Skip to main content
Journal of Central South University Medical Sciences logoLink to Journal of Central South University Medical Sciences
. 2022 Jan 28;47(1):109–115. [Article in Chinese] doi: 10.11817/j.issn.1672-7347.2022.200990

m6A 修饰在神经系统疾病中的作用

Roles of m6A modification in neurological diseases

张 圆 1,2, 张 巳 2, 时 萌萌 2, 李 梦琳 3, 曾 佳玉 2, 何 洁 1,4,
Editor: 彭 敏宁
PMCID: PMC10930482  PMID: 35545370

Abstract

N6-甲基腺苷(N6-methyladenosine,m6A)甲基化修饰是真核生物mRNA最常见的表观遗传修饰之一,在相关酶的催化调控下,m6A通过介导RNA转录、剪接、翻译、衰变等参与机体的生理和病理生理过程。以往主要关注m6A在肿瘤,如血液系统肿瘤、宫颈癌、乳腺癌等中的调控作用,近年来发现m6A富集于与神经发生、细胞周期、神经元分化等相关的mRNA中,其在神经系统中的调控作用逐渐被重视。m6A 修饰水平及相关酶蛋白表达水平发生改变会引起神经系统功能紊乱,参与神经系统疾病的发生与转归。m6A 修饰及其相关酶在重度抑郁症、帕金森病、阿尔茨海默症、脆性X综合征、肌萎缩侧索硬化、创伤性脑损伤及神经系统肿瘤等众多神经系统疾病的发展进程中扮演关键角色。

Keywords: N6-甲基腺苷, 神经退行性疾病, 重度抑郁症


在RNA中存在多种类型的转录后修饰,其中N6-甲基腺苷(N6-methyladenosine,m6A)是最常见的修饰之一,占所有RNA甲基化的 50%以上 [1]。1968年Vanyushin等在细菌中发现有m6A修饰,其后在藻类、果蝇、线虫以及真核生物中均发现存在m6A修饰[2]。2012年,Meyer等[3]通过RNA甲基化免疫沉淀测序技术发现m6A在成年啮齿动物的大脑中高度表达,其后m6A在神经系统中作用的研究开始增多,包括m6A对神经元发育的调节、对神经可塑性的影响等。m6A动态化学修饰过程主要受相关酶类的调节,影响RNA剪接、翻译及核输出等进而协调多种神经生物学功能。本文对m6A修饰过程及相关酶类蛋白在神经系统疾病中的作用进行综述,以期为神经系统疾病的防治提供新思路。

1. m6A相关酶及其动态修饰过程

m6A相关酶决定m6A处于甲基化还是去甲基化状态,即m6A相关酶的水平在很大程度上揭示了m6A的功能和意义。m6A相关酶包括写入基因(writers),擦除基因(erasers)和读取基因(readers)编码的多种调控蛋白。写入基因,又称为甲基化转移酶复合物,是一类重要的功能酶,促进腺嘌呤碱基位点的甲基化修饰。m6A甲基化转移酶的核心蛋白质主要有METTL3、METTL14、WTAP、ZC3H13和KIAA1429等。METTL3是m6A甲基转移酶复合体中最重要的组成蛋白质,其自身具有催化能力,可单独与甲基结合催化m6A形成,同时能在细胞质中促进蛋白质翻译。METTL14虽然不能独立地催化m6A甲基修饰形成,但是可与METTL3形成异质二聚体,该复合物的甲基化活性高于单独的METTL3,由此可知,在生物体中这些蛋白质并不是孤立的,而是会形成复合物共同行使催化功能[4]。WTAP具有稳定异质二聚体、帮助定位核斑点、促进RNA降解、调控细胞分化和增殖的功能[5]。KIAA1429,也称为vir-like m6A甲基转移相关酶(vir-like m6A methyltransferase associated,VIRMA),其N端通过募集甲基转移酶METTL3/METTL14/WTAP,实现对mRNA m6A水平的调节[6]。在KIAA1429的募集下,METTL3与METTL14形成异质二聚体,WTAP进一步稳定异质二聚体,在细胞核内形成m6A甲基转移酶复合物。m6A甲基转移酶复合物催化甲基从供体底物S-腺苷甲硫氨酸中转移,并与腺苷酸的第6位含氮碱基结合形成m6A[7]

