Skip to main content
Journal of Central South University Medical Sciences logoLink to Journal of Central South University Medical Sciences
. 2023 Jan 28;48(1):138–147. [Article in Chinese] doi: 10.11817/j.issn.1672-7347.2023.220370

壳聚糖基水凝胶在口腔组织工程中的应用

Applicatoin of chitosan-based hydrogel in oral tissue engineering

王 宇洁 1,2,3,2, 邹 杰林 1,2,3, 蔡 明轩 1,2,3, 汪 一帆 1,2,3, 毛 靖 1,2,3, 石 鑫 1,2,3,
Editor: 田 朴
PMCID: PMC10930554  PMID: 36935187

Abstract

牙髓炎、牙周炎、颌骨缺损及颞下颌关节损害是临床常见的口腔颌面部疾病,然而传统治疗手段无法有效恢复受损组织的结构和功能。因具有良好的生物相容性、生物降解性、抗氧化性、抗炎活性和广谱抗菌性,壳聚糖基水凝胶在口腔组织工程领域展现出广阔的应用前景。季铵化、羧甲基化、磺化是改善壳聚糖基水凝胶理化性质及生物学功能常见的化学修饰策略,通过携载多孔性微球或纳米颗粒构建水凝胶复合体系能实现多种药物或生物活性因子的局部序贯递送,为实现缺损组织有序再生奠定坚实基础。化学交联法常用于制备不可逆永久性壳聚糖凝胶,而物理交联法有助于形成可逆性凝胶网络。作为适宜的生物支架材料,目前多种壳聚糖基水凝胶协同干细胞、生长因子或胞外体移植已应用于口腔软硬组织缺损再生修复的探索中,并在促进牙髓-牙本质复合体、牙骨质-牙周膜-牙槽骨复合体、颌骨再生和软骨再生方面获得显著进展。然而,壳聚糖基水凝胶的临床转化应用仍面临诸多挑战。未来可致力于开展基于口腔内复杂微环境的体内研究,并将壳聚糖基水凝胶与多种不同的活性因子、生物材料和先进生物制造技术相结合以实现多层次全面口腔组织再生。

Keywords: 壳聚糖, 水凝胶, 牙髓-牙本质复合体再生, 牙周组织再生, 颌骨再生, 软骨再生


创伤、感染等因素导致的牙髓炎、牙周炎、颌骨缺损和颞下颌关节缺损是临床常见的口腔颌面部疾病,显著影响患者的咀嚼、呼吸、发音等生理功能和面容美观,损害患者的生活质量和身心健康,甚至危及生命。传统治疗手段如根管治疗、牙周刮治仅能阻止病程进展,无法有效恢复受损牙髓-牙本质复合体、牙骨质-牙周膜-牙槽骨“三明治”样复合体的结构和功能,自体或异体骨移植面临材料来源不足、取骨处并发症和免疫排斥反应等严峻挑战。同时,目前常规的关节软骨损伤治疗方法难以提供与正常软骨相似的特异性微环境。近年,生物医用材料的重要性逐渐被重视,组织工程与再生医学的发展为探索口腔颌面部疾病再生修复治疗的新策略奠定坚实基础。

壳聚糖是天然多糖甲壳素脱除部分乙酰基的产物,由2-氨基-2-脱氧-葡萄糖通过1,4糖甙链相互连接而成线性聚合物,是自然界中唯一含游离氨基的带正电荷碱性多糖。通过引入特异性功能基团对壳聚糖进行官能化修饰,可合成季铵化、羧甲基化等多种重要的壳聚糖衍生物,实现对壳聚糖理化性质和生物学功能的进一步改善,并提高其临床转化效率[1]。水凝胶是一种三维亲水性高分子聚合物材料,因具有良好的生物相容性、生物降解性、可调控力学性能、可溶胀不崩解性及类似天然细胞外基质的柔韧性和弹性而逐渐成为优异的仿生组织工程支架材料,被认为是细胞、生物活性因子和控释药物的最佳载体[2-3]。以壳聚糖为前体,通过优化化学交联和物理交联条件制备的壳聚糖基水凝胶显示出优异的生物相容性、生物降解性、抗氧化性、抗炎活性和广谱抗菌性[4],在促进牙髓-牙本质复合体、牙骨质-牙周膜-牙槽骨复合体、颌骨及颞下颌关节软骨的再生修复方面展现出广阔的应用前景。

