Skip to main content
Journal of Central South University Medical Sciences logoLink to Journal of Central South University Medical Sciences
. 2022 Feb 28;47(2):143–152. [Article in Chinese] doi: 10.11817/j.issn.1672-7347.2022.210104

千金子二萜醇衍生物抗非小细胞肺癌的作用及机制

Effect of lathyrol derivatives on non-small cell lung cancer and the possible mechanism

YAN Yanyan 1,2,2, ZHOU Wenmin 2, GUO Qiaoru 2, ZHANG Haiyan 1, JI Hong 2, YANG Luming 2, ZHANG Jianye 2,
Editor: 彭 敏宁
PMCID: PMC10930517  PMID: 35545404

Abstract

Objective

Non-small cell lung cancer (NSCLC) accounts for 85% of all lung cancer, with highmorbidity and mortality rate. Nove drug development for NSCLC is urgently needed.This study aims to investigate the activity of lathyrol derivatives and the mechanism for its inhibitory effect on the growth of NSCLC cells.

Methods

Three lathyrol derivatives were synthesized from lathyrol and their structures were verified by nuclear magnetic resonance. MTT assay was used to detect the effects of the lathyrol derivatives on the proliferation activity of NSCLC cells (A549 and H1299 cells), and the compound with the best activity was selected for subsequent experiments. Colony forming assay, wound-healing assay, and transwell assay were applied to detect in vitro cell proliferation, migration and invasion ability in A549 and H1299 cells, respectively. Quantitative real-time RT-PCR and Western blotting were performed to detect mRNA and protein levels of E-cadherin, N-cadherin, β-catenin, and MMP2 in A549 cells, respectively.

Results

Three lathyrol derivatives inhibited the growth of A549 and H1299 cells in a dose-dependent manner, and they showed a weak inhibitory effect on normal cells Beas-2B and 16HBE, indicating that they possessed certain selective toxic effects. Therefore, C-5 benzoylated lathyrol with the best activity was selected as the ideal drug for the subsequent experiments. Compared with the control group, the number and size of cell clusters in the treatment group of A549 and H1299 cells were significantly decreased, the relative mobility were significantly decreased, and the number of invaded cells were significantly decreased (all P<0.05), indicating that the in vitro cell proliferation, migration and invasion ability were decreased. The mRNA levels of integrin α2, integrin β1, MMP2, MMP9, β-catenin, and N-cadherin were decreased, while the expression of E-cadherin was increased (all P<0.05). The protein levels of N-cadherin, β-catenin, MMP2, and integrin αV were decreased, while the expression of E-cadherin was increased (all P<0.05).

Conclusion

The lathyrol derivatives synthesized in this study possess good inhibitory activity against NSCLC. Among them, C-5 benzoylated lathyrol significantly inhibits the proliferation, migration, and invasion ability of NSCLC cells in vitro through regulating the process of epithelial-mesenchymal transition.

Keywords: lathyrol derivatives, non-small cell lung cancer, cell proliferation, migration, invasion, epithelial-mesenchymal transition


在全球范围内,肺癌的发病率和病死率均位于癌症前列,对人类的健康和生命都造成了极大的威胁。根据组织学分型,肺癌可分为小细胞肺癌(small cell lung cancer,SCLC)和非小细胞肺癌(non-small cell lung cancer,NSCLC)两大类[1]。对于早期NSCLC患者,目前的治疗手段包括外科手术、立体定向放射治疗、含铂药物化学治疗等。然而,大部分患者诊断为肺癌时已是晚期,癌细胞已经扩散至身体其他部位。据报道,转移性NSCLC患者的5年生存率低于5%[2]。尽管靶向治疗药物延长了NSCLC患者的生存期,但耐药性限制了其临床应用。与NSCLC的传统疗法相比,中药活性成分治疗具有安全、有效、不良反应少等优势[3]。因此,从天然药物中寻找用于治疗NSCLC的新型化合物或单体具有潜在的研究意义。