擦除基因,又称为m6A去甲基酶复合物(demethylase),这些酶的存在是m6A修饰保持动态可逆过程的关键,其作用是将m6A修饰的碱基,在脂肪质量与肥胖相关蛋白质(fat mass and obesity-associated protein,FTO)和ALKBH5等去甲基酶的作用下发生去甲基化。FTO是第1个被发现的去甲基酶,属于AlkB家族,是一种依赖于Fe2+和2-氧戊二酸(2-oxoglutarate)的加氧酶,可催化核苷酸的去甲基化[8]。ALKBH5(AIkB homolog 5)是继FTO后发现的第2个去甲基酶,是Fe2+和α-酮戊二酸(α-ketoglutarate,α-KG)依赖的非血红素加氧酶[9]。尽管两者同为去甲基酶,但是它们有不同的底物偏好,并在不同的哺乳动物器官中差异表达。ALKBH5在睾丸中高度表达,对于精子发生的是必不可少的[10]。FTO在大脑特别是神经元中富集,对中枢神经系统起重要的调节作用。在特定的条件下,去甲基化酶能对已发生m6A修饰的RNA进行去甲基化修饰。人类的2个主要AlkB家族成员FTO和ALKBH5均是m6A的氧化脱甲基酶,但两者提供的主要产物不同,分别为N6-羟甲基腺苷(hm6A)和原始腺苷酸。ALKBH5可以直接催化m6A还原为原始腺苷酸,而FTO介导的氧化脱甲基过程是逐步完成的:m6A首先转化为N6-羟甲基腺苷(hm6A),随后转化为N6-甲酰腺苷(f6A),最后还原为原始腺苷酸[11]。FTO和ALKBH5在m6A代谢机制上的差异,形成了独特的生化结果,进而发挥不同的生物学功能。

读取基因,即m6A甲基化结合蛋白复合物(methylation binding protein),能够结合RNA的特定m6A甲基化位点进而发挥作用。含YT521-B同源结构域(YTH)的蛋白质被认定为重要的m6A甲基化结合蛋白质之一,能结合m6A从而影响含m6A RNA的结局。YTH蛋白主要包括YTHDFs和YTHDCs亚型。YTHDCs亚型位于细胞核内,其中YTHDC1影响RNA剪接、出核及基因沉默,YTHDC2降低RNA稳定性和促进RNA翻译。YTHDFs亚型位于细胞质内,其中YTHDF1促进mRNA翻译,YTHDF2促进RNA降解,YTHDF3辅助YTHDF1/2发挥作用[12]。m6A通过募集或排斥mRNA上的特定甲基结合蛋白,或诱导mRNA局部或二级结构发生变化,从而变构地调节转录本上的甲基结合蛋白等途径,与其底物相互作用发挥不同的分子效应,行使下游的一系列功能,包括RNA加工、mRNA出核翻译及剪切等[13]。通过靶向甲基转移酶复合物的组分来了解其表达量的变化,以及其对相关基因mRNA的甲基化水平的影响,可为进一步研究m6A信号转导对神经系统疾病的作用提供有力的支持。

2. m6A对神经退行性疾病发生发展的影响

神经退行性疾病是由于神经元或其髓鞘的丧失所致的功能障碍性疾病,包括阿尔茨海默病(Alzheimer's disease,AD)、帕金森病、肌萎缩侧索硬化等。相关研究表明m6A参与了神经退行性疾病的发生发展。

2.1. m6A修饰与帕金森病

帕金森病主要发病机制是中脑黑质的多巴胺神经元变性导致纹状体多巴胺含量减少,造成黑质-纹状体多巴胺递质系统活性降低,引起纹状体胆碱能活性相对亢进。编码核酸脱甲基酶的FTO参与中脑多巴胺信号的调控。FTO基因失活会损害多巴胺2型受体(D2R)和3型受体(D3R)(统称“D2样受体”)对神经元的调控[14-15]。然而,过表达FTO会上调多巴胺信号通路相关基因GRIN1的表达,促进神经元Ca2+内流,引起线粒体功能损伤、氧化应激水平升高,进而导致神经元凋亡增加[16]。m6A的减少可以诱导N-甲基-D-天冬氨酸受体1(NMDAR1)的表达,升高氧化应激水平和增加Ca2+内流,从而导致多巴胺能神经元凋亡。因此维持编码神经元及多巴胺信号转导的mRNA的m6A修饰状态在适当水平对精细调节多巴胺信号转导非常重要。此外,帕金森病患者的4号染色体上的cg06690548基因高甲基化与编码抗氧化剂谷胱甘肽的半胱氨酸——谷氨酸抗转运蛋白的SLC7A11基因的下调相关。cg06690548甲基化可导致谷胱甘肽水平降低并增加氧化应激反应,从而触发黑质中多巴胺能神经元变性。一项大规模全基因组关联研究[17]发现:编码GAK的rs75072999基因,编码ALKBH5的rs1378602、rs4924839和rs8071834基因,编码C6orf10的rs1033500基因的m6A相关的单核苷酸多态性与帕金森病发生密切相关。

