Abstract
鳃耳综合征(branchio-oto syndrome,BOS)/鳃耳肾综合征(branchio-oto-renal syndrome,BORS)是一种不常见的常染色体显性遗传综合征型疾病,人群发病率约为1/40 000,以听力障碍及耳的表现为最主要特征,并伴有肾脏畸形及鳃裂囊肿或瘘管等症状。耳畸形是BOS/BORS最明显的临床表现之一,包括外耳、中耳、内耳畸形和听力障碍。听力障碍又分为传导性、感音神经性或混合性,程度可轻可重。颞骨影像学可以帮助临床医生诊断中耳和内耳畸形。直接测序结合二代测序(next generation sequencing,NGS)、多重连接扩增(multiplex ligation-dependent probe amplification,MLPA)和比较基因组杂交(array-based comparative genomic hybridization,aCGH)等技术可有效筛选及鉴定BOS/BORS致病基因及突变类型。EYA1基因突变是引起BOS/BORS最主要的遗传学病因,约40%的患者携带此基因突变,目前已在不同人群中报道了240种EYA1基因致病突变,包括移码、无义、错义、异常剪接、缺失和复杂重排。人类内源性反转录病毒序列(human endogenous retroviral sequences,HERV)可能在介导非等位同源重组引起的EYA1染色体片段缺失突变中发挥重要作用。EYA1编码一种与SIX1转录因子协同作用的磷酸酶反式激活因子,参与颅感觉神经的发生和鳃弓衍生器官的发育,调节外耳、中耳和内耳形态和功能的正常分化。此外,SIX1和SIX5基因的致病突变也会导致BOS/BORS,以上3种基因的突变可能通过破坏SIX1-EYA1、SIX5-EYA1蛋白质结合或SIX1-DNA的结合而致病,但SIX5基因在BORS致病中的作用仍需进一步验证。
Keywords: 鳃耳综合征, 鳃耳肾综合征, 听力障碍, EYA1基因, SIX1基因, SIX5基因
Abstract
Branchio-oto syndrome (BOS)/branchio-oto-renal syndrome (BORS) is a kind of autosomal dominant heterogeneous disorder. These diseases are mainly characterized by hearing impairment and abnormal phenotype of ears, accompanied by renal malformation and branchial cleft anomalies including cyst or fistula, with an incidence of 1/40 000 in human population. Otic anormalies are one of the most obvious clinical manifestations of BOS/BORS, including deformities of external, middle, inner ears and hearing loss with conductive, sensorineural or mix, ranging from mild to profound loss. Temporal bone imaging could assist in the diagnosis of middle ear and inner ear malformations for clinicians. Multiple methods including direct sequencing combined with next generation sequencing (NGS), multiplex ligation-dependent probe amplification (MLPA), or array-based comparative genomic hybridization (aCGH) can effectively screen and identify pathogenic genes and/or variation types of BOS/BORS. About 40% of patients with BOS/BORS carry aberrations of EYA1 gene which is the most important cause of BOS/BORS. A total of 240 kinds of pathogenic variations of EYA1 have been reported in different populations so far, including frameshift, nonsense, missense, aberrant splicing, deletion and complex rearrangements. Human Endogenous Retroviral sequences (HERVs) may play an important role in mediating EYA1 chromosomal fragment deletion mutations caused by non-allelic homologous recombination. EYA1 encodes a phosphatase-transactivator cooperated with transcription factors of SIX1, participates in cranial sensory neurogenesis and development of branchial arch-derived organs, then regulates the morphological and functional differentiation of the outer ear, middle ear and inner ear toward normal tissues. In addition, pathogenic mutations of SIX1 and SIX5 genes can also cause BOS/BORS. Variations of these genes mentioned above may cause disease by destroying the bindings between SIX1-EYA1, SIX5-EYA1 or SIX1-DNA. However, the role of SIX5 gene in the pathogenesis of BORS needs further verification.
Keywords: branchio-oto syndrome, branchio-oto-renal syndrome, hearing disorder, EYA1 gene, SIX1 gene, SIX5 gene
早在19世纪晚期人们对听力障碍、耳前瘘管、鳃裂囊肿或瘘管与肾脏异常之间的关联就有所认识,1975年Melnick等[1]将具有这类症状的疾病定义为鳃耳肾综合征(Branchio-oto-renal syndrome,BORS)。BORS以听力障碍及耳的表现为最主要特征,并伴有鳃裂异常及肾脏畸形等症状;若患者临床表现不包括肾脏异常,则称为鳃耳综合征(Branchio-oto syndrome,BOS)。BOS/BORS在人群中的发病率约为1/40 000,在深度失聪的儿童中的发病率约为2%[2],在不同个体或家系成员间的临床表型具有高度异质性[3-4],其表型的表现形式和严重程度也是可变的,即使同一家族的不同个体之间也可能存在较大差异。
1. BOS/BORS的主要临床特征与诊断标准
据1998年Smith等[5]的报道,BOS/BORS的临床表现具有以下特征:1)高达90%的患者存在不同程度的听力障碍,听力障碍最常见的表现是混合性聋(50%),其次是传导性聋(30%)和感音神经性聋(20%);其中约有25%的患者表现为随年龄增长的进展性耳聋。2)约50%的患者颈部外侧可见鳃裂囊肿、窦道或瘘管。3)约65%的患者出现肾脏异常,包括肾发育不全、肾发育不良、肾盂输尿管梗阻等。
在BOS/BORS的早期诊断中,耳和鳃裂缺陷很容易在患者的幼儿期被发现,而肾脏缺陷则需要更长的时间才能被发现[6]。虽然有的肾脏病变患者能在婴儿早期阶段被发现,但是仍然有大多数病例是在成年后才被确诊,耽误了恰当的干预治疗时间,有些人甚至在生命的后期发展成终末期肾病(end-stage renal disease,ESRD),因此在临床上应该特别重视BOS/BORS的早期诊断[7]。
2004年Chang等[8]将分子诊断标准与临床表型分析结合,对106名患者的家庭成员进行了EYA1突变筛查,并进一步分析携带EYA1致病突变患者家庭成员的临床表型特点。最常见的临床表型分别为耳聋(98.5%)、耳前凹(83.6%)、鳃异常(68.5%)、肾异常(38.2%)和外耳异常(31.5%)。Chang等[8]基于大样本数据分析了BOS/BORS疾病表型,首次提出了被普遍接受并延用至今的诊断标准,即以耳聋、耳前瘘管、鳃裂瘘管或囊肿和肾脏畸形为主要表现,以外耳异常(如外耳道狭窄闭锁等)、中耳畸形(如听骨链畸形、鼓室发育异常等)、内耳发育不全(如耳蜗Modini畸形、大前庭导水管等)及面部或味觉异常等为次要表现,当满足3个或3个以上主要表现,或同时满足2个主要表现及2个次要表现,或满足1个主要表现的同时,一级亲属中至少有1名BOS/BORS患者时,可确诊BOS/BORS。
2. BOS/BORS的其他伴随症状
除了上述典型的耳、鳃、肾的临床表现,亦有许多研究陆续报道了BOS/BORS的其他伴随症状,扩大了该疾病的临床表型谱。Unzaki等[3]收集了51名日本患者的临床资料,指出该病可出现发育迟缓、智力障碍等伴随症状;Dutta等[9]报道了1名9月龄的印度男性患儿伴有尿道下裂的表现;Salinas-Torres等[10]在墨西哥发现了1例伴有骨骼缺陷的患儿;Au等[11]报道了1例伴有远端关节挛缩的患者;Sundaram等[12]报道了1例由BOS/BORS继发肾性骨营养不良,导致压迫性视神经病变的患者。由此可见,BOS/BORS可能伴随继发骨骼发育缺陷等其他器官或组织的病变,有必要对患者进行影像学检查。研究[13-16]总结了BOS/BORS患者的颞骨CT、MRI常见影像学表现及伴随症状(表1),CT结果显示绝大多数患者可出现中耳及内耳解剖结构异常的变化。
表1.