千金子是我国的传统中药材,为大戟科(Euphorbiaceae)大戟属(Euphorbia L.)两年生草本植物续随子(Euphorbia lathyris L.)的干燥成熟种子,其性温,味辛,有小毒[4]。千金子具有抗肿瘤、抗多药耐药性、抗病毒、抗氧化、抗血小板聚合、消炎镇痛、美白祛斑等广泛的药理作用[5]。目前,研究人员已从千金子中提取、分离和鉴定出约240种化学成分,主要包括二萜类、香豆素类、黄酮类、甾类、脂肪油和挥发油等。其中,二萜类化合物是千金子中最主要的天然活性成分,包括巨大戟烷型(ingenane)和千金子烷型(lathyrane)两种骨架的二萜[6]。千金子烷型(图1A)是由一个5元环、一个11元环和一个3元环骈合而成的大环二萜类结构。研究[7]发现:千金子二萜醇在体外对人源肾癌7860细胞和鼠源肾癌Renca细胞活性有明显的抑制作用,可能通过阻断细胞周期的G0/G1期,抑制肾癌细胞的侵袭和转移。陶丽等[8]发现在0~40.0 μmol/L剂量范围内无法测得千金子二萜醇对NSCLC细胞株A549和H1299细胞的IC50值,通过构效关系分析发现:天然的千金子二萜醇化合物对肿瘤细胞毒性较弱,在保留先导物分子活性结构骨架的同时,引入酯基团后可增强其对NSCLC的毒性,也能增强其p53依赖的抗肿瘤作用。目前关于千金子二萜类衍生物治疗NSCLC的研究相对较少,本研究通过合成3个千金子二萜醇衍生物,即C-5苯甲酰化千金子二萜醇(图1B)、C-5乙酰化千金子二萜醇(图1C)和C-5乙酰化7-羟基千金子二萜醇(图1D),探讨其中活性最佳的千金子二萜醇对NSCLC细胞侵袭和转移的抑制作用及相关机制。

图1.

图1

千金子二萜醇及其衍生物的化学结构

Figure 1 Chemical structures of lathyrane and lathyrol derivatives

A: Lathyrane; B: C-5 benzoylated lathyrol; C: C-5 acetylated lathyrol; D: C-5 acetylated 7-hydroxylathyrol.

1. 材料与方法

1.1. 材料

NSCLC细胞株A549和H1299、人正常肺上皮细胞Beas-2B和人肺支气管上皮细胞16HBE为上海赛百慷生物技术股份有限公司产品;Ham's F-12K培养基为浙江森瑞生物科技有限公司产品;RPMI 1640培养基、DMEM培养基和胎牛血清为美国Gibco公司产品;MTT试剂盒为美国MP Biomedicals公司产品;Transwell小室和Matrigel基质胶为美国Corning公司产品;TRIzol试剂为美国Life Technologies公司产品;反转录试剂盒PrimeScript™ RT Master Mix为日本Takara公司产品;2×SYBR Green Pro Taq HS Premix试剂盒为湖南艾科瑞生物有限公司产品;辣根过氧化物酶标记的羊抗兔二抗为美国Bioworld Technology公司产品;N-cadherin抗体为美国Affinity公司产品;E-cadherin抗体、MMP2抗体、β-catenin抗体和整合素(integrin)αV抗体为美国Cell Signaling Technology公司产品。

1.2. 方法

1.2.1. 合成方法

C-5苯甲酰化千金子二萜醇:将100 mg千金子二萜醇溶于3 mL无水吡啶中,加0.2 mL苯甲酰氯,于50 ℃下反应2 h,加水0.5 mL终止反应,减压蒸干溶剂,向残余物中加水3 mL,用饱和NaHCO3溶液调节pH值至中性,CHCl3萃取,合并有机层,无水NaSO4干燥后减压回收溶剂得粗产物,再经硅胶柱层析分离(石油醚꞉乙酸乙酯为30꞉1)得到精产物C-5苯甲酰化千金子二萜醇。

C-5乙酰化千金子二萜醇:将100 mg千金子二萜醇溶于3 mL无水吡啶中,加0.2 mL醋酸酐,于50 ℃下反应过夜,加水0.5 mL终止反应,减压蒸干溶剂,向残余物中加水3 mL,用饱和NaHCO3溶液调节pH值至中性,CHCl3萃取,合并有机层,无水NaSO4干燥后减压回收溶剂得粗产物,再经硅胶柱层析分离(石油醚꞉乙酸乙酯为8꞉1)得到精产物C-5乙酰化千金子二萜醇。

C-5乙酰化7-羟基千金子二萜醇:将120 mg 7-羟基千金子二萜醇溶于4 mL无水吡啶中,加0.3 mL醋酸酐,于50 ℃下反应3.5 h,加水0.5 mL终止反应,减压蒸干溶剂,向残余物中加水4 mL,用饱和NaHCO3溶液调节pH值至中性,乙酸乙酯萃取,合并有机层,无水NaSO4干燥后减压回收溶剂得粗产物,再经硅胶柱层析分离(石油醚꞉乙酸乙酯为6꞉1)得到精产物C-5乙酰化7-羟基千金子二萜醇。

1.2.2. 细胞培养

将A549、H1299、Beas-2B和16HBE细胞分别置于含10%胎牛血清、1%青-链霉素溶液的Ham's F-12K、RPMI 1640和DMEM培养基中,在37 ℃、5% CO2饱和湿度的培养箱中培养。当细胞融合达到90%时,用0.25%胰酶消化后按1꞉3传代,取对数生长期的细胞进行后续实验。

