Skip to main content
Journal of Central South University Medical Sciences logoLink to Journal of Central South University Medical Sciences
. 2022 Jan 28;47(1):101–108. [Article in Chinese] doi: 10.11817/j.issn.1672-7347.2022.210394

YWHAE基因遗传变异——疾病控制开关

Genetic variation of YWHAE gene—“Switch” of disease control

金 曦 1,2,1, 戴 旻晖 3,, 周 艳宏 1,2,
Editors: 田 朴, 陈 丽文
PMCID: PMC10930477  PMID: 35545369

Abstract

YWHAE基因位于染色体17p13.3,该基因产物14-3-3epsilon蛋白属于14-3-3蛋白家族。YWHAE作为一个分子支架,参与细胞黏附、细胞周期调节、信号转导和恶性转化等生物学过程,与众多疾病都有着密切关系。在乳腺癌中YWHAE过表达可增加乳腺癌细胞增殖、迁移和侵袭能力;在胃癌中,YWHAE作为MYCCDC25B的负调控因子,降低两者表达从而抑制胃癌细胞的增殖、迁移和侵袭,并且通过CagA增强YWHAE介导的NF-κB的反式激活;在结直肠癌中,YWHAE lncRNA可以作为miR-323a-3pmiR-532-5p的海绵分子,通过与miR-323a-3pmiR-532-5p的直接相互作用起到竞争内源RNA的作用,从而上调K-RAS/ERK/1/2以及PI3K-AKT信号通路,促进结直肠癌的细胞周期进程。YWHAE除了通过作为竞争内源RNA的方式介导肿瘤的发生,也能通过染色体变异影响基因表达。例如由t(10; 17)(q22; p13)引起的FAM22B-YWHAE融合基因可能与子宫内膜间质肉瘤发展相关;同时,YWHAENUTM2B/E的融合转录本也会导致子宫内膜间质肉瘤的发生。了解YWHAENUTM2ANUTM2B基因重排/融合与恶性肿瘤、YWHAE-FAM22融合基因/易位与肿瘤、YWHAE基因多态性与精神疾病,以及17p13.3区域改变与疾病发生的关系,可为理解YWHAE基因在分子机制与遗传变异方面对疾病进展的作用以及为疾病的靶向治疗提供新的思路和依据。

Keywords: YWHAE基因, 遗传变异, 恶性肿瘤, 精神神经疾病


14-3-3 蛋白家族在各种真核生物中广泛存在,在进化上高度保守,主要的存在形式是同源/异源二聚体,在哺乳动物中共有7种亚型(βεηγθσζ)[1]。14-3-3蛋白在细胞周期、神经发育、疾病发生等生命过程中都发挥重要作用[2]。YWHAE(14-3-3epsilon蛋白)属于14-3-3蛋白家族,参与细胞黏附、细胞周期调节、信号转导和恶性转化等生物学过程,与众多疾病都有着密切关系[3]。本文重点综述YWHAE基因遗传变异与疾病之间的关系。

1. YWHAE 染色体定位与蛋白质结构

YWHAE基因位于染色体17p13.3,又被称为MDSHEL2、MDCRKCIP-1或14-3-3E。该基因产物14-3-3epsilon蛋白约为30 kD(1 D=1 u)的酸性多肽,具有高度保守的序列,以二聚体形式存在。每个单体由9个α螺旋组成,形成一个两亲性沟槽,通过与含有磷酸丝氨酸或磷酸苏氨酸的蛋白质结合来影响细胞生物学功能。YWHAE作为一个分子支架,在植物和哺乳动物中均有发现,与众多疾病都有着密切关系[4]

2. YWHAE 在疾病发生过程中的生物学作用

在乳腺癌中,YWHAE的表达与肿瘤大小、患者预后等有明显关系。YWHAE的过表达可显著增强乳腺癌细胞的增殖、迁移和侵袭能力,并导致MCF-7乳腺癌细胞的耐药性,而YWHAE表达下调则降低了SnailTwist在乳腺癌细胞中的表达,同时YWHAE基因的敲除增强了乳腺癌细胞对许多化学药物治疗(以下简称化疗)药物的敏感性,表明YWHAE蛋白可以作为乳腺癌治疗的新药物靶点[5]