BOS/BORS的颞骨影像学表现和其他伴随症状
Table 1 Temporal bone imaging findings and other concomitant symptoms of BOS/BORS
| CT表现 | 耳蜗发育不全、前庭发育不良、大前庭导水管、听骨链异常、面神经偏离、漏斗状内听道 |
|---|---|
| MRI表现 | 内淋巴管膨大、内淋巴囊膨大 |
| 伴随症状 | 智力障碍、面神经麻痹、腹股沟疝或脐疝、运动发育迟缓、心血管疾病、多囊卵巢综合征、 类风湿性关节炎、色素性视网膜炎、胃食管反流、癫痫、肛门闭锁、虹膜萎缩、远端关节挛缩、 唇腭裂、白内障、小儿尿道下裂、泪小管发育不良、肾性骨营养不良继发压迫性视神经病变 |
3. BOS/BORS的相关致病基因
BOS/BORS呈常染色体显性遗传,患者的子女有50%的遗传风险,且外显率接近100%。基于1位8q染色体区域复杂重排的患者,研究人员[17]首次将该病的致病基因定位到8号染色体q13.3或8q21.3。随着基因测序技术的发展,陆续在EYA1、SIX1和SIX5基因中发现了其致病性突变[3, 18]。线上人类孟德尔遗传数据库(online Mendelian Inheritance in Man,OMIM)显示:3个位点与BOS表型相关,2个位点与BORS表型相关(表2)。致病基因的鉴定对于发现BOS/BORS家系的遗传学病因至关重要[19],基因诊断为妊娠女性是否需要进行产前检测和胚胎植入前分子遗传诊断提供了依据[20]。已知的BOS/BORS相关致病基因中最为常见的3个基因为EYA1(8q13.3)、SIX1(14q23.1)和SIX5(19q13.32)。
表2.
OMIM中BOS/BORS条目
Table 2 OMIM entry of BOS/ BORS
| 疾病 | 位置 | 基因 | 遗传方式 | 表型MIM编号 | 基因座MIM编号 |
|---|---|---|---|---|---|
| BOS | 8q13.3 | EYA1 | AD | 602588 | 601653 |
| BOS | 1q31 | — | AD | 120502 | — |
| BOS | 14q23.1 | SIX1 | AD | 608389 | 601205 |
| BORS | 8q13.3 | EYA1 | AD | 113650 | 601653 |
| BORS | 19q13.32 | SIX5 | — | 601896 | 600963 |
OMIM:线上人类孟德尔遗传数据库;BOS:鳃耳综合征;BORS:鳃耳肾综合征;AD:常染色体显性遗传。
3.1. EYA1 基因
EYA1基因位于染色体8q13.3,由18个外显子组成(长159 kb),编码含有592个氨基酸的蛋白质EYA1,包括位于氨基末端的反式激活结构域和羧基末端的EYA结构域(ED)。EYA1基因突变是BOS/BORS最常见的致病原因。在欧美人群中,约40%的患者携带此基因突变[8, 21],其中80%的为点突变和小片段缺失变异,20%的为大片段缺失。目前已在不同种族人群中发现了超过240种致病的EYA1基因突变(http://www.hgmd.cf.ac.uk/,更新至2020年4月),然而在中国人群中很少报道EYA1基因突变[22]。Wang等[22]首次在中国台湾BORS患者中发现了EYA1基因的2处突变位点(c.466C>T; p.Q156X、c.1735delG; p.D579fs)。随着二代测序(next generation sequencing,NGS)技术和高通量检测技术的发展[24],在中国BOS/BORS患者中,越来越多的EYA1新突变被陆续报道(表3)。此外,EYA1还受到基因剂量效应的影响,临床表型异质性可能与EYA1的单倍剂量不足相关,当编码的蛋白质数量超过某一阈值时,基因活性才能被识别。基因调控特定组织编码不同数量的蛋白质决定了家系间或家族内BOS/BORS患者存在广泛的表型变异[7]。
表3.