1.2.3. MTT实验

以A549、H1299、Beas-2B和16HBE细胞作为化合物活性筛选的研究对象,按照4 000个/孔的细胞密度将细胞接种到96孔板中,培养24 h后给予上述3个千金子二萜醇衍生物处理68 h,每孔加入5 mg/mL MTT溶液20 μL,孵育4 h后在双波长540 nm和655 nm处用酶标仪测定各孔的吸光度值。

1.2.4. 集落形成实验

按照600个/孔的细胞密度将A549和H1299细胞接种到12孔板中,待克隆团中细胞数约50个后给药(0、6、12、24 μmol/L C-5苯甲酰化千金子二萜醇)处理48 h,用甲醇固定30 min,结晶紫染色30 min,凝胶成像仪拍照并统计细胞克隆团的数目。

1.2.5. 细胞划痕实验

按照3×105个/孔的细胞密度将A549和H1299细胞接种到6孔板中,培养24 h后在孔内划3条划痕,用PBS缓冲液洗去悬浮细胞,分组给药(0、6、12、24 μmol/L C-5苯甲酰化千金子二萜醇)处理,于0、12、24 h取样拍照,计算细胞相对迁移率。

1.2.6. Transwell实验

将基质胶和无血清培养基按1꞉8稀释后铺于小室底部,凝固后按照4×104个/孔的细胞密度将A549和H1299细胞接种于小室中,下室加入600 μL含10%胎牛血清的培养基,上室加入无血清的药物培养液(含0、6、12、24 μmol/L C-5苯甲酰化千金子二萜醇)培养24 h后,用甲醇固定1 h,结晶紫染色1 h,PBS缓冲液轻轻冲洗,用棉签擦拭小室残余基质胶后拍照,统计侵袭细胞的数目。

1.2.7. 实时荧光定量PCR(real-time RT-PCR)实验

按照TRIzol法提取经药物(0、6、12、24 μmol/L C-5苯甲酰化千金子二萜醇)处理48 h后的A549细胞总RNA,检测其纯度和浓度后反转录为cDNA,用real-time RT-PCR方法进行扩增。以GAPDH为内参,其相对表达量用2-ΔΔCt法计算。PCR引物序列见表1

表1.

PCR引物序列

Table 1 PCR primer sequences

Gene Primer sequence (5'-3') Size/bp
GAPDH Forward: GGAAGGTGAAGGTCGGAGTCA 21
Reverse: GTCATTGATGGCAACAATATCCACT 25
integrin α2 Forward: ACTTTGTTGCTGGTGCTCCT 20
Reverse: CAAGAGCACGTCTGTAATGG 20
integrin β1 Forward: GACGCCGCGCGGAAAAGATG 20
Reverse: GCACCACCCACAATTTGGCCC 21
MMP2 Forward: CTTCTTCCCTCGCAAGCC 18
Reverse: ATGGATTCGAGAAAACCG 18
MMP9 Forward: ACGCAGACATCGTCATCC 18
Reverse: AACCGAGTTGAACCACG 17
β-catenin Forward: TTCGCCTTCACTATGGACTACC 22
Reverse: GCACGAACAAGCAACTGAACTA 22
N-cadherin Forward: CGAATGGATGAAAGACCCATCC 22
Reverse: GCCACTGCCTTCATAGTCAAACACT 25
E-cadherin Forward: AGGATGACACCCGGGACAAC 20
Reverse: TGCAGCTGGCTCAAGTCAAAG 21

1.2.8. 蛋白质印迹法

按照蛋白质印迹法提取经药物(0、6.0、12.0、 24.0 μmol/L C-5苯甲酰化千金二萜醇)处理48 h后的A549细胞总蛋白质,使用BCA试剂盒检测蛋白质浓度,蛋白质变性后以每孔30 μg总蛋白质在聚丙烯酰胺凝胶中电泳分离,PVDF膜电转,封闭完毕后于4 ℃孵育一抗过夜,以TBST洗膜后孵育二抗1 h,再次洗膜后使用化学发光法在凝胶成像仪上曝光。选择β-actin为内参,分析上皮间质转化(epithelial-mesenchymal transition,EMT)通路相关蛋白质E-cadherin、N-cadherin、β-catenin、MMP2、integrin αV等的表达情况。

1.3. 统计学处理

采用SPSS 22.0统计软件进行数据处理,应用Graphpad Prism 7.0软件进行图形构建。计量资料以均数±标准差( x¯ ±s)表示,多组比较采用单因素方差分析(one-way ANOVA),组间两两比较采用Turkey检验;P<0.05为差异有统计学意义。

