Skip to main content
Journal of Central South University Medical Sciences logoLink to Journal of Central South University Medical Sciences
. 2023 May 28;48(5):691–697. [Article in Chinese] doi: 10.11817/j.issn.1672-7347.2023.220481

癫痫后小脑萎缩模式的磁共振影像学表现

Magnetic resonance imaging features of cerebellar atrophy pattern after epilepsy

FENG Ximei 1,2, WANG Qian 1, JIN Hong 1, YANG Shuai 1, XING Wu 1,
Editor: 郭 征
PMCID: PMC10930401  PMID: 37539571

Abstract

Objective

Clinically, it has been found that some patients with epilepsy are accompanied by cerebellar atrophy that is inconsistent with symptoms, but the pattern of cerebellar atrophy after epilepsy and the role of cerebellar atrophy in the mechanism of epilepsy have not been elucidated. This study aims to explore the specific pattern of cerebellar atrophy after epilepsy via analyzing magnetic resonance images in patients with postepileptic cerebellar atrophy.

Methods

A total of 41 patients with epilepsy, who received the treatment in Xiangya Hospital of Central South University from January 2017 to January 2022 and underwent cranial MRI examination, were selected as the case group. The results of cranial MRI examination of all patients showed cerebellar atrophy. In the same period, 41 cases of physical examination were selected as the control group. General clinical data and cranial MRI results of the 2 groups were collected. The maximum area and signal of dentate nucleus, the maximum width of the brachium pontis, the maximum anterior-posterior diameter of the pontine, and the maximum transverse area of the fourth ventricle were compared between the 2 groups. The indexes with difference were further subjected to logistic regression analysis to clarify the characteristic imaging changes in patients with cerebellar atrophy after epilepsy.

Results

Compared with the control group, the maximum width of the brachium pontis and the maximum anterior-posterior diameter of the pontine were decreased significantly, the maximum transverse area of the fourth ventricle was increased significantly in the case group (all P<0.05). The difference in distribution of the low, equal, and high signal in dentate nucleus between the 2 groups was statistically significant (χ2=43.114, P<0.001), and the difference in the maximum area of dentate nucleus between the 2 groups was not significant (P>0.05). The maximum width of the brachium pontis [odds ratio (OR)=3.327, 95% CI 1.454 to 7.615, P=0.004] and the maximum transverse area of the fourth ventricle (OR=0.987, 95% CI 0.979 to 0.995, P=0.002) were independent factors that distinguished cerebellar atrophy after epilepsy from the normal control, while the anterior-posterior diameter of pontine (OR=1.456, 95% CI 0.906 to 2.339, P>0.05) was not an independent factor that distinguished them.

Conclusion

In MRI imaging, cerebellar atrophy after epilepsy is manifested as significant atrophy of the brachium pontis, significant enlargement of the fourth ventricle, and increased dentate nucleus signaling while insignificant dentate nucleus atrophy. This particular pattern may be associated with seizures and exacerbated pathological processes.

Keywords: epilepsy, cerebellar atrophy, dentate nucleus, brachium pontis, the fourth ventricle


癫痫作为最常见的神经系统慢性疾病之一,在很大程度上影响着人们的健康及生活质量[1]。临床上,部分癫痫患者可表现为不同程度的小脑萎缩,且往往与其双侧大脑半球萎缩不成比例。这一观点已被神经影像学研究[2]证实。研究者们从描述小脑萎缩的整体或者一侧体积缩小[2-4],到探索小脑分叶的灰质和/或白质体积改变[5],进而对部分癫痫综合征患者单个小脑叶和亚区域的改变进行深入分析[6-7]。这些研究多集中于小脑整体或小脑分叶的体积改变,而对小脑的重要功能结构关注较少。齿状核和桥臂不仅分别是小脑最大的灰质核团和白质纤维束,而且分别为大脑-小脑环路中最重要的中继站和大脑皮层与小脑信息沟通中最重要的白质纤维。因此,研究癫痫患者齿状核和桥臂的改变,对揭示小脑萎缩在癫痫发生中所扮演的角色具有重要意义。本研究回顾性分析癫痫患者小脑萎缩的MRI影像学特点,旨在明确癫痫患者发生小脑萎缩时特殊结构及其相应功能上的改变。