2.2. m6A修饰与AD

AD是一种不可逆的中枢神经系统变性疾病。AD和表观遗传学有密不可分的联系。m6A修饰在突触功能中起关键作用,而突触功能的变化是AD的主要机制之一。Han等[18]通过高通量测序分析发现AD小鼠中编码突触功能的AMPANMDASEMA基因的m6A RNA甲基化水平与对照组不同,其AMPANMDA基因甲基化水平升高,SEMA基因甲基化水平降低。这表明差异表达的m6A甲基化在AD发展中发挥潜在作用。同时,Han等[8]对AD小鼠和正常对照小鼠的RNA m6A甲基化水平进行定量分析,发现AD小鼠的皮层和海马中RNA m6A甲基化水平明显高于对照组,且其皮质和海马中METTL3表达增加,FTO基因表达下降,表明高水平的RNA甲基化修饰参与了AD的发生。

Huang等[19]对死亡后AD患者进行尸检,发现其海马不溶性组织成分中存在METTL3的累积,其水平与不溶性Tau蛋白水平呈正相关。因此,METTL3在AD患者海马中的异常表达和分布可能代表了与AD发病机制相关的基因表达模式的改变。

众所周知,亚砷酸盐能引起突触间隙中多巴胺能神经传递的缺乏,使多巴胺含量降低,增加患神经退行性疾病的风险,导致严重的学习和记忆障碍,如焦虑行为和成年雄性小鼠条件回避及逃避反应的改变[20]。研究[21]表明:亚砷酸盐显著增加m6A修饰,而FTO能够缓解因暴露于亚砷酸盐而引起的多巴胺能神经传递缺陷,为预防与砷相关的神经系统疾病提供了新策略。

2.3. m6A修饰与脆性X综合征

脆性X综合征是由于人体内X染色体在形成过程中发生突变所导致的,以出现认知障碍、自闭症行为及癫痫发作为特征的智力障碍性疾病,是智力障碍最常见的遗传形式。脆弱X的智力低下蛋白(fragile X mental retardation protein,FMRP)由FMR1基因编码,是与翻译多核糖体相关的富含m6A标记的选择性RNA结合蛋白。它能抑制和调节一组与突触可塑性相关的转录本的翻译。FMRP的功能失调或缺失会导致脆性X综合征[22]。FMRP作为一种m6A读取器蛋白质,能与其靶标的mRNA的m6A位点结合,并能以不依赖RNA的方式与m6A阅读器YTHDF2相互作用。FMRP维持其mRNA靶标的稳定性,而YTHDF2促进这些mRNA的降解,即FMRP通过YTHDF2调节m6A标记的mRNA靶标的稳定性,为脆性X综合征分子发病机制的研究提供了可能[23-24]

研究[25-26]发现FMRP的消耗增加了细胞核中m6A mRNA水平。在敲除编码FMRP的FMR1基因后,细胞中总的m6A mRNA水平无明显差异,但是相对于细胞核,细胞质中m6A mRNA水平降低,即FMRP促进了含m6A mRNA的核输出。以上研究表明:FMRP靶标的mRNA m6A修饰异常可能与FMRP的功能失调或缺失有关。

2.4. m6A与肌萎缩侧索硬化

肌萎缩侧索硬化是一种进行性神经退行性疾病,其发病机制尚不明确[27]。研究[28]表明:肌萎缩侧索硬化的发病可能与m6A相互作用的hnRNP A2/B1和hnRNP C蛋白的表达失调有关。在正常状态下,m6A与hnRNP A2/B1和hnRNP C的相互作用参与了细胞核内前mRNA或非编码RNA的剪接调控[29]。hnRNPA中朊蛋白样结构域内发生肌萎缩侧索硬化相关突变能促进细胞中的蛋白质纤维化,而m6A能结合到突变的hnRNPA突变区域[30-31],这可能是m6A介导的调节功能丧失,从而在疾病的发生中起作用的机制。