中国BOS/BORS患者中已报道的 EYA1 突变
Table 3 Reported EYA1 mutations in Chinese BOS/BORS patients
| 疾病 | 外显子 | 核酸序列 | 氨基酸序列 | 突变类型 | 文献 |
|---|---|---|---|---|---|
| BORS | 6 | c.466C>T | p.Q156X | missense | [22] |
| BORS | 11 | c.967A>T | p.Arg323X | nonsense | [7] |
| BORS | 15 | c.1381delA | p.R461fs467X | framshift | [23] |
| BORS | 17 | c.1735del G | p.D579fs | framshift | [22] |
| BORS | ─ | Whole EYA1 deletion | ─ | CNVs | [25] |
| BORS | ─ | 8q13(chr8:70062624-72714795)deletioninclude EYA1 | ─ | CNVs | [26] |
| BORS | ─ | 8q13(chr8: 69582185-72275725)deletion include EYA1 | ─ | CNVs | [27] |
| BOS | ─ | c.1493_1494insAT | p.Ile498PhefsTer*3 | framshift | [28] |
| BOS | ─ | c.967-2A>G | ─ | splicing | [28] |
| BOS | 17 | c.1627C>T | p.Gln543Ter | missing | [29] |
| BOS | 12 | c.1075_1077 delinsAT | p.Gly359Ilefs*7 | framshift | [30] |
BOS:鳃耳综合征;BORS:鳃耳肾综合征;CNVs:拷贝数变异。
EYA1基因不同突变类型与BOS/BORS临床表型之间的关系尚不明确。Chen等[28]报道EYA1突变位点c.967-2A可能是各人种BOS患者的热点突变。目前约有160种EYA1基因突变与BOS/BORS相关,这些突变包括大片段或小片段的缺失突变、框移突变、无义突变、剪接突变和错义突变,其中框移突变和无义突变最常见,其次便是剪接突变和错义突变[31]。Chang等[8]通过半定量荧光多重PCR筛选试验,发现在涉及EYA1基因突变的BOS患者中约有20%存在染色体复杂重排,这一发现印证了Vervoort等[32]在2002年的预测,即由于通常只使用普通的Sanger测序来检测突变,可能在早期的研究中遗漏了对复杂基因重排的检测。2010年,通过多重连接扩增(multiplex ligation-dependent probe amplification,MLPA)技术首次发现1例7岁日本患儿由非长末端重复序列(long terminal repeat,LTR)反转录转座子中的长散在核元件1(long interspersed nuclear element 1,LINE1)的插入导致EYA1基因5至7号外显子缺失的新生突变[33]。同年,在3个不同的BOS/BORS患者中都发现了染色体8q13上包含EYA1基因的大片段缺失突变,其中1例患者的染色体缺失突变被认为是由非等位基因同源重组介导的,属于LTR反转录转座子中的人类内源性逆转录病毒序列(human endogenous retroviral sequences,HERV)区域在其中发挥重要作用[34]。2013年,利用高分辨率的微阵列比较基因组杂交(array-based comparative genomic hybridization,aCGH)技术发现了EYA1基因及下游基因的4个杂合缺失突变,断点均位于内源性逆转录病毒(endogenous retroviruses,ERV)家族的LTR元件中[21]。2019年,在中国湖南1个BORS家系中,染色体8q13上存在长约2.69 Mb的缺失突变,其断点序列同样定位在HERV元件中[27]。上述报道均表明:该重组热点所介导的非等位基因同源重组均为杂合缺失突变,且在BOS/BORS的致病机制中具有重要意义。Dantas等[35]则首次报道了EYA1基因4~10外显子的重复突变致病患者。因此,对BOS/BORS致病基因EYA1的突变类型的诊断,除需检测常见的点突变和小片段缺失突变以外,还应该采取拷贝数变异测序(copy number variation sequencing,CNV-seq)、MLPA或aCGH等方法来检测基因大片段缺失或重复等情况。
EYA1基因属于EYA家族,是果蝇eya基因的人类同源基因,该基因家族另外3个相关基因(EYA2、EYA3和EYA4)也在人类耳、肾和其他器官的发育中起着重要的作用。除EYA1以外,目前尚未在BOS/BORS患者中发现另外3个基因的突变。EYA蛋白家族均表达高度保守的271氨基酸EYA结构域——蛋白质-蛋白质相互作用所必需的结构域[36]。
EYA1是脊椎动物和无脊椎动物器官发生的关键调节基因,在耳和肾及其他器官早期发育的EYA-SIX调控网络中起转录共激活作用。人类EYA1基因的突变可导致BOS/BORS,而小鼠EYA1基因的靶向失活会损害包括耳、肾和骨骼系统在内的多个器官的早期发育[37]。EYA1基因在咽部器官(甲状腺、甲状旁腺和胸腺)、心血管系统、颌面形态部位的发生中发挥重要作用[38-39]。此外,EYA1发挥着多种功能,如形成EYA1-SIX1转录激活复合物和多个EYA1调节网络(EYA1-Noth、SNAI2-EYA1-SIX1、DACH-EYA-SIX等)、调节磷酸酶活性[38, 40-43]。除导致BOS/BORS之外,EYA1基因还与干细胞癌、黑色素瘤、乳腺癌等多种肿瘤的发生和发展紧密相关[44-46]。
3.2. SIX1 基因
SIX1基因位于染色体14q23.1,由2个外显子组成(长4.7 kb),编码含有284个氨基酸的蛋白质SIX1。SIX1是SIX基因家族成员,具有DNA结合同源域(homeodomain,HD)和SIX蛋白质结合结构域(SIX domain,SD),编码具有DNA结合活性的转录因子,其转录活性受EYA1基因的调控。SIX1-EYA1蛋白复合物在胚胎发育过程中通过调节细胞增殖、分化影响对器官的发生[47]。
约有4%的BOS/BORS患者携带SIX1基因突变[48]。2004年,Ruf等[4]在4个家系中首次鉴定出3个SIX1基因突变位点,位于SIX1蛋白质的SD,分别为c.328C>T(R110W)、c.386A>G(Y129C)和c.397-399delGGA(delE133)。这3个突变位点均损害了SIX1-EYA1蛋白质之间的结合,且突变位点Y129C和delE133还影响了SIX1与DNA之间的结合。2007年,Sanggaard等[49]结合连锁分析、MLPA和PCR测序技术,在1个有6代成员的丹麦BOS/BORS大家系中发现了1个同样位于SD的SIX1基因新突变位点c.364T>A(W122R),并观察到由这个SIX1突变致病的BOS/BORS患者的颞骨及肾异常发生率较低。2008年,Kochhar等[48]在247个BOS/BORS家族中检测出6个SIX1突变位点,除了c.328C>T(R110W)先前被报道过,其余5个突变[c.218A>C(H73P)、c.50T>A(V17E)、c.334C>T(R112C)、c.329G>A(R110Q)和c.317T>G(V106G)]均为新突变位点。2011年,Krug等[50]在140名患者中进行SIX1基因突变筛查,发现了2个新位点,分别为c.746C>T(P249L)和c.560+3A>T。2018年,在日本BOS/BORS人群中,通过NGS技术鉴定了1个SIX1基因突变新位点c.519G>C(K173N)[3]。在目前文献报道的BOS/BORS病例中,SIX1基因的致病突变位点有13个(图1)。本课题组通过对BOS/BORS患者听力表型与基因突变相关性的荟萃分析[51]发现携带SIX1致病突变的患者普遍表现出极重度感音神经性听力损失类型。通过非洲爪蟾的SIX1突变模型亦可证明:SIX1突变引起胚胎外胚层及听泡结构改变,最终导致内耳形态异常的发生[52]。这提示携带SIX1突变的患者有可能出现内耳功能不全。SIX1基因突变至少通过两种不同的机制致病:1)影响EYA1-SIX1复合物的形成;2)降低SIX1蛋白质与DNA的结合能力[53]。
图1.