1. 对象与方法

1.1. 对象

本研究为回顾性研究,经中南大学湘雅医院医学伦理委员会批准(审批号:202206148),并豁免患者知情同意。收集2017年1月至2022年1月在中南大学湘雅医院(以下简称“我院”)临床确诊为癫痫且影像学诊断为小脑萎缩的患者共41例作为病例组,其中男20例,女21例;年龄17~54(34.61±10.28)岁。病例组纳入标准:年龄大于16岁;右利手;根据临床表现、视频脑电图,符合2014年国际抗癫痫联盟(International League Against Epilepsy,ILAE)的癫痫定义[8];接受T1加权成像(T1-weighted imaging,T1WI)及T2加权成像(T2-weighted imaging,T2WI)扫描,且由2位放射科高年资主治医生诊断为小脑萎缩。小脑萎缩定义为小脑半球及蚓部脑回变窄,脑沟增宽,小脑体积缩小。

选择同期在我院体检中心接受体检的人群作为对照组,共41例,男19例,女22例,年龄17~55(35.24±9.70)岁。对照组均为右利手,无神经系统疾病及其他重大全身系统性疾病,经MRI检查确认无小脑萎缩。

1.2. 方法

1.2.1. 设备及扫描参数

使用德国西门子Magnetom Prisma 3.0T MRI扫描仪及美国GE公司Signa HDxt 3.0T MRI扫描仪。常规采用自旋回波序列行颅脑矢状位T1WI、横轴位T1WI、横轴位T2WI扫描。T1WI扫描参数如下:脉冲重复时间(repeat time,TR)为1 800 ms,回波时间(echo time,TE)为15.0 ms,视野(field of view,FOV)为240 mm×240 mm,层厚为5 mm,层间距为1.5 mm。T2WI扫描参数如下:TR为2 110 ms,TE为3.18 ms,FOV为233 mm×233 mm,层厚为5 mm,层间距为1.5 mm。

1.2.2. 数据收集

收集病例组及对照组的颅脑矢状位T1WI、横轴位T1WI、横轴位T2WI扫描数据。采用3D-slicer软件(https://download.slicer.org/)在横轴位T1WI图像上手动勾画第四脑室最大横断位面积。第四脑室最大横断位面积定义为经过第四脑室顶点水平的横轴位第四脑室面积(图1A、1B);在横轴位T2WI图像上手动勾画齿状核最大面积(图1C),对小脑齿状核进行手工分割。在层厚为5 mm的图像上,齿状核通常在2~3个层面上可见。由于较多铁沉积,齿状核在T2WI上通常表现为低信号,记录齿状核信号。以桥臂的信号为基准,将齿状核的信号分为低、等、高3类。齿状核低信号定义为低于桥臂信号,且边缘清晰可见;等信号定义为接近桥臂信号,且难以识别齿状核边界;高信号定义为高于桥臂信号,且边缘清晰可见。各类齿状核的信号见图2。在横轴位T1WI图像上测量桥臂最大宽度,桥臂最大宽度为横轴位T1WI上垂直于桥臂走形的最宽处(图3);在矢状位T1WI图像上测量脑桥最大前后径,脑桥最大前后径为矢状位T1WI上脑桥前部最突出点至脑桥基底部的距离(图4)。以上所有数据均由2位放射科高年资主治医生在不同时间、同一机器上进行测量,结果取平均值。

图1.

图1

3D-slicer软件勾画第四脑室最大横断位面积(AB)及双侧小脑半球齿状核最大面积(C)的示意图

Figure 1 Schematic diagrams of the maximum area of the fourth ventricle (A, B) and the maximum area of the bilateral cerebellar hemisphere dentate nucleus (C) using 3D-slicer software

图2.