在胃癌中,YWHAE可能是MYC癌基因转录靶点细胞周期素CDC25B的负调控因子,降低MYCCDC25B的表达可抑制细胞的增殖、侵袭和迁移[6]。CagA是幽门螺杆菌重要的毒力因子[7],激活多种功能的信号因子,包括参与发育、细胞骨架重排和炎症分子释放等,但CagA在胃癌中的作用尚不清楚。YWHAE参与了CagA介导的幽门螺杆菌相关肿瘤分子机制。有研究[8]证实了CagA与YWHAE的相互作用,在胃癌中YWHAE蛋白的过表达促进了CagA对NF-κB的激活,即CagA增强了YWHAE介导的NF-κB的反式激活,为揭示CagA介导的幽门螺杆菌相关肿瘤发生的分子机制提供了新的线索。

在结直肠癌中,YWHAE编码的lncRNA转录本和K-ras转录物在结直肠癌细胞的不同阶段成比例增加,YWHAE lncRNA作为miR-323a-3pmiR-532-5p的海绵分子,发挥内源竞争RNA的作用,从而上调K-RAS/ERK/1/2(extracellular regulated protein kinases) 以及PI3K-AKT(Phosphatidylinositide 3-kinases-protein kinase B)信号通路,继而增加细胞周期蛋白D1的表达,促进结直肠癌起源细胞的周期进程及细胞的增殖和迁移。因此由YWHAE lncRNA、K-RAS/ERK1/2、PI3K/AKT和细胞周期蛋白D1组成的新机制,可以调节结直肠癌细胞的存活[9]。用非甾体抗炎药治疗可以抑制YWHAE的表达导致结直肠癌细胞凋亡[10](图1)。

图1.

图1

YWHAE 在疾病发生过程中的生物学作用示意图

Figure 1 Schematic diagram of the biological role of YWHAE in the process of disease occurrence

LncRNA encoded by YWHAE, as miR-323a-3p and miR-532-5p sponge molecules, directly acts on miR-323a-3p and miR-532-5p, and then up-regulates PI3K/AKT signal pathway and promotes cell cycle progression.

血小板中含有可翻译成蛋白质的mRNA转录本和调节某些蛋白质翻译的miRNA。为了寻找稳定的mRNA转录本作为血小板mRNA基因表达研究的通用参考基因,YWHAE胜任了这个角色——在健康者血小板中YWHAE是最稳定的基因,并且不受miRNA的调节[11]

除此之外,由于14-3-3蛋白亚型可以通过同型二聚体、异型二聚体或磷酸化的形式表达其功能,所以解除对14-3-3蛋白二聚体表达的调控是癌症靶向途径的一种思路[12-14]

3. YWHAE 基因遗传变异与疾病

3.1. YWHAE NUTM2A NUTM2B 基因重排/融合

婴儿的软组织未分化圆细胞肉瘤(undifferentiated round cell sarcoma,URCS)、肾透明细胞肉瘤(clear cell sarcomas of kidney,CCSK)及婴儿期原始黏液样间充质瘤(primitive myxoid mesenchymal tumor of infancy,PMMTI)可能具有共同遗传异常。其中一种就是YWHAE-NUTM2B/E融合[15],在CCSK中唯一反复发生的遗传畸变t(10; 17) (q22; p13)也会导致YWHAENUTM2B/E的融合转录本。研究[16]显示有YWHAE-NUTM2融合转录本的患者相对年轻,无I期疾病,但具体的临床特征尚不清楚。而在CCSK中另一种反复发生的遗传畸变是BCOR基因的内部串联重复(internal tandem duplication,ITD),两者是互斥事件[17],激活了不同的下游信号通路[18]。可见YWHAE基因重排对于婴幼儿软组织肿瘤疑难病例的临床诊断具有重要作用。

子宫肉瘤是一种罕见的肿瘤,仅凭形态学和免疫组织化学分析很难对其进行分类,需要应用包括分子生物学技术在内的综合方法[19]。在子宫内膜间质肉瘤(endometrial stromal sarcoma,ESS)中,YWHAE-NUTM2型ESS是ESS的一个子集,比传统ESS的临床行为更具侵袭性,同时预后更差[20]。并且在YWHAE-NUTM2A/B易位的高级别ESS组织中CD56和CD99通常呈阳性;除了潜在的辅助诊断外,这些标志物的阳性也可能导致在鉴别诊断中诊断为其他肿瘤[6]。例如具有YWHAE-NUTM2A/B基因融合的ESS,在最初的临床表现中经常表现为宫外延伸,很可能被误诊为胃肠道间质瘤。通过检测YWHAE-NUTM2A/BESSKIT的表达,发现其高级别圆形细胞成分持续表达KIT,在诊断其形成的盆腔/腹部肿块时,KIT的表达可能是一个潜在的诊断缺陷[21],因此病理学家在评估女性患者的盆腔/腹部肿块时应特别注意这一点。