BOS/BORS已知 SIX1 基因突变位点总结
Figure 1 Summary of known SIX1 gene mutation sites in BOS/BORSHD:DNA 结合同源域;SD:SIX 蛋白质结合结构域。
3.3. SIX5 基因
SIX5基因位于染色体19q13.32,由3个外显子组成(长4.4 kb),SIX5与SIX1高度同源,均属于SIX家族,所编码蛋白质也可直接与EYA1相互作用。与SIX1蛋白不同的是,SIX5蛋白的羧基末端具有1个转录激活结构域(activation domain,AD)。2007年,对95例BOS/BORS患者进行SIX5的测序,鉴定出5名携带4种SIX5基因致病突变(图2)的BORS患者,首次报道了SIX5为BOS/BORS的致病基因,约有5%的BOS/BORS患者携带SIX5基因致病突变[54]。但自从Krug等[50]在一个被诊断为SIX5基因突变致病的患者中发现了EYA1基因包含3个外显子的部分缺失后,再未有其他关于SIX5突变致BOS/BORS发生的报道。因此,SIX5在BOS/BORS中发挥的作用是否与SIX1相同仍有待探索。
图2.
BOS/BORS已知 SIX5 基因突变位点总结
Figure 2 Summary of known SIX5 gene mutation sites in BOS/BORSHD:DNA 结合同源域;SD:SIX 蛋白质结合结构域;AD:常染色体显性遗传。
4. BOS/BORS染色体拷贝数变异及其他相关基因
根据目前的报道,BOS/BORS患者携带EYA1、SIX1、SIX5基因致病突变占比分别为40%、4%、5%,仍有近一半的患者需进一步发掘其致病因素的遗传学基础[55]。随着NGS技术的发展,研究人员可以进行低成本全基因组测序,这推动了对遗传病致病基因的筛查和数据的挖掘。2013年,通过分析35例未发生EYA1、SIX1或SIX5基因突变的BOS/BORS患者的全基因组拷贝数变异,发现其中17例患者有显著的拷贝数变异(11个染色体微缺失和6个微重复)[21],从而鉴定BOS/BORS的染色体重组热点,提示通过疾病基因优先化策略可发现SHARPIN、FGF3和HOXA基因簇是潜在的致病基因。2000年,Engels等[56]首次报道SALL1(c.1819delG)基因突变导致BOS/BORS以来,Morisada[18]等在日本BOS/BORS患者中也鉴定出SALL1基因的致病突变。SALL1基因在肾发育过程中发挥重要作用,同时受SIX1和EYA1基因的协同激活[57]。2015年,Moody等[58]利用模式动物——非洲爪蟾,挖掘在组织器官发育阶段与EYA和SIX家族相互作用的基因,为进一步寻找BOS/BORS可能的致病基因打下基础。由此提示,与EYA1和SIX家族基因相互作用的上下游基因在一定程度上可能发展为BOS/BORS致病基因,这为我们下一步探究新的BOS/BORS致病基因提供了线索和依据。2019年,Deng等[59]在含有3代人的中国家系中鉴定出1个BOS的新致病基因——ANLN。
5. BOS/BORS的现有治疗手段
目前的治疗策略主要针对BOS/BORS的主要临床表现处理。听力下降是BOS/BORS患者最主要的临床表现,高达90%的患者存在一定程度的听力障碍,其他的耳部异常还包括耳蜗或半规管的发育不全,故尽早诊断先天性听力损失非常重要。对中耳听骨链异常的BOS/BORS患者,可尝试进行中耳探查性切开术和听小骨重建来恢复听力,但亦有报道[31]接受中耳手术的BOS/BORS患者听力仍无好转,表明传统中耳重建技术在听力恢复方面存在一定的局限性,未来活性中耳植入术可能成为BOS/BORS患者更好的选择。目前,对于感音神经性聋的BOS/BORS患者尚无根治办法,可佩带助听器作为辅助治疗手段;对于不能从助听器获得良好听力辅助的BOS/BORS患者,人工耳蜗植入术有望作为替代手段,使得听力损害进展末期的患者能获得良好的听力预后[60]。耳前瘘管患者一旦感染则须手术切除才可达到根本治疗的目的[61-62]。
鳃裂异常是儿童第二大常见的头颈部先天性病变[60],未感染的瘘管可以不进行治疗,但是发生过感染的瘘管,完整切除对良好的预后至关重要。目前通常采用内窥镜辅助的解剖技术和经口机器人辅助手术治疗鳃裂异常[63],该方法具有微创性,并且可使病变的咽部组织具有良好的可视化。在瘘管或囊肿切除术前医生需在充分了解病变部位的解剖和胚胎学特征的基础上完善术前诊断、计划手术入路,以避免术后并发症和复发。
肾脏异常需要早发现、早治疗。因为肾功能不全可导致严重的贫血、肾性骨病、发育迟缓或心血管疾病等[3],所以肾脏畸形及肾功能异常引起的并发症等是影响BOS/BORS患者预后的重要因素。肾脏异常有时甚至需要进行器官移植。肾脏发育不全约占所有受累个体的0.5%,有可能导致波特后遗症和新生儿早期夭折。因此携带BOS/BORS致病高风险基因的父母应警惕新生儿出现致命性肾脏问题的可能。
6. 结 语
BOS/BORS以听力障碍、耳前瘘管、鳃裂囊肿或瘘管及肾脏畸形症状为主要特征。BORS、BOS、鳃眼面综合征(branchio-oculo-facial syndrome,BOFS)、耳面颈综合征(oto-facio-cervical syndrome,OTFCS)之间的临床表型相似,并具有相同的常染色体显性遗传模式,提示可将这类综合征归类为一组耳颈症候群,同时OTFCS相关家系中亦可分离出致病基因EYA1的致病突变[64-67],因此值得继续挖掘其深层共性和机制。
BOS/BORS患者的基因诊断尤为重要,对疑似BOS/BORS的耳颈综合征患者,应严格按照BOS/BORS的诊断标准进行筛选和排除,在获得患者的知情同意后,对其外周血DNA采用染色体条带分析,已知致病基因(EYA1、SIX1、SIX5、SALL1)的Sanger测序,以及MLPA、aCGH、NGS等分子诊断技术进行基因分析。近年来随着新技术的涌现,陆续报道了许多潜在的致病新基因,但仍有一半的未知致病基因亟待发掘,给研究人员提供了探寻致病机制的新思路,有助于进一步完善BOS/BORS基因谱。BOS/BORS基因检测不仅可用于疾病的辅助诊断,还可用于指导患者家系育龄成员的遗传学产前筛查及诊断。目前对于患者主要采取对症治疗,出现问题解决问题。由于BOS/BORS具有基因型及临床表型异质性,且难以挖掘其基因型与临床表型的相关性,因此笔者认为鉴定其致病基因对治疗方案的选择缺少参考价值。
对于BOS/BORS的预防,应遵循病因预防的原则,采取防治出生缺陷、完善产前筛查和产前诊断、新生儿疾病筛查这一3级预防策略。从加强BOS/BORS综合征患病家系中育龄女性疾病遗传咨询(病因预防),在孕期行羊水穿刺等对胎儿进行遗传学筛查及辅助诊断[20](产前诊断),到对出生缺陷的新生儿外耳、中耳等发育畸形行手术矫治(缺陷矫治)3个方面着手,争取达到有效防治的目的。
总之,针对BOS/BORS这种表型较复杂的综合征型疾病,一方面,需要不断挖掘其致病基因及突变类型,并进一步从分子生物学角度探明致病机制;另一方面,需要不断完善其临床表现的分类、扩大疾病表型谱及进行规范化描述,为最终完善BOS/BORS的诊断依据和防治提供基础。
基金资助
国家重点研发计划(2020YFC2005204);国家重点基础研究发展计划(2014CB541702);国家自然科学基金(81771023,82071065,82101233);湖南省重点研发计划(2020SK2106);湖南省自然科学基金(2019JJ50938)。
This work was supported by the National Key Research and Development Program (2020YFC2005204), the National Key Basic Research and Development Program (2014CB541702), the National Natural Science Foundation (81771023, 82071065, 82101233), the Hunan Provincial Key Research and Development Program (2020SK2106), and the Hunan Provincial Natural Science Foundation (2019JJ50938), China.
利益冲突声明
作者声称无任何利益冲突。
作者贡献
陈岸海 实验设计及实施,数据采集和分析,撰写论文。凌捷 实验设计,论文审阅及指导。冯永 实验设计,论文指导,经费支持。
原文网址
http://xbyxb.csu.edu.cn/xbwk/fileup/PDF/202201129.pdf
参考文献
- 1. Melnick M, Bixler D, Silk K, et al. Autosomal dominant branchiootorenal dysplasia[J]. Birth Defects Orig Artic Ser, 1975, 11(5): 121-128. [PubMed] [Google Scholar]
- 2. Fraser FC, Sproule JR, Halal F. Frequency of the branchio-oto-renal (BOR) syndrome in children with profound hearing loss[J]. Am J Med Genet, 1980, 7(3): 341-349. 10.1002/ajmg.1320070316. [DOI] [PubMed] [Google Scholar]