图2

MRI显示3类齿状核信号

Figure 2 MRI shows 3 kinds of signal in the dentate nucleus

A: Low signal. The signal in dentate nucleus is lower than the brachium pontis signal, and the edge is clearly visible. B: Equal signal. The signal in dentate nucleus is equal to the brachium pontis signal, and it is difficult to identify the dentate nucleus boundary. C: High signal. The signal in dentate nucleus is higher than the brachium pontis signal, and the edge is clearly visible.

图3.

图3

MRI显示桥臂最大宽度

Figure 3 MRI shows the maximum width of the brachium pontis

The widest point perpendicular to the brachium pontis on transverse T1WI scans.

图4.

图4

MRI显示脑桥最大前后径

Figure 4 MRI shows the maximum anterior-posterior diameter of the pontine

The distance from the most prominent point to the base of the pontine on the median sagittal T1WI scans.

1.3. 统计学处理

采用SPSS 26.0统计学软件分析数据,计量资料以均数±标准差( x¯ ±s)表示。对计量数据进行预处理后检验其正态性和方差齐性,组间差异对比采用两独立样本t检验或两独立样本秩和检验;分类数据采用Pearson χ2检验。为进一步明确癫痫后小脑萎缩患者发生改变的影像学指标,以病例组和对照组为因变量,单因素分析结果中差异有统计学意义的因素为自变量(齿状核信号由于与自变量高度相关,并未纳入该方程),进行二元logistics回归分析。P<0.05为差异具有统计学意义。

2. 结 果

2.1. 一般特征

病例组与对照组在性别、年龄上的差异均无统计学意义(分别P=0.825、P=0.767),具有可比性。病例组起病年龄为(18.73±13.43)岁,癫痫持续时间为(15.88±9.68)年。

2.2. 癫痫后小脑萎缩患者的影像学改变

与对照组比较,病例组的桥臂最大宽度、脑桥最大前后径明显减小,第四脑室最大横断位面积明显增加(均P<0.05);2组间低、等、高3类齿状核信号分布的差异有统计学意义(χ2=43.114,P<0.001),但齿状核最大面积差异无统计学意义(P>0.05,表1)。

表1.

癫痫后小脑萎缩患者影像学变化(n=41)

Table 1 Imaging changes in patients with cerebellar atrophy after epilepsy (n=41)

组别 桥臂最大宽度/mm 脑桥最大前后径/mm 第四脑室最大横断位面积/mm2 齿状核最大面积*/mm2 齿状核信号/例
P <0.001 <0.001 <0.001 <0.001
病例组 13.782±1.437 20.732±1.911 475.571±120.047 363.787±54.055 2 17 22
对照组 15.751±0.751 22.549±1.195 308.348±75.109 370.819±74.386 30 11 0

*由于部分患者及对照组齿状核信号边界模糊,无法准确测量齿状核最大面积,故病例组、对照组分别缺失9、3例。计量资料表示为均数±标准差。

2.3. 癫痫后小脑萎缩患者影像学指标的logistic回归分析

桥臂最大宽度、第四脑室最大横断位面积为区分癫痫后小脑萎缩与正常对照的独立因素(分别P=0.004、P=0.002),而脑桥前后径不属于区分二者的独立因素(P>0.05,表2)。

表2.

癫痫后小脑萎缩影像学特征性改变的logistic回归分析

Table 2 Logistic regression analysis of imaging characteristic changes of cerebellar atrophy after epilepsy

影响因素 B SE Wald χ2 OR 95% CI P
常量 -21.110 7.778 7.367 0.007
桥臂最大宽度 1.202 0.422 8.098 3.327 1.454~7.615 0.004
脑桥最大前后径 0.376 0.242 2.409 1.456 0.906~2.339 0.108
第四脑室最大横断位面积 -0.013 0.004 10.038 0.987 0.979~0.995 0.002