3. m6A修饰与重度抑郁症

重度抑郁症(major depressive disorder,MDD)是一种常见的慢性和复发性精神疾病,以严重的情绪低落为特征。越来越多的证据[32-34]支持m6A相关酶在抑郁症的发生与转归中发挥重要作用的结论。FTO是m6A修饰基因之一,在大脑中高度表达,在神经系统中能通过调节有功能的m6A RNA甲基化进而改变神经相关基因的表达。Samaan等[35]发现FTO多态性对MDD发生有影响,FTO基因座中SNP rs9939609与MDD的风险高度相关。Du等[36]进一步研究发现:ALKBH5基因座中的SNP rs12936694与MDD密切相关。

复发性抑郁症和体重指数之间有密切的关系[37],而体重指数与FTO高度相关。Rivera等[38]通过研究FTO与抑郁症之间的关系,发现在抑郁症患者中,FTO对体重指数的影响降低。这一发现表明:FTO参与了情绪障碍与肥胖之间的潜在机制。

抑郁症与转录相关的微调节关系密切。压力应激后m6A和N6, 2'-O-二甲基腺苷(m6Am)甲基化构成了一种复杂的基因表达调控关系,并且m6A或 m6Am反应的失调可能与压力暴露导致的的精神疾病的病理生理相关。沉默成人神经元中的甲基转移酶METTL3或去甲基酶FTO会改变m6A/m6Am表观转录组,增加恐惧记忆,并改变转录组对恐惧和突触可塑性的反应。MDD患者在糖皮质激素刺激后,m6A/m6Am的调节受到损害,这可能是糖皮质激素受体下游信号改变的结果。抑郁患者的m6A/m6Am动态变化为开发新型诊断性生物标志物和新的焦虑症、抑郁症和其他与压力有关的疾病的治疗方法提供了可能性[39]

Hong等[40]对慢性不可预测应激处理的小鼠海马进行高通量RNA测序,从中筛选出环状RNA STAG1(circSTAG1),将circSTAG1慢病毒微注射入小鼠海马,观察circSTAG1在抑郁中的作用,结果发现过量表达的circSTAG1捕获ALKBH5,并减少ALKBH5向核内转运,促进星形胶质细胞中脂肪酸酰胺水解酶(fatty acid amide hydrolase,FAAH)mRNA m6A修饰的增加与FAAH的降解,缓解了由慢性不可预测应激引起的星形胶质细胞功能障碍和抑郁样行为。将circSTAG1和m6A甲基化之间进行功能联系,可为MDD的新型治疗提供靶标。

4. m6A修饰与创伤性脑损伤

创伤性脑损伤(traumatic brain injury,TBI)是由外在机械力对大脑造成的暂时或永久性损伤,大多出现以认知或记忆障碍,以及运动、感觉或情感功能障碍为特征的神经系统症状[41]。其机制涉及脑缺血、细胞凋亡、线粒体功能障碍、皮质扩散抑制(cortical spreading depression,CSD)和微血管血栓形成等[42]。一系列研究[43-45]发现表观遗传变化在TBI诱导的病理生理中起重要作用。Wang等[46]通过对小鼠TBI后海马m6A标记转录谱进行全基因组筛选(methylated RNA immunoprecipitation sequencing,MeRIP-Seq),发现922个m6A峰差异表达,其中370个上调而552个下调,免疫组织化学结果表明TBI后METTL3表达下调。Yu等[47]发现在TBI大鼠大脑皮层中METTL14和FTO表达明显下调,为进一步验证FTO在TBI大鼠中的作用,使用FTO抑制剂FB23-2抑制FTO的去甲基化功能,发现抑制FTO会加剧神经损伤,表明功能性FTO在维持TBI大鼠神经功能中起重要作用。

5. m6A与神经系统肿瘤

m6A的表达失调参与多种癌症的发生发展[48]。神经胶质瘤的临床病理特征与m6A RNA甲基化的表达相关,m6A RNA甲基化在胶质瘤维持干细胞样形态和抗放射性特征中发挥重要作用。WTAP、RBM15、METTL3、YTHDF2、YTHDF1和ALKBH5的表达水平与神经胶质瘤恶性程度的增加呈正相关,而FTO的表达水平与胶质瘤恶性程度的增加呈负相关。对RNA m6A甲基化调节的风险评分可以独立预测神经胶质瘤患者的预后[49-50]