- 3. Unzaki A, Morisada N, Nozu K, et al. Clinically diverse phenotypes and genotypes of patients with branchio-oto-renal syndrome[J]. J Hum Genet, 2018, 63(5): 647-656. 10.1038/s10038-018-0429-8. [DOI] [PubMed] [Google Scholar]
- 4. Ruf RG, Xu PX, Silvius D, et al. SIX1 mutations cause branchio-oto-renal syndrome by disruption of EYA1-SIX1-DNA complexes[J]. Proc Natl Acad Sci U S A, 2004, 101(21): 8090-8095. 10.1073/pnas.0308475101. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5. Smith RJ, Schwartz C. Branchio-oto-renal syndrome[J]. J Commun Disord, 1998, 31(5): 411-420; quiz 421. 10.1016/S0021-9924(98)00013-6. [DOI] [PubMed] [Google Scholar]
- 6. Konig R, Fuchs S, Dukiet C. Branchio-oto-renal (BOR) syndrome: variable expressivity in a five-generation pedigree[J]. Eur J Pediatr, 1994, 153(6): 446-450. 10.1007/BF01983410. [DOI] [PubMed] [Google Scholar]
- 7. Wang YG, Sun SP, Qiu YL, et al. A novel mutation in EYA1 in a Chinese family with Branchio-oto-renal syndrome[J]. BMC Med Genet, 2018, 19(1): 139. 10.1186/s12881-018-0653-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8. Chang EH, Menezes M, Meyer NC, et al. Branchio-oto-renal syndrome: the mutation spectrum in EYA1 and its phenotypic consequences[J]. Hum Mutat, 2004, 23(6): 582-589. 10.1002/humu.20048. [DOI] [PubMed] [Google Scholar]
- 9. Dutta M, Chatterjee I. Hypospadias as a new entity to define the branchio-oto-renal spectrum disorders[J]. Ear Nose Throat J, 2019, 98(1): 20-22. 10.1177/0145561318824227. [DOI] [PubMed] [Google Scholar]
- 10. Salinas-Torres VM, Rivera H. Branchiootorenal syndrome with skeletal defects: a novel association in a Mexican child[J]. Clin Dysmorphol, 2015, 24(1): 21-23. 10.1097/MCD.0000000000000065. [DOI] [PubMed] [Google Scholar]
- 11. Au PB, Chernos JE, Thomas MA. Review of the recurrent 8q13.2q13.3 branchio-oto-renal related microdeletion, and report of an additional case with associated distal arthrogryposis[J]. Am J Med Genet A, 2016, 170(11): 2984-2987. 10.1002/ajmg.a.37695. [DOI] [PubMed] [Google Scholar]
- 12. Sundaram ANE, Abhayambika A, Kumar S. Bilateral compressive optic neuropathy from renal osteodystrophy caused by branchio-oto-renal syndrome stabilised after parathyroidectomy[J]. Neuroophthalmology, 2017, 41(6): 321-325. 10.1080/01658107.2017.1315145. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13. Ceruti S, Stinckens C, Cremers CW, et al. Temporal bone anomalies in the branchio-oto-renal syndrome: detailed computed tomographic and magnetic resonance imaging findings[J]. Otol Neurotol, 2002, 23(2): 200-207. 10.1097/00129492-200203000-00016. [DOI] [PubMed] [Google Scholar]
- 14. Ginat DT, Ferro L, Gluth MB. Anatomic and quantitative temporal bone CT for preoperative assessment of branchio-oto-renal syndrome[J]. Clin Neuroradiol, 2016, 26(4): 481-483. 10.1007/s00062-016-0502-7. [DOI] [PubMed] [Google Scholar]
- 15. Ginat DT. Imaging findings in syndromes with temporal bone abnormalities[J]. Neuroimaging Clin N Am, 2019, 29(1): 117-128. 10.1016/j.nic.2018.08.004. [DOI] [PubMed] [Google Scholar]
- 16. Hsu A, Desai N, Paldino MJ. The unwound cochlea: a specific Imaging marker of branchio-oto-renal syndrome[J]. AJNR Am J Neuroradiol, 2018, 39(12): 2345-2349. 10.3174/ajnr.A5856. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17. Haan EA, Hull YJ, White S, et al. Tricho-rhino-phalangeal and branchio-oto syndromes in a family with an inherited rearrangement of chromosome 8q[J]. Am J Med Genet, 1989, 32(4): 490-494. 10.1002/ajmg.1320320412. [DOI] [PubMed] [Google Scholar]
- 18. Morisada N, Nozu K, Iijima K. Branchio-oto-renal syndrome: comprehensive review based on nationwide surveillance in Japan[J]. Pediatr Int, 2014, 56(3): 309-314. 10.1111/ped.12357. [DOI] [PubMed] [Google Scholar]
- 19. 温莹莹, 孙宇, 孔维佳. 重视基因诊断在鳃耳肾综合征中的应用[J]. 临床耳鼻咽喉头颈外科杂志, 2018, 32(16): 1226-1231. 10.13201/j.issn.1001-1781.2018.16.005. [DOI] [PubMed] [Google Scholar]; WEN Yingying, SUN Yu, KONG Weijia. Emphasizing the application of genetic diagnosis in branchio-oto-renal syndrome[J]. Journal of Clinical Otorhinolaryngology Head and Neck Surgery, 2018, 32(16): 1226-1231. 10.13201/j.issn.1001-1781.2018.16.005. [DOI] [PubMed] [Google Scholar]
- 20. Bertucci E, Mazza V, Lugli L, et al. Prenatal diagnosis and follow-up of a case of branchio-oto-renal syndrome displays renal growth impairment after the second trimester[J]. J Obstet Gynaecol Res, 2015, 41(11): 1831-1834. 10.1111/jog.12791. [DOI] [PubMed] [Google Scholar]