3. 讨 论

小脑萎缩是衰老、退行性病变、感染性病变及中毒性病变等多种疾病中均可以存在的神经影像学表现[9]。既往小脑的功能及作用一直被低估,近十余年来,人们发现小脑不仅参与对运动行为的控制和调节,同时也参与包括认知、语言、情感和成瘾等在内的非运动功能的调节[10-12]。小脑萎缩的模式通常具有疾病特异性[13],与其特定的病理过程相关,临床上表现为不同倾向的运动和非运动功能改变。如阿尔茨海默病和帕金森病患者都存在小脑更小亚单位的萎缩,阿尔茨海默病患者的小脑萎缩主要见于小脑右侧叶I、II区,而帕金森病患者主要是小结I的改变[14],并且这种独特的萎缩模式被认为与疾病特异性脑网络退化相关[15]。因此,不同疾病的小脑萎缩模式及其在病理生理学中的作用越来越受关注[16]

早在上个世纪60年代,在对45例癫痫患者的尸检中就发现25例患者存在不同程度的小脑萎缩[17]。对41例住院癫痫患者的小脑功能进行评估,发现其中22例患者存在共济失调[18]。研究[19]显示这种癫痫后小脑萎缩可能与更差的手术预后相关。癫痫后可发生小脑萎缩这一观点已经被反复证实,但是对其形成的原因却还存在争议。

在本研究中,与对照组相比,病例组第四脑室最大横断位面积明显增加。临床上多种存在小脑萎缩的疾病均可以观察到第四脑室的扩大,第四脑室的扩大被认为是小脑萎缩的早期标志[20],这可能是由于小脑萎缩继发的第四脑室容积改变并无特异性。笔者进一步评估了齿状核最大面积及信号的改变,这是既往研究较少关注的方面。病例组与对照组的齿状核最大面积的差异并无统计学意义,与利用基于体素的形态计量方法所得到的结果[21]相符合,这提示小脑局部灰质萎缩并不明显。但值得注意的是,病例组齿状核信号普遍发生改变,大多数患者表现为等信号或高信号。虽然有研究[22]提出一些伴有痫性发作的综合征(如L-2-羟基戊二酸尿症、Canavan病)存在齿状核信号的改变,但是目关于癫痫发作所致的齿状核信号改变的研究仍较少。

齿状核是小脑结构和功能连接中的重要中心节点,是大脑和小脑信息交流的中枢纽带。虽然目前尚不清楚齿状核特定的功能分区[23],但是研究[23-24]已经证实齿状核与大脑皮层存在广泛连接,主要为前额叶(前额叶背外侧皮层和Brodmann区)及后顶叶,参与小脑运动、认知和语言功能的调节。本研究发现的小脑齿状核信号的变化提示局部核团的损伤,或许可以进一步揭示癫痫对小脑-丘脑-大脑皮质环路的影响,帮助理解癫痫后小脑萎缩对运动和认知功能的影响。值得注意的是,在最近的一项动物实验[25]中发现癫痫可以诱导小鼠齿状核细胞内源性和外源性凋亡通路激活,这也证实了癫痫患者可能存在齿状核的损伤。齿状核信号改变可能成为癫痫患者小脑核团损伤的标志。

此外,本研究发现病例组桥臂明显萎缩,桥臂萎缩是癫痫后小脑萎缩的特征性改变,具有诊断意义;而多因素分析显示脑桥的萎缩在病例组与对照组之间的差异并无统计学意义。桥臂为沟通对侧脑桥核及小脑皮质的最重要的白质纤维,是两者的中间结构,也是大脑皮层联系小脑最重要的通路。桥臂的严重萎缩提示癫痫发作可能对小脑白质纤维束造成的损伤更为严重。近年来,许多证据[26-27]证明:癫痫患者的损伤不再局限于病灶局部,而是存在广泛的结构及解剖改变,可以累及多个相互连通的白质通路。小脑萎缩的病理改变主要为神经元丢失及胶质细胞增生,其中以浦肯野细胞丢失最为明显。虽然浦肯野细胞的丢失通常被认为是癫痫发作的结果,但是这种浦肯野细胞密度的减低可能会导致小脑兴奋性神经元的去抑制,反而成为诱发癫痫发作的因素。因此,癫痫后小脑白质的明显萎缩提示可能存在大脑-小脑及小脑-小脑持续放电所导致的白质纤维束损伤。