除了高级别ESS,还存在一种低级别ESS,在形态学上,低度ESS由类似于正常增殖期子宫内膜间质的椭圆形细胞组成。反复的JAZF1重排在低级别间质肉瘤中最常见(高达60%),而YWHAE重排是高级别ESS的特征[22]。宫外型子宫内膜间质肿瘤(endometrial stromal tumors,EST)中JAZF1PHF1YWHAE相互排斥[23]。在临床用药时,YWHAE重排的高级别ESS患者使用蒽环类药物治疗效果显著,且疾病控制时间会延长。化疗是转移性YWHAE重排的高级别ESS患者的有效治疗选择[24]

总之,ESS在形态学和遗传上几乎是异质的。早期进行ESS的分子检测可降低发展为高级别ESS的风险。可见,不管是KIT的表达还是JAZF1PHF1,其基因异常都会引起YWHAE的改变,导致疾病的发生。由于YWHAE-NUTM2A/B的ESS只有部分文献报道,关于这种罕见疾病的临床知识并不完整,还处于演变之中。

3.2. YWHAE-FAM22融合基因/易位

ESS的发生不仅有YWHAE-NUTM2型,还有FAM22B-YWHAE融合基因,该融合基因是用荧光原位杂交技术检测得到的,由t(10;17)(q22;p13)所导致,可发现3个位点的断裂,即YWHAE(17p13)、FAM22A(10q23)和FAM22B(10q22),这3个位点的异常也可能与ESS的发生相关[25](图2)。并且FAM22B-YWHAE融合基因会导致极其罕见的子宫血管肉瘤。免疫组织化学显示:血管肉瘤表达内皮标志物(如CD31、CD34和因子VIII)和某些亚群的淋巴管内皮细胞标志物(如D2-40)均呈阳性。经验表明CD10、ER、CD34、D2-40及CD31等标志物更有助于鉴别血管肉瘤与其他肿瘤(包括ESS)。子宫血管肉瘤还可能与子宫肌瘤相关,但人们对于子宫血管肉瘤的遗传学研究还知之甚少。目前,YWHAEFAM22基因位点的突变与子宫血管肉瘤的预后或生物学行为之间的关系尚不确定,还需进一步研究。

图2.

图2

YWHAE 基因遗传变异与疾病的关系图

Figure 2 Relationship between genetic variation of YWHAE gene and disease

There is a breakpoint of YWHAE gene in RP11-818024 region of 17p13.3, which contains exon 1-5 of YWHAE. There is a breakpoint of FAM22B in the RP11-131C15 region of 10q22.3, including exon 2-7 of FAM22. The 2 breakpoints produce translocation and form a fusion transcript, which will lead to the formation of endometrial sarcoma.

此外,研究[26]表明在高级别ESS中YWHA-EFAM22融合基因阳性率为12.5%。以YWHAE-FAM22基因融合为特征的ESS较等同基因重排的ESS具有更高的组织学分级和更强的临床侵袭性[27]。同时,子宫内膜肉瘤的一个亚群具有高度分化的组织学和均匀的形态,可以通过FISH或反转录聚合酶链反应检测YWHAE重排来支持诊断[28]。反转录聚合酶链反应对检测YWHAE-FAM22融合基因转录本具有特异性,可以作为一种有效的辅助诊断方法来确认在甲醛固定和石蜡包埋的肿瘤标本中YWHAE-FAM22 ESS的诊断[29]。可见,YWHAEFAM22A/B这种新的基因融合与肿瘤疾病预后密切相关[30]