- 21. Brophy PD, Alasti F, Darbro BW, et al. Genome-wide copy number variation analysis of a branchio-oto-renal syndrome cohort identifies a recombination hotspot and implicates new candidate genes[J]. Hum Genet, 2013, 132(12): 1339-1350. 10.1007/s00439-013-1338-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22. Wang SH, Wu CC, Lu YC, et al. Mutation screening of the EYA1, SIX1, and SIX5 genes in an East Asian cohort with branchio-oto-renal syndrome[J]. Laryngoscope, 2012, 122(5): 1130-1136. 10.1002/lary.23217. [DOI] [PubMed] [Google Scholar]
- 23. Li G, Shen Q, Sun L, et al. A de novo and novel mutation in the EYA1 gene in a Chinese child with branchio-oto-renal syndrome[J]. Intractable Rare Dis Res, 2018, 7(1): 42-45. 10.5582/irdr.2017.01075. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24. Li W, Sun J, Ling J, et al. ELMOD3, a novel causative gene, associated with human autosomal dominant nonsyndromic and progressive hearing loss[J]. Hum Genet, 2018, 137(4): 329-342. 10.1007/s00439-018-1885-0. [DOI] [PubMed] [Google Scholar]
- 25. 宓娴贤, 杨胜, 沈学萍. 一例鳃-耳-肾综合征孕妇的产前诊断[J]. 中华医学遗传学杂志, 2019, (12): 1210-1212. 10.3760/cma.j.issn.1003-9406.2019.12.015. [DOI] [PubMed] [Google Scholar]; FU Xianxian, YANG Sheng, SHEN Xueping. Prenatal diagnosis of a case with branchio-oto-renal syndrome[J]. Chinese Journal of Medical Genetics, 2019, (12): 1210-1212. 10.3760/cma.j.issn.1003-9406.2019.12.015. [DOI] [PubMed] [Google Scholar]
- 26. Chen X, Wang J, Mitchell E, et al. Recurrent 8q13.2-13.3 microdeletions associated with branchio-oto-renal syndrome are mediated by human endogenous retroviral (HERV) sequence blocks[J]. BMC Med Genet, 2014, 15: 90. 10.1186/s12881-014-0090-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27. Men M, Li W, Chen H, et al. Identification of a novel CNV at 8q13 in a family with branchio-oto-renal syndrome and epilepsy[J]. Laryngoscope, 2020, 130(2): 526-532. 10.1002/lary.27941. [DOI] [PubMed] [Google Scholar]
- 28. Chen P, Liu H, Lin Y, et al. EYA1 mutations leads to branchio-oto syndrome in two Chinese Han deaf families[J]. Int J Pediatr Otorhinolaryngol, 2019, 123: 141-145. 10.1016/j.ijporl.2019.05.006. [DOI] [PubMed] [Google Scholar]
- 29. Han R, Xia Y, Liu Z, et al. A mutation of EYA1 gene in a Chinese Han family with branchio-oto syndrome[J/OL]. Medicine (Baltimore), 2021, 100(25): e24691 (2021-06-25)[2021-05-08]. 10.1097/MD.0000000000024691. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30. Xing ZK, Wang SY, Xia X, et al. Targeted next-generation sequencing identifies a novel frameshift EYA1 variant causing branchio-otic syndrome in a Chinese family[J]. Int J Pediatr Otorhinolaryngol, 2020, 138: 110202. 10.1016/j.ijporl.2020.110202. [DOI] [PubMed] [Google Scholar]
- 31. Song MH, Kwon TJ, Kim HR, et al. Mutational analysis of EYA 1, SIX1 and SIX5 genes and strategies for management of hearing loss in patients with BOR/BO syndrome[J/OL]. PLoS One, 2013, 8(6): e67236 (2013-06-28)[2021-05-08]. https://journals.plos.org/plosone/. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32. Vervoort VS, Smith RJ, O'brien J, et al. Genomic rearrangements of EYA1 account for a large fraction of families with BOR syndrome[J]. Eur J Hum Genet, 2002, 10(11): 757-766. 10.1038/sj.ejhg.5200877. [DOI] [PubMed] [Google Scholar]
- 33. Morisada N, Rendtorff ND, Nozu K, et al. Branchio-oto-renal syndrome caused by partial EYA1 deletion due to LINE-1 insertion[J]. Pediatr Nephrol, 2010, 25(7): 1343-1348. 10.1007/s00467-010-1445-x. [DOI] [PubMed] [Google Scholar]
- 34. Sanchez-Valle A, Wang X, Potocki L, et al. HERV-mediated genomic rearrangement of EYA1 in an individual with branchio-oto-renal syndrome[J]. Am J Med Genet A, 2010, 152a(11): 2854-2860. 10.1002/ajmg.a.33686. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35. Dantas VG, Freitas EL, Della-Rosa VA, et al. Novel partial duplication of EYA1 causes branchiootic syndrome in a large Brazilian family[J]. Int J Audiol, 2015, 54(9): 593-598. 10.3109/14992027.2015.1030511. [DOI] [PubMed] [Google Scholar]
