot in adult patients[J]. J Thorac Dis, 2020, 12(9): 4833-4841. 10.21037/jtd-20-1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 107. Hosseinpour AR, Adsuar-Gómez A, González-Calle A, et al. Follow-up of a simple method for aortic valve reconstruction with fixed pericardium in children[J]. Interact Cardiovasc Thorac Surg, 2017, 25(6): 983-984. 10.1093/icvts/ivx123. [DOI] [PubMed] [Google Scholar]
- 108. David TE. The use of pericardium in acquired heart disease: a review article[J]. J Heart Valve Dis, 1998, 7(1): 13-18. [PubMed] [Google Scholar]
- 109. Dervanian P, Acar C, Jebara VA, et al. Plastie mitrale pour fibrose endomyocardique chez un enfant atteint de leucémie aiguë avec hyperéosinophilie [Mitral valvuloplasty for endomyocardial fibrosis in a child with acute leukemia and hypereosinophilia][J]. Arch Mal Coeur Vaiss, 1991, 84(12): 1861-1864. [PubMed] [Google Scholar]
- 110. Defauw RJ, Tomšič A, van Brakel TJ, et al. A structured approach to native mitral valve infective endocarditis: is repair better than replacement?[J]. Eur J Cardiothorac Surg, 2020, 58(3): 544-550. 10.1093/ejcts/ezaa079. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 111. Chatterjee S, Bansal N, Ghosh R, et al. Mitral valve repair in children with rheumatic heart disease[J]. Indian J Thorac Cardiovasc Surg, 2021, 37(2): 175-182. 10.1007/s12055-020-00925-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 112. García-Rinaldi R, Becerra-Román I, Rosario C, et al. Replacement of an endocarditic bioprosthetic pulmonary valve with a monocusp cryopreserved pulmonary artery patch[J]. JTCVS Tech, 2021, 6: 68-70. 10.1016/j.xjtc.2021.01.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