3.3. YWHAE 基因多态性

在几种神经精神障碍中,单胺类物质对神经生理功能起着重要的调节作用,YWHAE基因在神经功能调节中也发挥着重要的作用。有研究[31]报道,YWHAE与精神分裂症有关联,TPH1(编码5-羟色胺生物合成关键酶)和YWHA-基因复合体(TPH1YWHA-基因)显示出与慢性多动症、精神分裂症和双相情感障碍相关的迹象。由此可见,YWHA基因及其靶点的多态性可能在注意缺陷多动障碍和相关的神经精神疾病中发挥累积效应。通过研究YWHAE基因11个单核苷酸(SNPs)多态性的等位基因和基因型频率以及这些SNPs的单倍型,证实YWHAE基因多态性与精神分裂症和双相情感障碍密切相关,表明YWHAE在中国汉族人的双相情感障碍疾病中起重要调节作用[32]

此外,眼眶前额叶皮质(orbitofrontal cortex,OFC)沟回结构的改变可能是精神分裂症神经发育异常的标志,但其遗传机制尚不清楚。通过调查YWHAE基因多态性和“H型”沟的OFC亚型之间的关系,显示YWHAE基因型可能在OFC沟回模式的早期发展中起作用,但其单独的作用尚不能解释精神分裂症中改变的沟回模式[33]

除了精神疾病,YWHAE基因多态性(rs1532976、rs3752826和rs9393)在俄罗斯人和巴什科尔托斯坦共和国鞑靼人群体的自杀行为发生中起重要作用[34]YWHAE基因rs3752826多态性的YWHAE*C等位基因携带者与种族无关,其自杀行为的危险性增加。此外,rs9393多态性的YWHAE*T等位基因、rs1532976多态性的YWHAE*T/*T基因型和YWHAE*T等位基因,以及rs1532976和rs9393多态性的YWHAE*A*T单倍型代表了俄罗斯人种样本中自杀行为风险的遗传标记[34]

与艾滋病相关的神经认知障碍中也存在YWHAE多态性的发生,YWHAE蛋白直接或间接与人类免疫缺陷病毒(HIV)辅助蛋白相互作用导致细胞死亡[35]。研究[35]表明,HIV阳性的女性表现出认知功能减退的可能性增加,YWHAE蛋白表达降低。因此,YWHAE基因多态性可能是HIV相关神经认知障碍(HIV associated neurocognitive disorder,HAND)的危险遗传因素,YWHAE蛋白水平可能是HIV血清阳性女性神经认知状态的生物标志物。

综上,大脑发育失调已被证明是多动症的重要病因,并且YWHAE与多动症和自闭症也有关。之前的研究[36-37]同样发现了YWHAE与智力残疾、精神分裂症和双相情感障碍之间存在联系,进一步支持YWHAE在精神分裂症和其他几种神经精神疾病中的核心作用,为多动症遗传学的进一步探索提供了新的靶点。

3.4. 17p13.3区域改变

14-3-3ε蛋白在整个身体组织中都很活跃,但它的具体功能并不完全清楚。在大脑中,14-3-3ε蛋白通过与其他参与这一过程的蛋白质结合来指导神经细胞的运动(神经元迁移),即14-3-3ε蛋白对神经元迁移和脑发育至关重要[38]。17p13.3缺失的患者有广泛的表型谱,YWHAE基因的小(400 kb)17p13.3缺失会涉及脑畸形表型[39],与神经元的异常迁移有关。YWHAE患者17p13.3染色体微缺失表现为生长受限、颅面畸形、脑结构异常和认知功能障碍[40],并且会导致以面部畸形和更严重的无脑畸形为特征的Miller-Dieker综合征(Miller-Dieker syndrome,MDS)[39],间隙缺失是由不同的分子机制所介导。有这种缺失的胎儿在超声检查中也可能未显示出脑部异常[41],提示YWHAE的表达与神经元发育的复杂机制有关[42]

不仅如此,17p13.3微重复综合征也是一种以17p13.3染色体位点重复为特征的遗传性疾病,可导致包括自闭症谱系障碍(autism spectrum disorder,ASD)在内的多种疾病。该最小重复区域中仅包含编码14-3-3ε的基因,14-3-3ε的过表达能通过阻止微管侵入原始轴突来破坏轴突的形成,可通过双重皮质素的敲除来挽救[43]。基于阵列的比较基因组杂交(array-based comparative genomic hybridization,a-CGH)研究[44]发现:在MDS中缺失的基因组区间存在亚微观重复,染色体17p13.3中存在新的共定位微缺失和微复制。患者MDS临界区有一个新的微重复,涉及PAFAH1B1YWHAE基因,并且表现为中度精神运动发育迟缓、言语迟缓、行为问题和双侧唇腭裂。通过标准细胞遗传学分析和亚端粒FISH分析鉴定,发现有4.2 Mb 17p13.3亚显微重复,进一步表现为X;17不平衡易位所致的高分辨率阵列CGH[40]