- 36. Xu PX. The EYA-SO/SIX complex in development and disease[J]. Pediatr Nephrol, 2013, 28(6): 843-854. 10.1007/s00467-012-2246-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37. Xu PX, Zheng W, Laclef C, et al. Eya1 is required for the morphogenesis of mammalian thymus, parathyroid and thyroid[J]. Development, 2002, 129(13): 3033-3044. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3873877/. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38. Zhang H, Wang L, Wong EYM, et al. An Eya1-Notch axis specifies bipotential epibranchial differentiation in mammalian craniofacial morphogenesis[J/OL]. eLife, 2017, 6: e30126 (2017-11-15)[2021-05-08]. https://elifesciences.org/articles/30126. DOI: 10.7554/eLife.30126. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39. Lin XF, Luo JW, Liu G, et al. Genetic mutation of familial dilated cardiomyopathy based on nextgeneration semiconductor sequencing[J]. Mol Med Rep, 2018, 18(5): 4271-4280. 10.3892/mmr.2018.9455. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40. Zhou H, Zhang L, Vartuli RL, et al. The EYA phosphatase: Its unique role in cancer[J]. Int J Biochem Cell Biol, 2018, 96: 165-170. 10.1016/j.biocel.2017.09.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41. Liu Y, Han N, Zhou S, et al. The DACH/EYA/SIX gene network and its role in tumor initiation and progression[J]. Int J Cancer, 2016, 138(5): 1067-1075. 10.1002/ijc.29560. [DOI] [PubMed] [Google Scholar]
- 42. Vanslambrouck JM, Woodard LE, Suhaimi N, et al. Direct reprogramming to human nephron progenitor-like cells using inducible piggyBac transposon expression of SNAI2-EYA1-SIX1[J]. Kidney Int, 2019, 95(5): 1153-1166. 10.1016/j.kint.2018.11.041. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43. Creed TM, Baldeosingh R, Eberly CL, et al. The PAX-SIX-EYA-DACH network modulates GATA-FOG function in fly hematopoiesis and human erythropoiesis[J]. Development, 2020, 147(1): dev177022. 10.1242/dev.177022. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44. Zhou JJ, Huang Y, Zhang X, et al. Eyes absent gene (EYA1) is a pathogenic driver and a therapeutic target for melanoma[J]. Oncotarget, 2017, 8(62): 105081-105092. 10.18632/oncotarget.21352. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45. Kong D, Ma W, Zhang D, et al. EYA1 promotes cell migration and tumor metastasis in hepatocellular carcinoma[J]. Am J Transl Res, 2019, 11(4): 2328-2338. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6511787/. [PMC free article] [PubMed] [Google Scholar]
- 46. Guan H, Dai Z, Ma Y, et al. MicroRNA-101 inhibits cell proliferation and induces apoptosis by targeting EYA1 in breast cancer[J]. Int J Mol Med, 2016, 37(6): 1643-1651. 10.3892/ijmm.2016.2557. [DOI] [PubMed] [Google Scholar]
- 47. Li X, Oghi KA, Zhang J, et al. Eya protein phosphatase activity regulates Six1-Dach-Eya transcriptional effects in mammalian organogenesis[J]. Nature, 2003, 426(6964): 247-254. 10.1038/nature02083. [DOI] [PubMed] [Google Scholar]
- 48. Kochhar A, Orten DJ, Sorensen JL, et al. SIX1 mutation screening in 247 branchio-oto-renal syndrome families: a recurrent missense mutation associated with BOR[J]. Hum Mutat, 2008, 29(4): 565. 10.1002/humu.20714. [DOI] [PubMed] [Google Scholar]
- 49. Sanggaard KM, Rendtorff ND, Kjaer KW, et al. Branchio-oto-renal syndrome: detection of EYA1 and SIX1 mutations in five out of six Danish families by combining linkage, MLPA and sequencing analyses[J]. Eur J Hum Genet, 2007, 15(11): 1121-1131. 10.1038/sj.ejhg.5201900. [DOI] [PubMed] [Google Scholar]
- 50. Krug P, Moriniere V, Marlin S, et al. Mutation screening of the EYA1, SIX1, and SIX5 genes in a large cohort of patients harboring branchio-oto-renal syndrome calls into question the pathogenic role of SIX5 mutations[J]. Hum Mutat, 2011, 32(2): 183-190. 10.1002/humu.21402. [DOI] [PubMed] [Google Scholar]
- 51. Chen A, Song J, Acke FRE, et al. Otological manifestations in branchiootorenal spectrum disorder: a systematic review and meta-analysis[J]. Clin Genet, 2021, 100(1): 3-13. 10.1111/cge.13949. [DOI] [PubMed] [Google Scholar]