2. 结 果

2.1. 千金子二萜醇衍生物的产率和磁共振谱验证

C-5苯甲酰化千金子二萜醇产率达42%。1H NMR (400 MHz, CDCl3) δ 8.07 (dd, J=7.5 Hz, 2H), 7.56 (m, 1H), 7.47 (m, 2H), 7.34 (d, J=9.4 Hz, 1H), 6.07 (d, J=10.0 Hz, 1H), 4.96 (d, J=6.1 Hz, 2H), 4.17 (t, J=2.9 Hz, 1H), 3.10 (s, 1H), 2.59 (dd, J=9.9, 2.3 Hz, 1H), 2.23 (m, 1H), 2.15 (m, 1H), 1.97 (m, 1H), 1.91 (m, 1H), 1.82 (s, 3H), 1.68 (dd, J=14.5, 10.2 Hz, 3H), 1.54 (m, 1H), 1.45 (dd, J=14.5, 10.2 Hz, 1H), 1.33 (s, 1H), 1.28 (s, 3H), 1.16 (s, 3H), 1.11 (d, J=6.9 Hz, 3H)。13C NMR (100 MHz, CDCl3) δ 201.8, 167.1, 151.1, 144.2, 136.1, 133.6, 133.4, 129.9, 128.6, 114.5, 89.1, 80.2, 72.7, 54.2, 49.2, 39.2, 37.6, 30.3, 29.4, 25.8, 22.8, 14.5, 14.3, 13.3。

C-5乙酰化千金子二萜醇产率达45%。1H NMR (400 MHz, CDCl3) δ 6.88 (brs, 1H), 5.80 (d, J=10.1 Hz, 1H), 4.87 (d, J=7.7 Hz, 2H), 4.31 (s, 1H), 4.09 (d, J=3.2 Hz, 1H), 3.01 (dd, J=14.1, 10.4 Hz, 1H), 2.45 (dd, J=10.1, 2.8 Hz, 1H), 2.25-2.10 (m, 2H), 2.06 (s, 3H), 1.95-1.83 (m, 2H), 1.79 (s, 3H), 1.64 (dd, J=14.5, 10.2 Hz, 1H), 1.52 (ddd, J=14.0, 12.2, 8.9 Hz, 1H), 1.18 (s, 3H), 1.14 (s, 3H), 1.12 (d, J=6.9 Hz, 3H)。13C NMR (101 MHz, CDCl3) δ 202.0, 171.5, 149.0, 144.1, 135.2, 114.2, 88.2, 78.6, 71.3, 53.7, 49.1, 37.4, 36.1, 29.7, 28.8, 28.2, 25.6, 21.2, 16.1, 14.4, 13.2。

C-5乙酰化7-羟基千金子二萜醇产率达34%。1H NMR (400 MHz, CDCl3) δ 5.75 (d, J=9.9 Hz, 1H), 5.29 (d, J=3.8 Hz, 1H), 5.09 (s, 1H), 4.76 (d, J=8.4 Hz, 1H), 4.64 (brs, 1H), 4.32 (t, J=3.5 Hz, 1H), 4.17 (s, 1H), 3.34 (s, 1H), 2.70 (dd, J=14.8, 10.0 Hz, 1H), 2.44 (d, J=2.1 Hz, 1H), 2.30-2.17 (m, 1H), 2.12 (s, 3H), 1.88 (dd, J=11.6, 8.6 Hz, 1H), 1.74 (dd, J=14.8, 9.7 Hz, 1H), 1.42-1.31 (m, 2H), 1.15 (d, J=7.0 Hz, 3H), 1.13 (s, 3H), 1.12 (s, 3H)。13C NMR (101 MHz, CDCl3) δ 208.02, 170.95, 148.61, 139.45, 136.91, 108.05, 87.98, 76.27, 74.79, 69.65, 52.34, 45.99, 38.24, 31.18, 30.58, 28.48, 25.57, 23.54, 21.20, 15.35, 14.00。

2.2. 千金子二萜醇衍生物对NSCLC细胞增殖活力的影响

MTT结果显示:随着给药浓度的提高,4种细胞的增殖活力显著降低,生长抑制率增高。3种千金子二萜醇衍生物对上述细胞的IC50值见表2,其中C-5苯甲酰化千金子二萜醇的活性最佳,作为我们后续实验的药物。C-5苯甲酰化千金子二萜醇对Beas-2B和16HBE细胞的IC50值高于两种肺癌细胞,说明该化合物对肺癌细胞具有一定的选择性杀伤作用。

表2.

千金子二萜醇衍生物对肺癌细胞和正常细胞的IC50

Table 2 IC50 values of lathyrol derivatives in lung cancer cells and normal cells

千金子二萜醇衍生物 IC50/(μmol·L-1)
A549 H1299 Beas-2B 16HBE
C-5苯甲酰化千金子二萜醇 12.99±0.90 23.97±1.30 48.92±6.34 53.73±7.10
C-5乙酰化千金子二萜醇 48.14±2.02 124.37±1.25 >250 >250
C-5乙酰化7-羟基千金子二萜醇 18.03±3.78 101.78±5.45 >250 >250

2.3. C-5苯甲酰化千金子二萜醇对A549细胞集落形成能力的影响

集落形成实验结果显示:随着给药浓度的提高,A549和H1299的细胞克隆团逐渐变小且数量逐渐减少,与对照组比较,差异均有统计学意义(均P<0.05,图2)。表明C-5苯甲酰化千金子二萜醇可明显抑制A549和H1299细胞的体外增殖能力。

图2.