Xie等[51]通过斑点印迹分析、高度灵敏的质谱定量分析、免疫荧光等发现:m6A在胶质母细胞瘤中显著高表达,m6A水平受DNA脱甲基酶ALKBH1的动态调节,ALKBH1具有转录激活因子作用,能结合到m6A富集区域并去除所选基因组位点的阻抑性m6A标记。ALKBH1的缺失可通过降低染色质的可及性(致密的核小体结构被破坏后,启动子、增强子、沉默子等顺式调控元件和反式作用因子可以接近的特性)导致致癌途径的转录沉默。调节ALKBH1水平为抑制胶质母细胞瘤增殖提供了新的潜在的治疗靶点。

ALKBH5在胶质母细胞瘤干细胞(glioblastoma stem-like cells,GSCs)中高度表达,且能与转录因子FOXM1的新生转录子相互作用,导致FOXM1表达增强,而沉默ALKBH5可以抑制GSC的增殖[52]。对沉默METTL3的GSCs进行m6A-RIP和总RNA-seq的分析[53]表明:GSCs中的m6A修饰主要由METTL3执行。METTL3对GSCs特异性活性转录基因的表达是必不可少的,METTL3沉默会导致一些异常的替代剪接事件发生增加,且不利于GSCs的维持和发生。

6. 展 望

m6A在神经系统中高表达,为研究其在神经系统中潜在的神经生物学功能提供了基础。过表达FTO会促进神经元Ca2+内流,引起线粒体功能损伤、氧化应激水平升高,进而导致神经元凋亡增加。METTL3敲低可导致皮质神经祖细胞周期延长和放射状胶质细胞分化减少。m6A对神经系统疾病如MDD、帕金森病、AD、肌萎缩侧索硬化、TBI、神经系统肿瘤等的发生发展具有广泛的影响。深入了解m6A修饰将有助于促进神经系统疾病靶向治疗的研究。

然而,m6A在神经系统中的研究尚处于起步阶段,许多问题仍然未知,如m6A水平在神经系统疾病发生发展的不同时期有何区别,这种区别又是由什么机制所致,是否还存在未知的m6A 甲基化酶、去甲基酶或甲基化结合蛋白,其相应功能又是什么,m6A在各组织系统中表达水平的差异与m6A功能的多样性之间的关联及潜在机制是什么。未来对m6A的研究仍需努力解决这些问题。

基金资助

湖南省自然科学基金(2019JJ40257)。

This work was supported by Natural Science Foundation of Hunan Provincial, China (2019JJ40257).