- 52. Shah AM, Krohn P, Baxi AB, et al. Six1 proteins with human branchio-oto-renal mutations differentially affect cranial gene expression and otic development[J]. Dis Model Mech, 2020, 13(3): dmm043489. 10.1242/dmm.043489 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53. Patrick AN, Schiemann BJ, Yang K, et al. Biochemical and functional characterization of six SIX1 branchio-oto-renal syndrome mutations[J]. J Biol Chem, 2009, 284(31): 20781-20790. 10.1074/jbc.M109.016832. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 54. Hoskins BE, Cramer CH, Silvius D, et al. Transcription factor SIX5 is mutated in patients with branchio-oto-renal syndrome[J]. Am J Hum Genet, 2007, 80(4): 800-804. 10.1086/513322. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 55. Klingbeil KD, Greenland CM, Arslan S, et al. Novel EYA1 variants causing branchio-oto-renal syndrome[J]. Int J Pediatr Otorhinolaryngol, 2017, 98: 59-63. 10.1016/j.ijporl.2017.04.037. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 56. Engels S, Kohlhase J, Mcgaughran J. A SALL1 mutation causes a branchio-oto-renal syndrome-like phenotype[J]. J Med Genet, 2000, 37(6): 458-460. 10.1136/jmg.37.6.458. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 57. Orten DJ, Fischer SM, Sorensen JL, et al. Branchio-oto-renal syndrome (BOR): novel mutations in the EYA1 gene, and a review of the mutational genetics of BOR[J]. Hum Mutat, 2008, 29(4): 537-544. 10.1002/humu.20691. [DOI] [PubMed] [Google Scholar]
- 58. Moody SA, Neilson KM, Kenyon KL, et al. Using xenopus to discover new genes involved in branchiootorenal spectrum disorders[J]. Comp Biochem Physiol C Toxicol Pharmacol, 2015, 178: 16-24. 10.1016/j.cbpc.2015.06.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 59. Deng L, Liu Y, Xia W, et al. Identification of ANLN as a new likely pathogenic gene of branchio-otic syndrome in a three-generation Chinese family[J/OL]. Mol Genet Genomic Med, 2019, 7(2): e00525 (2018-11-11)[2021-05-08]. 10.1002/mgg3.525. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 60. Shen LF, Zhou SH, Chen QQ, et al. Second branchial cleft anomalies in children: a literature review[J]. Pediatr Surg Int, 2018, 34(12): 1251-1256. 10.1007/s00383-018-4348-8. [DOI] [PubMed] [Google Scholar]
- 61. 尹德佩, 窦训武, 张海港. 局部皮瓣在儿童先天性耳前瘘管伴感染切除术中的应用体会[J]. 临床耳鼻咽喉头颈外科杂志, 2016, 30(24): 1968-1969. 10.13201/j.issn.1001-1781.2016.24.018. [DOI] [PubMed] [Google Scholar]; YIN Depei, DOU Xunwu, ZHANG Haigang. Application experiences of local flap in the resection of the children's infectious congenital preauricular fistula[J]. Journal of Clinical Otorhinolaryngology Head and Neck Surgery, 2016, 30(24): 1968-1969. 10.13201/j.issn.1001-1781.2016.24.018. [DOI] [PubMed] [Google Scholar]
- 62. 邓丽莎, 胡炯炯, 马兆鑫. 鳃耳肾综合征临床特点与遗传学的研究进展[J]. 中国眼耳鼻喉科杂志, 2018, 18(5): 359-362. 10.14166/j.issn.1671-2420.2018.05.022. [DOI] [Google Scholar]; DENG Lisha, HU Jiongjiong, MA Zhaoxin. Advances in clinical characteristics and gentics of branchio-oto-renal syndrome[J]. Chinese Journal of Ophthalmology and Otorhinolaryngology, 2018, 18(5): 359-362. 10.14166/j.issn.1671-2420.2018.05.022. [DOI] [Google Scholar]
- 63. Rassekh CH, Kazahaya K, Livolsi VA, et al. Transoral robotic surgery-assisted excision of a congenital cervical salivary duct fistula presenting as a branchial cleft fistula[J/OL]. Head Neck, 2016, 38(2): E49-53 (2015-05-13)[2021-05-08]. 10.1002/hed.24123. [DOI] [PubMed] [Google Scholar]
- 64. Kumar S, Deffenbacher K, Marres HA, et al. Genomewide search and genetic localization of a second gene associated with autosomal dominant branchio-oto-renal syndrome: clinical and genetic implications[J]. Am J Hum Genet, 2000, 66(5): 1715-1720. 10.1086/302890. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 65. Lin AE, Semina EV, Daack-Hirsch S, et al. Exclusion of the branchio-oto-renal syndrome locus (EYA1) from patients with branchio-oculo-facial syndrome[J]. Am J Med Genet, 2000, 91(5): 387-390. [DOI] [PubMed] [Google Scholar]
- 66. Estefania E, Ramirez-Camacho R, Gomar M, et al. Point mutation of an EYA1-gene splice site in a patient with oto-facio-cervical syndrome[J]. Ann Hum Genet, 2006, 70(Pt 1): 140-144. 10.1111/j.1529-8817.2005.00204.x. [DOI] [PubMed] [Google Scholar]
- 67. Mercer C, Gilbert R, Loughlin S, et al. Patient with an EYA1 mutation with features of branchio-oto-renal and oto-facio-cervical syndrome[J]. Clin Dysmorphol, 2006, 15(4): 211-212. 10.1097/01.mcd.0000204986.54366.7c. [DOI] [PubMed] [Google Scholar]