图2

C-5苯甲酰化千金子二萜醇对A549H1299细胞集落形成能力的抑制作用

Figure 2 Inhibitory effects of C-5 benzoylated lathyrol on colony forming ability in A549 and H1299 cells

A: Cell proliferation by colony forming assay; B: Histogram of quantitative analysis of colony number. *P<0.05, **P<0.01 vs the control group.

2.4. C-5苯甲酰化千金子二萜醇对A549细胞迁移能力的影响

划痕实验结果显示:随着给药浓度的提高,空白区域的面积逐渐减小,A549和H1299细胞的相对迁移率显著降低,即C-5苯甲酰化千金子二萜醇在给药后12和24 h均可显著抑制A549和H1299细胞的迁移能力,与对照组比较,差异均有统计学意义(均P<0.05,图3)。

图3.

图3

C-5苯甲酰化千金子二萜醇对A549H1299细胞迁移能力的抑制作用

Figure 3 Inhibitory effects of C-5 benzoylated lathyrol on migration ability in A549 and H1299 cells

A: Cell migration by wound-healing assay; B: Histogram of quantitative analysis of relative mobility rate. *P<0.05, **P<0.01 vs the control group.

2.5. C-5苯甲酰化千金子二萜醇对A549细胞侵袭能力的影响

Transwell实验结果显示:随着给药浓度的提高,侵袭细胞的数目显著减少,即C-5苯甲酰化千金子二萜醇可显著抑制A549和H1299细胞的侵袭能力,与对照组比较,差异均有统计学意义(均P<0.05,图4)。

图4.

图4

C-5苯甲酰化千金子二萜醇对A549H1299细胞侵袭能力的抑制作用

Figure 4 Inhibitory effects of C-5 benzoylated lathyrol on invasion ability in A549 and H1299 cells

A: Cell invasion by transwell assay; B: Histogram of quantitative analysis of invaded cell number. *P<0.05, **P<0.01 vs the control group.

2.6. C-5苯甲酰化千金子二萜醇影响A549细胞内mRNA的表达水平

Real-time RT-PCR实验检测各组A549细胞内integrin α2integrin β1MMP2MMP9β-cateninN-cadherinE-cadherin mRNA的表达水平,结果显示:随着给药浓度的提高,A549细胞内除E-cadherin表达水平升高外,integrin α2integrin β1MMP2MMP9β-cateninN-cadherin mRNA的表达水平均显著降低,差异均具有统计学意义(均P<0.05或P<0.01,图5)。

图5.

图5

C-5苯甲酰化千金子二萜醇对A549细胞内mRNA表达水平的影响

Figure 5 Effects of C-5 benzoylated lathyrol on mRNA expression levels in A549 cells

Histogram of quantitative analysis of mRNA relative expression detected by real-time RT-PCR. *P<0.05, **P<0.01 vs the previous concentration group.

2.7. C-5苯甲酰化千金子二萜醇影响A549细胞内EMT通路相关蛋白质的表达水平

蛋白质印迹法结果显示:随着给药浓度的提高,C-5苯甲酰化千金子二萜醇以浓度依赖性的方式增加E-cadherin蛋白质的表达水平,并降低N-cadherin、β-catenin、MMP2和integrin αV蛋白质的表达水平(均P<0.05,图6)。

图6.

图6

C-5苯甲酰化千金子二萜醇对A549细胞内上皮间质转化通路相关蛋白质表达水平的影响

Figure 6 Effects of C-5 benzoylated lathyrol on epithelial-mesenchymal transition pathway-related protein expression levels in A549 cells

A: Protein level detected by Western blotting. B: Histogram of quantitative analysis of protein relative expression. *P<0.05, **P<0.01 vs the previous concentration group.