本研究发现:癫痫后小脑萎缩患者桥臂的萎缩较为明显,而齿状核仅仅是信号发生改变,其面积与对照组差异无统计学意义。这提示癫痫患者白质的受损可能要大于或先于小脑深部核团。目前的观点认为癫痫后的脑损伤主要有神经元短时间同步去极化,导致谷氨酸被大量释放,细胞内钙超载,进而发生细胞损伤或死亡。并且,持续发作造成的脑缺氧缺血改变可以加重神经元的损伤及白质脱髓鞘[28]。齿状核等小脑深部的核团,虽然一直被认为对缺血缺氧的改变更为敏感,但是从解剖位置来看,其受大脑持续放电及癫痫发作期缺血缺氧的影响可能较小。而桥臂作为小脑主要的传入纤维,与双侧大脑半球联系密切,更易遭受癫痫发作的影响。

目前,人们对癫痫患者小脑萎缩这一现象的认知正经历由果到因的转变。有研究者[29]认为:癫痫初次发作时即存在小脑白质体积减少,小脑白质是癫痫的易感结构,其改变可能是大脑中预先存在的,而非癫痫发作的结果。虽然这一观点目前缺少进一步的证据,但研究者已逐渐意识到小脑在癫痫发生及发展过程中的重要性。

本研究主要基于慢性癫痫后小脑萎缩的齿状核及桥臂的特征性改变来探究慢性癫痫患者小脑萎缩模式,为进一步阐明小脑在癫痫发生中的作用提供了新思路。有研究[30]指出,小脑皮层和核团可能成为抑制癫痫发作的靶点,选择合适的干预结构将是进一步研究的重点。本研究尚存在不足:首先,作为回顾性研究,无法纵向分析患者的小脑萎缩过程;其次,虽然入组患者的病程大都超过3年,但是并未将癫痫持续时间及抗癫痫药物的使用纳入考虑;最后,虽然发现小脑萎缩患者存在白质纤维束的严重损伤以及齿状核信号的改变,但这一发现需要更大样本量的研究来验证。

可以肯定的是,进一步探究癫痫后小脑萎缩的特殊模式有助于阐明其在癫痫发作及加重过程中的作用;同时也有利于临床理解相应的运动和认知功能改变产生的症状,为小脑萎缩及癫痫的相关治疗打下基础[31]

基金资助

湖南省自然科学基金(2023JJ30954)。

This work was supported by the Natural Science Foundation of Hunan Province, China (2023JJ30954).