精神疾病不仅会影响个人及其家庭,也会给社会和卫生服务带来沉重负担,遗传因素在这些精神障碍中起着重要作用。越来越多的基因研究已经开始寻找与精神疾病相关的基因,并且已经确定了这些疾病的一些潜在遗传风险因素,虽然结果还不太统一,但却也出现了一些令人振奋的结果。今后研究可对YWHAE及其在神经和精神疾病病因中的潜在作用机制进行深入研究。

4. 结 语

YWHAE基因重排/融合、融合基因/易位、基因多态性与恶性肿瘤、神经精神疾病之间的关联性在已有研究中得到证实,但很多具体的机制还有待进一步阐明。除了YWHAE基因的重排、融合等染色体变异,YWHAE在染色体变异的基础上又与其他基因的遗传学机制相关,同样值得深入研究。17p13.3区域改变与疾病的发生存在密切联系,17p13.3微缺失可以鉴定出肌阵挛性癫痫、Chiari I畸形、胼胝体变薄、透明腔和疣腔、书写困难和学习障碍等表型。此外,可能还涉及其他基因的17p13.3微缺失,同样应该持续关注,为疾病找到更多的诊断靶点。可见,YWHAE参与了人体多种疾病的发生发展,对疾病遗传基因的研究意义重大。

基金资助

国家科技基础资源调查专项(2018FY100900, 2018FY100904);国家自然科学基金(81672685);湖南省自然科学基金(2021JJ30915)。

This work was supported by the National Science and Technology Basic Resource Survey Special Project (2018FY100900, 2018FY100904), the National Natural Science Foundation (81672685), and the Natural Science Foundation of Hunan Province (2021JJ30915), China.