3. 讨 论

NSCLC是所有肺癌中最常见的一种类型,约占肺癌患者的85%[9]。在我国,肺癌缺乏有效的早期筛查技术,约70%的患者确诊时已处于III~IV期,错过了手术治疗的最佳时期[10]。近年来,天然活性成分具有多靶点治疗的优势,被广泛用于抗肿瘤研究。千金子烷二萜类是千金子特有的骨架类型,结构新颖,可通过跨环环化反应合成一系列活性显著的多环二萜类衍生物[11-12]

我们在前期研究中发现从大戟种子中分离得到的化合物具有较强的抗肿瘤活性。例如,大戟因子L1对过表达ABCB1的K562/ADR细胞具有凋亡增敏作用[13],大戟因子L2、大戟因子L3和5,15-二乙酰基-3-苯乙酰千金子二萜醇均可通过线粒体途径抑制肺癌A549细胞的生长并诱导细胞凋亡[14-16]。Lu等[17]从千金子中提取的千金子型二萜类化合物表现出显著的抗肿瘤活性,对肝癌细胞HepG2、乳腺癌细胞MCF-7、宫颈癌细胞Hela、神经胶质瘤C6细胞具有一定的细胞毒性。此外,千金子烷二萜类化合物对P-gp底物具有高亲和力,通过抑制P-gp介导的外排泵活性来减少细胞中药物的外排,进而逆转肿瘤细胞的多药耐药性[18]。Jiao等[19]通过修饰大戟因子L3中C-3、C-5和C-15上的羟基基团,设计了37个新的酰化和环氧化衍生物。其中,在C-5处的苯甲酰基团可增加效价,其逆转MCF-7/ADR细胞的多药耐药调节作用更为明显。本研究合成的3个千金子二萜醇衍生物均属于千金子烷型二萜类,活性较好,呈剂量依赖性地抑制NSCLC细胞A549和H1299的生长,其中活性最强的C-5苯甲酰化千金子二萜醇是在千金子二萜醇上对5-OH进行苯甲酰化获得的具有抗肿瘤活性的化合物。

肿瘤细胞的转移是造成肺癌患者治疗成功率低主要原因之一。本研究的克隆、划痕和Transwell实验结果显示C-5苯甲酰化千金子二萜醇能够抑制A549和H1299细胞的体外增殖、迁移与侵袭能力。研究[20]表明:EMT过程可促进NSCLC的侵袭和转移,且与NSCLC患者耐药密切相关。癌细胞黏附特性变化被认为是肿瘤进展的主要途径。EMT过程中除了肿瘤细胞的形态变化外,还伴随分子标志物表达的改变,如上皮细胞标志物E-cadherin等下调和间充质细胞表型标志物N-cadherin、波形蛋白(vimentin)等上调[21]

β-catenin是基于钙黏蛋白黏附连接的一个结构成分,β-catenin和T细胞因子/淋巴增强因子形成复合物启动Wnt信号通路中Snail、Slug、Twist等目的基因的转录,降低E-cadherin的表达。Wnt/β-catenin信号通路在多种癌症的发育和癌变过程中发挥重要作用,激活该通路可诱导癌细胞发生EMT,并有助于干细胞的形成和耐药产生[22]。肿瘤微环境中异常表达的基质金属蛋白酶(matrix metalloproteinase,MMPs)可诱导EMT发生,MMPs可破坏肿瘤组织的细胞外基质(extracellular matrix,ECM),降解特定的胶原,实现肿瘤的远处迁移和侵袭[23]。Integrin在细胞与细胞及ECM间的黏附中发挥作用,且其相关信号转导通路与细胞生物活性密切相关,可通过活化MMPs来诱导EMT发生,还可促进肿瘤血管生成和肿瘤细胞的迁移、侵袭[24]。MMP2/MMP9和integrin αV可分别通过激活p38/MAPK信号通路和TGF-β途径,诱导EMT过程[25-26]

本研究显示:C-5苯甲酰化千金子二萜醇显著降低integrin α2integrin β1MMP2MMP9β-cateninN-cadherin mRNA的表达,增加E-cadherin mRNA的表达。在蛋白质水平上,该化合物抑制N-cadherin、β-catenin、MMP2和integrin αV的表达,促进E-cadherin的表达。我们推测,C-5苯甲酰化千金子二萜醇可能通过影响EMT过程相关分子标志物的表达水平,抑制A549细胞的体外迁移和侵袭能力,进而发挥抗肿瘤活性。

综上所述,本研究合成的3个千金子二萜醇衍生物能较好地抑制NSCLC细胞的活性;体外细胞实验发现C-5苯甲酰化千金子二萜醇可能通过抑制EMT通路抑制NSCLC细胞增殖、迁移和侵袭的过程,进而抑制NSCLC细胞的生长与增殖。因此,C-5苯甲酰化千金子二萜醇可能是潜在的治疗NSCLC的药物,这为开发新型抗肺癌药物提供了一定的参考,具体的分子机制有待进一步的验证。

基金资助

国家自然科学基金(81773888, 81902152);山西省高等学校科技创新项目(2019L0753);广东省科技创新战略专项资金(“攀登计划”专项资金)(pdjh2020b0483)。

This work was supported by the National Natural Science Foundation (81773888, 81902152), Science and Technology Innovation Project Fund of Shanxi Province (2019L0753), and Scientific and Technological Innovation Strategy Special Fund of Guangdong Province in 2020 (“Climbing Plan” Special Fund) (pdjh2020b0483), China.