利益冲突声明

作者声称无任何利益冲突。

作者贡献

冯细梅 研究设计,数据收集及处理,论文撰写;王倩 数据处理;金虹、杨帅 数据收集;邢妩 研究设计及指导。所有作者阅读并同意最终的文本。

原文网址

http://xbyxb.csu.edu.cn/xbwk/fileup/PDF/202305691.pdf

参考文献

  • 1. Falco-Walter J. Epilepsy-definition, classification, pathophysiology, and epidemiology[J]. Semin Neurol, 2020, 40(6): 617-623. 10.1055/s-0040-1718719. [DOI] [PubMed] [Google Scholar]
  • 2. Sandok EK, O’Brien TJ, Jack CR, et al. Significance of cerebellar atrophy in intractable temporal lobe epilepsy: a quantitative MRI study[J]. Epilepsia, 2000, 41(10): 1315-1320. 10.1111/j.1528-1157.2000.tb04611.x. [DOI] [PubMed] [Google Scholar]
  • 3. Hermann BP, Bayless K, Hansen R, et al. Cerebellar atrophy in temporal lobe epilepsy[J]. Epilepsy Behav, 2005, 7(2): 279-287. 10.1016/j.yebeh.2005.05.022. [DOI] [PubMed] [Google Scholar]
  • 4. Dabbs K, Becker T, Jones J, et al. Brain structure and aging in chronic temporal lobe epilepsy[J]. Epilepsia, 2012, 53(6): 1033-1043. 10.1111/j.1528-1167.2012.03447.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5. Crooks R, Mitchell T, Thom M. Patterns of cerebellar atrophy in patients with chronic epilepsy: a quantitative neuropathological study[J]. Epilepsy Res, 2000, 41(1): 63-73. 10.1016/S0920-1211(00)00133-9. [DOI] [PubMed] [Google Scholar]
  • 6. Oyegbile TO, Bayless K, Dabbs K, et al. The nature and extent of cerebellar atrophy in chronic temporal lobe epilepsy[J]. Epilepsia, 2011, 52(4): 698-706. 10.1111/j.1528-1167.2010.02937.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7. 朱琼彬. 癫痫患者的小脑区域性灰质体积改变: 基于MRI的研究[D]. 杭州: 浙江大学, 2017. [Google Scholar]; ZHU Qiongbin. Regional cerebellar gray matter volume changes in epilepsy[D]. Hangzhou: Zhejiang University, 2017. [Google Scholar]
  • 8. Fisher RS, Acevedo C, Arzimanoglou A, et al. ILAE official report: a practical clinical definition of epilepsy[J]. Epilepsia, 2014, 55(4): 475-482. 10.1111/epi.12550. [DOI] [PubMed] [Google Scholar]
  • 9. Gellersen HM, Guo CC, O’Callaghan C, et al. Cerebellar atrophy in neurodegeneration—a meta-analysis[J]. J Neurol Neurosurg Psychiatry, 2017, 88(9): 780-788. 10.1136/jnnp-2017-315607. [DOI] [PubMed] [Google Scholar]
  • 10. Argyropoulos GPD, van Dun K, Adamaszek M, et al. The cerebellar cognitive affective/schmahmann syndrome: a task force paper[J]. Cerebellum, 2020, 19(1): 102-125. 10.1007/s12311-019-01068-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11. Ibdali M, Hadjivassiliou M, Grünewald RA, et al. Cerebellar degeneration in epilepsy: a systematic review[J]. Int J Environ Res Public Health, 2021, 18(2): 473. 10.3390/ijerph18020473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12. 王多浩, 林兴建, 祝东林, 等. 小脑与认知功能关系的研究[J]. 临床神经病学杂志, 2020, 33(1): 73-76. 10.3969/j.issn.1004-1648.2020.01.019. [DOI] [Google Scholar]; WANG Duohao, LIN Xingjian, ZHU Donglin, et al. Research progress in the association of cerebellum and cognition[J]. Journal of Clinical Neurology, 2020, 33(1): 73-76. 10.3969/j.issn.1004-1648.2020.01.019. [DOI] [Google Scholar]
  • 13. Fyfe I. Dementia: Cerebellar atrophy has disease-specific patterns[J]. Nat Rev Neurol, 2016, 12(4): 188. 10.1038/nrneurol.2016.28. [DOI] [PubMed] [Google Scholar]
  • 14. Mathys C, Caspers J, Langner R, et al. Functional connectivity differences of the subthalamic nucleus related to Parkinson’s disease[J]. Hum Brain Mapp, 2016, 37(3): 1235-1253. 10.1002/hbm.23099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15. O’Callaghan C, Hornberger M, Balsters JH, et al. Cerebellar atrophy in Parkinson’s disease and its implication for network connectivity[J]. Brain, 2016, 139(3): 845-855. 10.1093/brain/awv399. [DOI] [PubMed] [Google Scholar]
  • 16. 李佳辰, 刘光耀, 黄文静, 等. 颞叶癫痫患者小脑结构与功能改变的磁共振成像研究进展[J]. 磁共振成像, 2022, 13(4): 150-153, 165. 10.12015/issn.1674-8034.2022.04.033. [DOI] [Google Scholar]; LI Jiachen, LIU Guangyao, HUANG Wenjing, et al. Progresses on the study of structural and functional MRI changes of cerebellum in patients with temporal lobe epilepsy[J]. Chinese Journal of Magnetic Resonance Imaging, 2022, 13(4): 150-153, 165. 10.12015/issn.1674-8034.2022.04.033. [DOI] [Google Scholar]