利益冲突声明

作者声称无任何利益冲突。

作者贡献

金曦 撰写和修改论文,戴旻晖、周艳宏 指导和审校论文。

原文网址

http://xbyxb.csu.edu.cn/xbwk/fileup/PDF/202201101.pdf

参考文献

  • 1. Kaplan A, Ottmann C, Fournier AE. 14-3-3 adaptor protein-protein interactions as therapeutic targets for CNS diseases[J]. Pharmacol Res, 2017, 125: 114-121. 10.1016/j.phrs.2017.09.007. [DOI] [PubMed] [Google Scholar]
  • 2. Stevers LM, Sijbesma E, Botta M, et al. Modulators of 14-3-3 protein-protein interactions[J]. J Med Chem, 2018, 61(9): 3755-3778. 10.1021/acs.jmedchem.7b00574. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3. Lalle M, Fiorillo A. The protein 14-3-3: a functionally versatile molecule in Giardia duodenalis[J]. Adv Parasitol, 2019, 106: 51-103. 10.1016/bs.apar.2019.08.002. [DOI] [PubMed] [Google Scholar]
  • 4. Aghazadeh Y, Papadopoulos V. The role of the 14-3-3 protein family in health, disease, and drug development[J]. Drug Discov Today, 2016, 21(2): 278-287. 10.1016/j.drudis.2015.09.012. [DOI] [PubMed] [Google Scholar]
  • 5. Yang YF, Lee YC, Wang YY, et al. YWHAE promotes proliferation, metastasis, and chemoresistance in breast cancer cells[J]. Kaohsiung J Med Sci, 2019, 35(7): 408-416. 10.1002/kjm2.12075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6. Leal MF, Ribeiro HF, Rey JA, et al. YWHAE silencing induces cell proliferation, invasion and migration through the up-regulation of CDC25B and MYC in gastric cancer cells: new insights about YWHAE role in the tumor development and metastasis process[J]. Oncotarget, 2016, 7(51): 85393-85410. 10.18632/oncotarget.13381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7. Rogers AB, Houghton J. Helicobacter-based mouse models of digestive system carcinogenesis[J]. Methods Mol Biol, 2009, 511: 267-295. 10.1007/978-1-59745-447-6_11. [DOI] [PubMed] [Google Scholar]
  • 8. Zhang X, Zeng B, Wen C, et al. YWHAE is a novel interaction partner of Helicobacter pylori CagA[J]. FEMS Microbiol Lett, 2018, 365(2). 10.1093/femsle/fnx231. [DOI] [PubMed] [Google Scholar]
  • 9. Bjeije H, Soltani BM, Behmanesh M, et al. YWHAE long non-coding RNA competes with miR-323a-3p and miR-532-5p through activating K-Ras/Erk1/2 and PI3K/Akt signaling pathways in HCT116 cells[J]. Hum Mol Genet, 2019, 28(19): 3219-3231. 10.1093/hmg/ddz146. [DOI] [PubMed] [Google Scholar]
  • 10. Liou JY, Ghelani D, Yeh S, et al. Nonsteroidal anti-inflammatory drugs induce colorectal cancer cell apoptosis by suppressing 14-3-3epsilon[J]. Cancer Res, 2007, 67(7): 3185-3191. 10.1158/0008-5472.CAN-06-3431. [DOI] [PubMed] [Google Scholar]
  • 11. Mossberg K, Svensson PA, Gidlöf O, et al. Normalization of qPCR in platelets - YWHAE a potential genericreference gene[J]. Platelets, 2016, 27(8): 729-734. 10.1080/09537104.2016.1180349. [DOI] [PubMed] [Google Scholar]
  • 12. Aitken A. Functional specificity in 14-3-3 isoform interactions through dimer formation and phosphorylation. Chromosome location of mammalian isoforms and variants[J]. Plant Mol Biol, 2002, 50(6): 993-1010. 10.1023/a:1021261931561. [DOI] [PubMed] [Google Scholar]
  • 13. Neal CL, Yu DH. 14-3-3ζ as a prognostic marker and therapeutic target for cancer[J]. Expert OpinTher Targets, 2010, 14(12): 1343-1354. 10.1517/14728222.2010.531011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14. Shen YH, Godlewski J, Bronisz A, et al. Significance of 14-3-3 self-dimerization for phosphorylation-dependent target binding[J]. Mol Biol Cell, 2003, 14(11): 4721-4733. 10.1091/mbc.e02-12-0821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15. Kao YC, Sung YS, Zhang L, et al. Recurrent BCOR internal tandem duplication and YWHAE-NUTM2B fusions in soft tissue undifferentiated round cell sarcoma of infancy: overlapping genetic features with clear cell sarcoma of kidney[J]. Am J Surg Pathol, 2016, 40(8): 1009-1020. 10.1097/PAS.0000000000000629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16. Gooskens SL, Kenny C, Lazaro A, et al. The clinical phenotype of YWHAE-NUTM2B/Epositive pediatric clear cell sarcoma of the kidney[J]. Genes Chromosomes Cancer, 2016, 55(2): 143-147. 10.1002/gcc.22320. [DOI] [PubMed] [Google Scholar]