利益冲突声明

作者声称无任何利益冲突。

作者贡献

闫燕艳 数据整理,论文构思和撰写;周雯敏、郭乔如 数据统计分析和论文修订;张海燕 MTT实验、集落形成实验、细胞划痕实验、Transwell实验操作;季红 化合物的合成与验证分析;杨璐铭 实时荧光定量PCR和蛋白质印迹实验操作;张建业 实验设计和指导,论文修订和审阅。

原文网址

http://xbyxb.csu.edu.cn/xbwk/fileup/PDF/202202143.pdf

参考文献

  • 1. Gouvinhas C, de Mello RA, Oliveira D, et al. Lung cancer: a brief review of epidemiology and screening[J]. Future Oncol, 2018, 14(6): 567-575. 10.2217/fon-2017-0486. [DOI] [PubMed] [Google Scholar]
  • 2. Herbst RS, Morgensztern D, Boshoff C. The biology and management of non-small cell lung cancer[J]. Nature, 2018, 553(7689): 446-454. 10.1038/nature25183. [DOI] [PubMed] [Google Scholar]
  • 3. 张晓平, 邵骏菁, 马大龙, 等. 天然药物抗肿瘤活性成分及其作用机制研究进展[J]. 药学学报, 2019, 54(11): 1949-1957. 10.16438/j.0513-4870.2019-0669. [DOI] [Google Scholar]; ZHANG Xiaoping, SHAO Junjing, MA Dalong, et al. Research on antitumor active components and mechanisms of natural products[J]. Acta Pharmaceutica Sinica, 2019, 54(11): 1949-1957. 10.16438/j.0513-4870.2019-0669. [DOI] [Google Scholar]
  • 4. Zhang LZ, Wang C, Meng QX, et al. Phytochemicals of Euphorbia lathyris L. and their antioxidant activities[J]. Molecules, 2017, 22(8): E1335. 10.3390/molecules22081335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5. Zhu A, Zhang T, Wang Q. The phytochemistry, pharmacokinetics, pharmacology and toxicity of Euphorbia semen[J]. J Ethnopharmacol, 2018, 227: 41-55. 10.1016/j.jep.2018.08.024. [DOI] [PubMed] [Google Scholar]
  • 6. 刘玉婷, 杨洋, 弓佩含, 等. 千金子化学成分研究进展[J]. 中国实验方剂学杂志, 2017, 23(13): 220-225. 10.13422/j.cnki.syfjx.2017130220. [DOI] [Google Scholar]; LIU Yuting, YANG Yang, GONG Peihan, et al. Research progress on chemical constituents of euphorbiae semen[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2017, 23(13): 220-225. 10.13422/j.cnki.syfjx.2017130220. [DOI] [Google Scholar]
  • 7. 赵俊峰, 杨旭凯, 郑少斌, 等. 千金子二萜醇对人肾癌7860细胞和小鼠肾癌renca细胞体外生长的抑制作用[J]. 中国老年学杂志, 2016, 36(23): 5818-5819. 10.3969/j.issn.1005-9202.2016.23.019. [DOI] [Google Scholar]; ZHAO Junfeng, YANG Xukai, ZHENG Shaobin, et al. Inhibitory effects of Lathyrol on the in vitro growth of human renal carcinoma 7860 cells and mouse renal carcinoma renca cells[J]. Chinese Journal of Gerontology, 2016, 36(23): 5818-5819. 10.3969/j.issn.1005-9202.2016.23.019. [DOI] [Google Scholar]
  • 8. 陶丽, 许敏, 姜壮壮, 等. 千金子二萜醇p53依赖性抗肿瘤活性及构效关系研究[J]. 扬州大学学报(农业与生命科学版), 2018, 39(4): 26-29. 10.16872/j.cnki.1671-4652.2018.04.006. [DOI] [Google Scholar]; TAO Li, XU Min, JIANG Zhuangzhuang, et al. The p53-dependent antitumor effect and structure-activity relationship of diterpenoids from Euphorbia lathyris L[J]. Journal of Yangzhou University. Agricultural and Life Science Edition, 2018, 39(4): 26-29. 10.16872/j.cnki.1671-4652.2018.04.006. [DOI] [Google Scholar]
  • 9. Guo QR, Zhang LL, Liu JF, et al. Multifunctional microfluidic chip for cancer diagnosis and treatment[J]. Nanotheranostics, 2021, 5(1): 73-89. 10.7150/ntno.49614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10. Huang WJ, Yan YY, Liu Y, et al. Exosomes with low miR-34c-3p expression promote invasion and migration of non-small cell lung cancer by upregulating integrin α2β1[J]. Signal Transduct Target Ther, 2020, 5(1): 39. 10.1038/s41392-020-0133-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11. Wang W, Wu YL, Li C, et al. Synthesis of new lathyrane diterpenoid derivatives from Euphorbia lathyris and evaluation of their anti-inflammatory activities[J/OL]. Chem Biodivers, 2020, 17(2): e1900531 [2020-12-14]. 10.1002/cbdv.201900531. [DOI] [PubMed] [Google Scholar]
  • 12. Wang JX, Wang Q, Zhen YQ, et al. Cytotoxic lathyrane-type diterpenes from seeds of Euphorbia lathyris [J]. Chem Pharm Bull (Tokyo), 2018, 66(6): 674-677. 10.1248/cpb.c17-00946. [DOI] [PubMed] [Google Scholar]