  • 17. Margerison JH, Corsellis JAN. Epilepsy and the temporal lobes: a clinical, electroencephalographic and neuropathological study of the brain in epilepsy, with particular reference to the temporal lobes[J]. Brain, 1966, 89(3): 499-530. 10.1093/brain/89.3.499. [DOI] [PubMed] [Google Scholar]
  • 18. Young GB, Oppenheimer SR, Gordon BA, et al. Ataxia in institutionalized patients with epilepsy[J]. Can J Neurol Sci, 1994, 21(3): 252-258. 10.1017/s0317167100041238. [DOI] [PubMed] [Google Scholar]
  • 19. Specht U, May T, Schulz R, et al. Cerebellar atrophy and prognosis after temporal lobe resection[J]. J Neurol Neurosurg Psychiatry, 1997, 62(5): 501-506. 10.1136/jnnp.62.5.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20. Sue CM, Crimmins DS, Soo YS, et al. Neuroradiological features of six kindreds with MELAS tRNA(Leu) A2343G point mutation: implications for pathogenesis[J]. J Neurol Neurosurg Psychiatry, 1998, 65(2): 233-240. 10.1136/jnnp.65.2.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21. Marcián V, Mareček R, Koriťáková E, et al. Morphological changes of cerebellar substructures in temporal lobe epilepsy: a complex phenomenon, not mere atrophy[J]. Seizure, 2018, 54: 51-57. 10.1016/j.seizure.2017.12.004. [DOI] [PubMed] [Google Scholar]
  • 22. Khadilkar S, Jaggi S, Patel B, et al. A practical approach to diseases affecting dentate nuclei[J]. Clin Radiol, 2016, 71(1): 107-119. 10.1016/j.crad.2015.09.010. [DOI] [PubMed] [Google Scholar]
  • 23. Guell X, D’Mello AM, Hubbard NA, et al. Functional territories of human dentate nucleus[J]. Cereb Cortex, 2020, 30(4): 2401-2417. 10.1093/cercor/bhz247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24. Ji Q, Edwards A, Glass JO, et al. Measurement of projections between dentate nucleus and contralateral frontal cortex in human brain via diffusion tensor tractography[J]. Cerebellum, 2019, 18(4): 761-769. 10.1007/s12311-019-01035-3. [DOI] [PubMed] [Google Scholar]
  • 25. Taddei E, Rosiles A, Hernandez L, et al. Apoptosis in the dentate nucleus following kindling-induced seizures in rats[J]. CNS Neurol Disord Drug Targets, 2022, 21(6): 511-519. 10.2174/1871527320666211201161800. [DOI] [PubMed] [Google Scholar]
  • 26. Davis KA, Jirsa VK, Schevon CA. Wheels within wheels: theory and practice of epileptic networks[J]. Epilepsy Curr, 2021, 21(4): 15357597211015663. 10.1177/15357597211015663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27. Hatton SN, Huynh KH, Bonilha L, et al. White matter abnormalities across different epilepsy syndromes in adults: an ENIGMA-Epilepsy study[J]. Brain, 2020, 143(8): 2454-2473. 10.1093/brain/awaa200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28. Holmes GL. Seizure-induced neuronal injury: animal data[J]. Neurology, 2002, 59(9 Suppl 5): S3-S6. 10.1212/wnl.59.9_suppl_5.s3. [DOI] [PubMed] [Google Scholar]
  • 29. Park KM, Han YH, Kim TH, et al. Cerebellar white matter changes in patients with newly diagnosed partial epilepsy of unknown etiology[J]. Clin Neurol Neurosurg, 2015, 138: 25-30. 10.1016/j.clineuro.2015.07.017. [DOI] [PubMed] [Google Scholar]
  • 30. Marcián V, Filip P, Bareš M, et al. Cerebellar dysfunction and ataxia in patients with epilepsy: coincidence, consequence, or cause?[J]. Tremor Other Hyperkinet Mov, 2016, 6: 376. 10.7916/d8kh0nbt. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31. Streng ML, Krook-Magnuson E. Excitation, but not inhibition, of the fastigial nucleus provides powerful control over temporal lobe seizures[J]. J Physiol, 2020, 598(1): 171-187. 10.1113/jp278747. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Central South University Medical Sciences are provided here courtesy of Central South University

RESOURCES