利益冲突声明

作者声称无任何利益冲突。

作者贡献

张圆 文献查阅,论文撰写和修订。张巳,时萌萌,李梦琳 文献查阅和整理。曾佳玉 论文构思指导。何洁 论文构思、写作指导、校正和修订。

原文网址

http://xbyxb.csu.edu.cn/xbwk/fileup/PDF/202201109.pdf

参考文献

  • 1. Sarin LP, Leidel SA. Modify or die?-RNA modification defects in metazoans[J]. RNA Biol, 2014, 11(12): 1555-1567. 10.4161/15476286.2014.992279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2. Wu TP, Wang T, Seetin MG, et al. DNA methylation on N(6)-adenine in mammalian embryonic stem cells[J]. Nature, 2016, 532(7599): 329-333. 10.1038/nature17640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3. Meyer KD, Saletore Y, Zumbo P, et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons[J]. Cell, 2012, 149(7): 1635-1646. 10.1016/j.cell.2012.05.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4. Liu JZ, Yue YN, Han DL, et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation[J]. Nat Chem Biol, 2014, 10(2): 93-95. 10.1038/nchembio.1432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5. Chen YH, Peng CH, Chen JR, et al. WTAP facilitates progression of hepatocellular carcinoma via m6A-HuR-dependent epigenetic silencing of ETS1[J]. Mol Cancer, 2019, 18(1): 127. 10.1186/s12943-019-1053-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6. Lan T, Li H, Zhang DL, et al. KIAA1429 contributes to liver cancer progression through N6-methyladenosine-dependent post-transcriptional modification of GATA3[J]. Mol Cancer, 2019, 18(1): 186. 10.1186/s12943-019-1106-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7. Shafik A, Schumann U, Evers M, et al. The emerging epitranscriptomics of long noncoding RNAs[J]. Biochim Biophys Acta, 2016, 1859(1): 59-70. 10.1016/j.bbagrm.2015.10.019. [DOI] [PubMed] [Google Scholar]
  • 8. Zhang X, Wei LH, Wang YX, et al. Structural insights into FTO's catalytic mechanism for the demethylation of multiple RNA substrates[J]. Proc Natl Acad Sci USA, 2019, 116(8): 2919-2924. 10.1073/pnas.1820574116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9. Zhou C, Molinie B, Daneshvar K, et al. Genome-wide maps of m6A circRNAs identify widespread and cell-type-specific methylation patterns that are distinct from mRNAs[J]. Cell Rep, 2017, 20(9): 2262-2276. 10.1016/j.celrep.2017.08.027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10. Aik W, Scotti JS, Choi H, et al. Structure of human RNA N⁶-methyladenine demethylase ALKBH5 provides insights into its mechanisms of nucleic acid recognition and demethylation[J]. Nucleic Acids Res, 2014, 42(7): 4741-4754. 10.1093/nar/gku085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11. Wu JJ, Xiao H, Wang TL, et al. N6-Hydroperoxy-methyladenosine: a new intermediate of chemical oxidation of N6-methyladenosine mediated by bicarbonate-activated hydrogen peroxide[J]. Chem Sci, 2015, 6(5): 3013-3017. 10.1039/c5sc00484e. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12. Sun J, Bie XM, Wang N, et al. Genome-wide identification and expression analysis of YTH domain-containing RNA-binding protein family in common wheat[J]. BMC Plant Biol, 2020, 20(1): 351. 10.1186/s12870-020-02505-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13. Hazra D, Chapat C, Graille M. m⁶A mRNA destiny: chained to the rhYTHm by the YTH-containing proteins[J]. Genes (Basel), 2019, 10(1): 49. 10.3390/genes10010049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14. Hess ME, Hess S, Meyer KD, et al. The fat mass and obesity associated gene (Fto) regulates activity of the dopaminergic midbrain circuitry[J]. Nat Neurosci, 2013, 16(8): 1042-1048. 10.1038/nn.3449. [DOI] [PubMed] [Google Scholar]
  • 15. Maity A, Das B. N6-methyladenosine modification in mRNA: machinery, function and implications for health and diseases[J]. FEBS J, 2016, 283(9): 1607-1630. 10.1111/febs.13614. [DOI] [PubMed] [Google Scholar]
  • 16. Chen XC, Yu CY, Guo MJ, et al. Down-regulation of m6A mRNA methylation is involved in dopaminergic neuronal death[J]. ACS Chem Neurosci, 2019, 10(5): 2355-2363. 10.1021/acschemneuro.8b00657. [DOI] [PubMed] [Google Scholar]
  • 17. Qiu XH, He HH, Huang YN, et al. Genome-wide identification of m6A-associated single-nucleotide polymorphisms in Parkinson's disease[J]. Neurosci Lett, 2020, 737: 135315. 10.1016/j.neulet.2020.135315. [DOI] [PubMed] [Google Scholar]