  • 17. Kenny C, Bausenwein S, Lazaro A, et al. Mutually exclusive BCOR internal tandem duplications andYWHAE-NUTM2fusions in clear cell sarcoma of kidney: not the full story[J]. J Pathol, 2016, 238(5): 617-620. 10.1002/path.4693. [DOI] [PubMed] [Google Scholar]
  • 18. Karlsson J, Valind A, Gisselsson D. BCOR internal tandem duplication and YWHAE-NUTM2B/Efusion are mutually exclusive events in clear cell sarcoma of the kidney[J]. Genes Chromosomes Cancer, 2016, 55(2): 120-123. 10.1002/gcc.22316. [DOI] [PubMed] [Google Scholar]
  • 19. Kubo T, Sugita S, Wada R, et al. Uterine epithelioid leiomyosarcoma with c-kit expression and YWHAE gene rearrangement: a case report of a diagnostic pitfall of uterine sarcoma[J]. Diagn Pathol, 2017, 12(1): 26. 10.1186/s13000-017-0615-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20. Kruse AJ, Croce S, RFPMKruitwagen, et al. Aggressive behavior and poor prognosis of endometrial stromal sarcomas with YWHAE-FAM22 rearrangement indicate the clinical importance to recognize this subset[J]. Int J Gynecol Cancer, 2014, 24(9): 1616-1622. 10.1097/IGC.0000000000000278. [DOI] [PubMed] [Google Scholar]
  • 21. Lee CH, Hoang LN, Yip S, et al. Frequent expression of KIT in endometrial stromal sarcoma with YWHAE genetic rearrangement[J]. Mod Pathol, 2014, 27(5): 751-757. 10.1038/modpathol.2013.199. [DOI] [PubMed] [Google Scholar]
  • 22. Aisagbonhi O, Harrison B, Zhao L, et al. YWHAE rearrangement in a purely conventional low-grade endometrial stromal sarcoma that transformed over time to high-grade sarcoma: importance of molecular testing[J]. Int J GynecolPathol, 2018, 37(5): 441-447. 10.1097/pgp.0000000000000451. [DOI] [PubMed] [Google Scholar]
  • 23. Hodge JC, Bedroske PP, Pearce KE, et al. Molecular cytogenetic analysis of JAZF1, PHF1, and YWHAE in endometrial stromal tumors: discovery of genetic complexity by fluorescence in situ hybridization[J]. J Mol Diagn, 2016, 18(4): 516-526. 10.1016/j.jmoldx.2016.02.001. [DOI] [PubMed] [Google Scholar]
  • 24. Hemming ML, Wagner AJ, Nucci MR, et al. YWHAE rearranged high-grade endometrial stromal sarcoma: two-center case series and response to chemotherapy[J]. Gynecol Oncol, 2017, 145(3): 531-535. 10.1016/j.ygyno.2017.03.021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25. Suzuki S, Tanioka F, Minato H, et al. Breakages at YWHAE, FAM22A, and FAM22B loci in uterine angiosarcoma: a case report with immunohistochemical and genetic analysis[J]. Pathol Res Pract, 2014, 210(2): 130-134. 10.1016/j.prp.2013.09.009. [DOI] [PubMed] [Google Scholar]
  • 26. 常彬, 卢立霞, 涂小予, 等. 子宫内膜间质肉瘤的病理形态学观察及JAZF1-SUZ12和YWHAE-FAM22融合基因检测[J]. 中华病理学杂志, 2016, 45(5): 308-313. 10.3760/cma.j.issn.0529-5807.2016.05.005. [DOI] [PubMed] [Google Scholar]; CHANG Bin, LU Lixia, TU Xiaoyu, et al. Endometrial stromal sarcoma: morphologic features and detection of JAZF1-SUZ12 and YWHAE FAM22 fusion genes[J]. Chinese Journal of Pathology, 2016, 45(5): 308-313. 10.3760/cma.j.issn.0529-5807.2016.05.005. [DOI] [PubMed] [Google Scholar]
  • 27. Lee CH, Ali RH, Rouzbahman M, et al. Cyclin D1 as a diagnostic immunomarker for endometrial stromal sarcoma with YWHAE-FAM22 rearrangement[J]. Am J Surg Pathol, 2012, 36(10): 1562-1570. 10.1097/pas.0b013e31825fa931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28. Croce S, Hostein I, Ribeiro A, et al. YWHAE rearrangement identified by FISH and RT-PCR in endometrial stromal sarcomas: genetic and pathological correlations[J]. Mod Pathol, 2013, 26(10): 1390-1400. 10.1038/modpathol.2013.69. [DOI] [PubMed] [Google Scholar]
  • 29. Isphording A, Ali RH, Irving J, et al. YWHAE-FAM22 endometrial stromal sarcoma: diagnosis by reverse transcription-polymerase chain reaction in formalin-fixed, paraffin-embedded tumor[J]. Hum Pathol, 2013, 44(5): 837-843. 10.1016/j.humpath.2012.08.007. [DOI] [PubMed] [Google Scholar]
  • 30. Lee CH, Mariño-Enriquez A, Ou WB, et al. The clinicopathologic features of YWHAE-FAM22 endometrial stromal sarcomas[J]. Am J Surg Pathol, 2012, 36(5): 641-653. 10.1097/pas.0b013e31824a7b1a. [DOI] [PubMed] [Google Scholar]