  • 13. Zhang JY, Lin MT, Yi T, et al. Apoptosis sensitization by Euphorbia factor L1 in ABCB1-mediated multidrug resistant K562/ADR cells[J]. Molecules, 2013, 18(10): 12793-12808. 10.3390/molecules181012793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14. Lin MT, Tang SL, Zhang C, et al. Euphorbia factor L2 induces apoptosis in A549 cells through the mitochondrial pathway[J]. Acta Pharm Sin B, 2017, 7(1): 59-64. 10.1016/j.apsb.2016.06.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15. Zhang JY, Liang YJ, Chen HB, et al. Structure identification of Euphorbia factor L3 and its induction of apoptosis through the mitochondrial pathway[J]. Molecules, 2011, 16(4): 3222-3231. 10.3390/molecules16043222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16. Zhang JY, Huang WJ, Sun HM, et al. Structure identification and in vitroanticancer activity of lathyrol-3-phenylacetate-5, 15-diacetate[J/OL]. Molecules, 2017, 22(9): E1412 [2018-07-19]. 10.3390/molecules22091412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17. Lu J, Li GY, Huang J, et al. Lathyrane-type diterpenoids from the seeds of Euphorbia lathyris [J]. Phytochemistry, 2014, 104: 79-88. 10.1016/j.phytochem.2014.04.020. [DOI] [PubMed] [Google Scholar]
  • 18. Yang T, Wang SY, Li HM, et al. Lathyrane diterpenes from Euphorbia lathyris and the potential mechanism to reverse the multi-drug resistance in HepG2/ADR cells[J]. Biomedecine Pharmacother, 2020, 121: 109663. 10.1016/j.biopha.2019.109663. [DOI] [PubMed] [Google Scholar]
  • 19. Jiao W, Wan ZM, Chen S, et al. Lathyrol diterpenes as modulators of P-glycoprotein dependent multidrug resistance: structure-activity relationship studies on Euphorbiafactor L3 derivatives[J]. J Med Chem, 2015, 58(9): 3720-3738. 10.1021/acs.jmedchem.5b00058. [DOI] [PubMed] [Google Scholar]
  • 20. Raoof S, Mulford IJ, Frisco-Cabanos H, et al. Targeting FGFR overcomes EMT-mediated resistance in EGFR mutant non-small cell lung cancer[J]. Oncogene, 2019, 38(37): 6399-6413. 10.1038/s41388-019-0887-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21. Otsuki Y, Saya H, Arima Y. Prospects for new lung cancer treatments that target EMT signaling[J]. Dev Dyn, 2018, 247(3): 462-472. 10.1002/dvdy.24596. [DOI] [PubMed] [Google Scholar]
  • 22. Yeh Y, Guo QZ, Connelly Z, et al. Wnt/beta-catenin signaling and prostate cancer therapy resistance[J]. Adv Exp Med Biol, 2019, 1210: 351-378. 10.1007/978-3-030-32656-2_16. [DOI] [PubMed] [Google Scholar]
  • 23. Jian BY, Zhang H, Han CC, et al. Anti-cancer activities of diterpenoids derived from Euphorbia fischeriana steud[J/OL]. Molecules, 2018, 23(2): E387 [2020-01-17]. 10.3390/molecules23020387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24. Li ZH, Zhou Y, Ding YX, et al. Roles of integrin in tumor development and the target inhibitors[J]. Chin J Nat Med, 2019, 17(4): 241-251. 10.1016/S1875-5364(19)30028-7. [DOI] [PubMed] [Google Scholar]
  • 25. Pan SG, Hu Y, Hu MJ, et al. Platelet-derived PDGF promotes the invasion and metastasis of cholangiocarcinoma by upregulating MMP2/MMP9 expression and inducing EMT via the p38/MAPK signalling pathway[J]. Am J Transl Res, 2020, 12(7): 3577-3595. [PMC free article] [PubMed] [Google Scholar]
  • 26. Brown NF, Marshall JF. Integrin-mediated TGFβ activation modulates the tumour microenvironment[J]. Cancers (Basel), 2019, 11(9): E1221 [2021-10-14]. 10.3390/cancers11091221. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Central South University Medical Sciences are provided here courtesy of Central South University

RESOURCES