  • 18. Han M, Liu Z, Xu YY, et al. Abnormality of m6A mRNA methylation is involved in Alzheimer's disease[J]. Front Neurosci, 2020, 14: 98. 10.3389/fnins.2020.00098. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19. Huang H, Camats-Perna J, Medeiros R, et al. Altered expression of the m6A methyltransferase METTL3 in Alzheimer's disease[J]. eNeuro, 2020, 7(5): ENEURO.0125-ENEURO.0120. 2020. 10.1523/ENEURO.0125-20.2020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20. Alamdar A, Xi GC, Huang QY, et al. Arsenic activates the expression of 3β-HSD in mouse Leydig cells through repression of histone H3K9 methylation[J]. Toxicol Appl Pharmacol, 2017, 326: 7-14. 10.1016/j.taap.2017.04.012. [DOI] [PubMed] [Google Scholar]
  • 21. Bai LL, Tang QH, Zou Z, et al. m6A demethylase FTO regulates dopaminergic neurotransmission deficits caused by arsenite[J]. Toxicol Sci, 2018, 165(2): 431-446. 10.1093/toxsci/kfy172. [DOI] [PubMed] [Google Scholar]
  • 22. Santoro MR, Bray SM, Warren ST. Molecular mechanisms of fragile X syndrome: a twenty-year perspective[J]. Annu Rev Pathol, 2012, 7: 219-245. 10.1146/annurev-pathol-011811-132457. [DOI] [PubMed] [Google Scholar]
  • 23. Verkerk AJ, Pieretti M, Sutcliffe JS, et al. Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome[J]. Cell, 1991, 65(5): 905-914. 10.1016/0092-8674(91)90397-h. [DOI] [PubMed] [Google Scholar]
  • 24. Zhang FR, Kang Y, Wang ML, et al. Fragile X mental retardation protein modulates the stability of its m6A-marked messenger RNA targets[J]. Hum Mol Genet, 2018, 27(22): 3936-3950. 10.1093/hmg/ddy292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25. Liu BT, Li Y, Stackpole EE, et al. Regulatory discrimination of mRNAs by FMRP controls mouse adult neural stem cell differentiation[J]. Proc Natl Acad Sci USA, 2018, 115(48): E11397-E11405. 10.1073/pnas.1809588115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26. Hsu PJ, Shi HL, Zhu AC, et al. The RNA-binding protein FMRP facilitates the nuclear export of N6-methyladenosine-containing mRNAs[J]. J Biol Chem, 2019, 294(52): 19889-19895. 10.1074/jbc.AC119.010078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27. Farhan SMK, Howrigan DP, Abbott LE, et al. Publisher Correction: Exome sequencing in amyotrophic lateral sclerosis implicates a novel gene, DNAJC7, encoding a heat-shock protein[J]. Nat Neurosci, 2020, 23(2): 295. 10.1038/s41593-019-0570-5. [DOI] [PubMed] [Google Scholar]
  • 28. Geuens T, Bouhy D, Timmerman V. The hnRNP family: insights into their role in health and disease[J]. Hum Genet, 2016, 135(8): 851-867. 10.1007/s00439-016-1683-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29. Widagdo J, Anggono V. The m6A-epitranscriptomic signature in neurobiology: from neurodevelopment to brain plasticity[J]. J Neurochem, 2018, 147(2): 137-152. 10.1111/jnc.14481. [DOI] [PubMed] [Google Scholar]
  • 30. Kim HJ, Kim NC, Wang YD, et al. Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS[J]. Nature, 2013, 495(7442): 467-473. 10.1038/nature11922. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31. Liu N, Zhou KI, Parisien M, et al. N6-methyladenosine alters RNA structure to regulate binding of a low-complexity protein[J]. Nucleic Acids Res, 2017, 45(10): 6051-6063. 10.1093/nar/gkx141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32. Sun LJ, Ma LJ, Zhang HH, et al. Fto deficiency reduces anxiety- and depression-like behaviors in mice via alterations in gut microbiota[J]. Theranostics, 2019, 9(3): 721-733. 10.7150/thno.31562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33. Shen J, Yang L, Wei WS. Role of Fto on CaMKII/CREB signaling pathway of Hippocampus in depressive-like behaviors induced by chronic restraint stress mice[J]. Behav Brain Res, 2021, 406: 113227. 10.1016/j.bbr.2021.113227. [DOI] [PubMed] [Google Scholar]
  • 34. Milaneschi Y, Lamers F, Mbarek H, et al. The effect of FTO rs9939609 on major depression differs across MDD subtypes[J]. Mol Psychiatry, 2014, 19(9): 960-962. 10.1038/mp.2014.4. [DOI] [PubMed] [Google Scholar]
  • 35. Samaan Z, Anand SS, Anand S, et al. The protective effect of the obesity-associated rs9939609 A variant in fat mass- and obesity-associated gene on depression[J]. Mol Psychiatry, 2013, 18(12): 1281-1286. 10.1038/mp.2012.160. [DOI] [PubMed] [Google Scholar]
  • 36. Du TF, Rao SQ, Wu L, et al. An association study of the m6A genes with major depressive disorder in Chinese Han population[J]. J Affect Disord, 2015, 183: 279-286. 10.1016/j.jad.2015.05.025. [DOI] [PubMed] [Google Scholar]