  • 31. Jacobsen KK, Kleppe R, Johansson S, et al. Epistatic and gene wide effects in YWHA and aromatic amino hydroxylase genes across ADHD and other common neuropsychiatric disorders: association with YWHAE[J]. Am J Med Genet B Neuropsychiatr Genet, 2015, 168(6): 423-432. 10.1002/ajmg.b.32339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32. Liu J, Li ZQ, Li JY, et al. Polymorphisms and haplotypes in the YWHAE gene increase susceptibility to bipolar disorder in Chinese Han population[J]. J Clin Psychiatry, 2012, 73(10): e1276-e1282 [2021-06-15]. 10.4088/jcp.12m07824. [DOI] [PubMed] [Google Scholar]
  • 33. Takahashi T, Nakamura Y, Nakamura Y, et al. The polymorphism of YWHAE, a gene encoding 14-3-3epsilon, and orbitofrontal sulcogyral pattern in patients with schizophrenia and healthy subjects[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2014, 51: 166-171. 10.1016/j.pnpbp.2014.02.005. [DOI] [PubMed] [Google Scholar]
  • 34. Khalilova ZI, Zainullina AG, Valiullina AR, et al. Association of YWHAE gene polymorphism with suicidal behavior[J]. Genetika, 2013, 49(6): 767-772. 10.7868/s0016675813030090. [DOI] [PubMed] [Google Scholar]
  • 35. Morales D, Hechavarria R, Wojna V, et al. YWHAE/14-3-3ε: a potential novel genetic risk factor and CSF biomarker for HIV neurocognitive impairment[J]. J Neurovirology, 2013, 19(5): 471-478. 10.1007/s13365-013-0200-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36. Larsson H, Chang Z, D'Onofrio BM, et al. The heritability of clinically diagnosed attention deficit hyperactivity disorder across the lifespan[J]. Psychol Med, 2014, 44(10): 2223-2229. 10.1017/S0033291713002493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37. Franke B, Neale BM, Faraone SV. Genome-wide association studies in ADHD[J]. Hum Genet, 2009, 126(1): 13-50. 10.1007/s00439-009-0663-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38. Toyo-Oka K, Shionoya A, Gambello MJ, et al. 14-3-3epsilon is important for neuronal migration by binding to NUDEL: a molecular explanation for Miller-Dieker syndrome[J]. Nat Genet, 2003, 34(3): 274-285. 10.1038/ng1169. [DOI] [PubMed] [Google Scholar]
  • 39. Emrick LT, Rosenfeld JA, Lalani SR, et al. Microdeletions excluding YWHAE and PAFAH1B1 cause a unique leukoencephalopathy: further delineation of the 17p13.3 microdeletion spectrum[J]. Genet Med, 2019, 21(7): 1652-1656. 10.1038/s41436-018-0358-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40. Hyon C, Marlin S, Chantot-Bastaraud S, et al. A new 17p13.3 microduplication including the PAFAH1B1 and YWHAE genes resulting from an unbalanced X;17 translocation[J]. Eur J Med Genet, 2011, 54(3): 287-291. 10.1016/j.ejmg.2010.12.006. [DOI] [PubMed] [Google Scholar]
  • 41. Chen CP, Ko TM, Wang LK, et al. Prenatal diagnosis of a 0.7 Mb 17p13.3 microdeletion encompassing YWHAE and CRK but not PAFAH1B1 in a fetus without ultrasound abnormalities[J]. Taiwan J Obstet Gynecol, 2018, 57(1): 128-132. 10.1016/j.tjog.2017.12.022. [DOI] [PubMed] [Google Scholar]
  • 42. Enomoto K, Kishitani Y, Tominaga M, et al. Expression analysis of a 17p terminal deletion, including YWHAE, but not PAFAH1B1, associated with normal brain structure on MRI in a young girl[J]. Am J Med Genet, 2012, 158(9): 2347-2352. 10.1002/ajmg.a.35542. [DOI] [PubMed] [Google Scholar]
  • 43. Cornell B, Wachi T, Zhukarev V, et al. Regulation of neuronal morphogenesis by 14-3-3epsilon (YWHAE) via the microtubule binding protein, doublecortin[J]. Hum Mol Genet, 2016, 25(20): 4610. 10.1093/hmg/ddw270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44. Bruno DL, Anderlid BM, Lindstrand A, et al. Further molecular and clinical delineation of co-locating 17p13.3 microdeletions and microduplications that show distinctive phenotypes[J]. J Med Genet, 2010, 47(5): 299-311. 10.1136/jmg.2009.069906. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Central South University Medical Sciences are provided here courtesy of Central South University

RESOURCES