  • 37. Farmer A, Korszun A, Owen MJ, et al. Medical disorders in people with recurrent depression[J]. Br J Psychiatry, 2008, 192(5): 351-355. 10.1192/bjp.bp.107.038380. [DOI] [PubMed] [Google Scholar]
  • 38. Rivera M, Cohen-Woods S, Kapur K, et al. Depressive disorder moderates the effect of the FTO gene on body mass index[J]. Mol Psychiatry, 2012, 17(6): 604-611. 10.1038/mp.2011.45. [DOI] [PubMed] [Google Scholar]
  • 39. Engel M, Eggert C, Kaplick PM, et al. The role of m6A/m-RNA methylation in stress response regulation[J/OL]. Neuron, 2018, 99(2): 389-403. e9 [2019-12-12]. 10.1016/j.neuron.2018.07.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40. Huang RR, Zhang Y, Bai Y, et al. N6-methyladenosine modification of fatty acid amide hydrolase messenger RNA in circular RNA STAG1-regulated astrocyte dysfunction and depressive-like behaviors[J]. Biol Psychiatry, 2020, 88(5): 392-404. 10.1016/j.biopsych.2020.02.018. [DOI] [PubMed] [Google Scholar]
  • 41. Azouvi P, Arnould A, Dromer E, et al. Neuropsychology of traumatic brain injury: an expert overview[J]. Rev Neurol (Paris), 2017, 173(7/8): 461-472. 10.1016/j.neurol.2017.07.006. [DOI] [PubMed] [Google Scholar]
  • 42. Pavlovic D, Pekic S, Stojanovic M, et al. Traumatic brain injury: neuropathological, neurocognitive and neurobehavioral sequelae[J]. Pituitary, 2019, 22(3): 270-282. 10.1007/s11102-019-00957-9. [DOI] [PubMed] [Google Scholar]
  • 43. Wong VS, Langley B. Epigenetic changes following traumatic brain injury and their implications for outcome, recovery and therapy[J]. Neurosci Lett, 2016, 625: 26-33. 10.1016/j.neulet.2016.04.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44. Yu JT, Zhang YX, Ma HL, et al. Epitranscriptomic profiling of N6-methyladenosine-related RNA methylation in rat cerebral cortex following traumatic brain injury[J]. Mol Brain, 2020, 13(1): 11. 10.1186/s13041-020-0554-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45. Mateen BA, Hill CS, Biddie SC, et al. DNA methylation: basic biology and application to traumatic brain injury[J]. J Neurotrauma, 2017, 34(16): 2379-2388. 10.1089/neu.2017.5007. [DOI] [PubMed] [Google Scholar]
  • 46. Wang YQ, Mao J, Wang X, et al. Genome-wide screening of altered m6A-tagged transcript profiles in the Hippocampus after traumatic brain injury in mice[J]. Epigenomics, 2019, 11(7): 805-819. 10.2217/epi-2019-0002. [DOI] [PubMed] [Google Scholar]
  • 47. Yu JT, Zhang YX, Ma HL, et al. Epitranscriptomic profiling of N6-methyladenosine-related RNA methylation in rat cerebral cortex following traumatic brain injury[J]. Mol Brain, 2020, 13(1): 11. 10.1186/s13041-020-0554-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48. Visvanathan A, Patil V, Arora A, et al. Essential role of METTL3-mediated m6A modification in glioma stem-like cells maintenance and radioresistance[J]. Oncogene, 2018, 37(4): 522-533. 10.1038/onc.2017.351. [DOI] [PubMed] [Google Scholar]
  • 49. Sun T, Wu RY, Ming L. The role of m6A RNA methylation in cancer[J]. Biomed Pharmacother, 2019, 112: 108613. 10.1016/j.biopha.2019.108613. [DOI] [PubMed] [Google Scholar]
  • 50. Pan YT, Ma P, Liu Y, et al. Multiple functions of m6A RNA methylation in cancer[J]. J Hematol Oncol, 2018, 11(1): 48. 10.1186/s13045-018-0590-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51. Xie Q, Wu TP, Gimple RC, et al. ALKBH1 promotes N6-methyladenine DNA modifications in glioblastoma[J/OL]. Cancer Discov, 2018, 8(12): OF11[2020-11-15]. 10.1158/2159-8290. [DOI] [Google Scholar]
  • 52. Zhang SC, Zhao BS, Zhou AD, et al. m6A demethylase ALKBH5 maintains tumorigenicity of glioblastoma stem-like cells by sustaining FOXM1 expression and cell proliferation program[J]. Cancer Cell, 2017, 31(4): 591-606.e6. 10.1016/j.ccell.2017.02.013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53. Visvanathan A, Patil V, Abdulla S, et al. N⁶-methyladenosine landscape of glioma stem-like cells: METTL3 is essential for the expression of actively transcribed genes and sustenance of the oncogenic signaling[J]. Genes (Basel), 2019, 10(2): 141. 10.3390/genes10020141. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Central South University Medical Sciences are provided here courtesy of Central South University

RESOURCES