本文概述壳聚糖基水凝胶的改性及制备策略,聚焦于壳聚糖基水凝胶在口腔软硬组织结构再生和功能重建中的研究进展,以期为其临床口腔推广应用提供参考。

1. 壳聚糖基水凝胶的改性及制备策略

1.1. 壳聚糖基水凝胶的改性策略

因存在水溶性差、机械强度低、抗菌性能弱等方面的不足,壳聚糖的临床推广应用受到限制。季铵化、羧甲基化、磺化、磷酸化、硫醇化和烷基化修饰是改善壳聚糖理化性质及生物学功能,促进壳聚糖基水凝胶临床转化的常用策略[1]。作为一种典型的壳聚糖衍生物,季铵化壳聚糖比壳聚糖具有更良好的水溶性和更高效的抗菌性,近年季铵化壳聚糖作为抑菌剂和药物载体的应用逐渐引起广泛关注。常见的壳聚糖季铵化方法有两种:一是将季铵基团直接接枝至壳聚糖主链,碱性环境中甲基碘与壳聚糖反应生成的N, N, N-三甲基壳聚糖是最简单的季铵壳聚糖衍生物形式,且与壳聚糖相比,N, N, N-三甲基壳聚糖在生理pH值下具有永久正电荷,对革兰氏阳性和阴性细菌显示出更强的抗菌潜能[5];二是在壳聚糖骨架外部接枝季铵基团,通过优化反应条件,环戊三甲基氯化铵与壳聚糖可分别在中性环境和碱性环境下反应得到N-[(2-羟基-3-三甲基铵)丙基]壳聚糖及3-氯-2-羟基丙基三甲基氯化铵[6]。羧甲基壳聚糖同样由于水溶性、生物相容性、抗菌性能更优异而被广泛研究,包括O-羧甲基壳聚糖、N-羧甲基壳聚糖、N, O-羧甲基壳聚糖和N, N-二羧甲基壳聚糖[7-8]。Cao等[9]开发了一种快速制备的自愈合可注射性羧甲基壳聚糖水凝胶敷料,并发现该敷料可显著增加皮肤伤口处新生血管和成纤维细胞数量,促进皮脂腺及毛囊发育,减少肉芽组织厚度,为加速皮肤组织再生和促进伤口愈合提供了新思路。磺化反应可发生在壳聚糖的不同官能团上,除改善水溶性外,磺化壳聚糖还具有良好的抗凝血、抗病毒和抗菌特性[10]。Kim等[11]受天然硫酸多糖启发,仿生制备了磺化壳聚糖水凝胶,并通过光交联实现与siRNA的共价耦合,该体系可通过控制基因沉默和激活促进间充质干细胞成骨分化,为骨组织工程RNA沉默平台的构建奠定基础。

除上述化学修饰外,以壳聚糖基水凝胶为载体,通过携载多孔性微球或纳米颗粒构建的水凝胶复合体系可实现多种药物或生物活性因子的局部序贯递送,为优化壳聚糖基水凝胶的临床应用前景和实现缺损组织有序再生奠定基础。壳聚糖微球是经乳液聚合、喷雾干燥、溶剂挥发、交联、离子凝胶化等多种方式制备的球形结构,直径小于1 000 μm[12]。壳聚糖微球负载药物的释放特性受多种因素影响,包括壳聚糖的相对分子质量、浓度、交联度和药物含量等。稳定性及药物包封率是限制壳聚糖微球应用的主要原因。研究[13]表明:将药物包埋于壳聚糖微球中所形成的微囊化结构可显著抵抗唾液消化酶降解,并在口腔龈下部位实现持续可控的药物释放。Li等[14]将携载抗菌性多肽的壳聚糖基微球包埋于水凝胶中,形成微球/水凝胶双阻隔体系,可有效促进药物的缓释,显著延长抗菌作用时间。纳米颗粒是直径10~100 nm的由天然或人工聚合物构成的纳米级微观颗粒。因具有良好的黏附性,壳聚糖纳米颗粒聚合物能增强疏水药物的生物利用度[15]。Xu等[16]通过离子凝胶化制备了负载多西环素的壳聚糖/羧甲基壳聚糖复合纳米颗粒,并证明该纳米粒结构稳定,对牙龈卟啉单胞菌具有良好的抑菌作用,且可显著降低人牙龈成纤维细胞炎症反应,为研究载药纳米颗粒的作用机制提供了新方向。Hussein等[17]发现:壳聚糖纳米颗粒可通过内吞作用和吞噬作用而被细胞摄取并在细胞内存在长达72 h,通过有效促进巨噬细胞浸润和牙周韧带成纤维细胞迁移介导免疫调节和细胞相互作用,发挥抑制根尖周组织炎症和促进组织愈合的功效。

因此,联合化学修饰策略和搭载纳米颗粒或微球可使壳聚糖基水凝胶在口腔组织工程应用中具有多种优势,如良好的生物黏附性、生物相容性和生物降解性,且多孔性支架结构可将生物活性因子或药物包裹其中以避免药物降解破坏并控制其缓释。

1.2. 壳聚糖基水凝胶的制备策略

壳聚糖基水凝胶的制备策略包括两种,即化学交联法和物理交联法[18]。化学交联法是利用小分子交联剂、活性酶或高能量光照等,在壳聚糖分子氨基、羟基及接枝基团间形成永久性的稳定共价交联凝胶网络,从而赋予其应对环境变化的抵抗力。壳聚糖分子所含的丰富活性氨基可与小分子交联剂不同官能团发生化学修饰反应,形成3种共价结合:1)与交联剂甲醛、戊二醛等所含醛基发生席夫碱反应形成交联网络,但醛类交联剂较大的细胞毒性是其临床应用过程中所面临的最大障碍[19]。天然植物提取物京尼平具有良好的生物相容性,故可代替醛类交联剂与壳聚糖通过叔胺和酰胺键发生交联[20]。2)与交联剂方酸二乙酯等含酯基发生取代反应[21]。3)与交联剂如乙二醇二缩水甘油醚含环氧基发生化学交联[22]。此外,Jin等[23]研究发现壳聚糖接枝乙醇酸和对羟基苯丙酸在辣根过氧化物酶/过氧化氢催化下可高效、温和、选择性地形成壳聚糖基水凝胶,该水凝胶能被溶菌酶降解且与软骨细胞共培养时体现出良好的生物相容性。致力于高能量光照促进分子交联,He等[24]利用254 nm紫外光照射叠氮化羟乙基壳聚糖90 s,迅速引发叠氮基团交联从而促进壳聚糖凝胶形成。该凝胶生物安全性高,可平稳释放所搭的载肝素,促进血管内皮细胞的增殖和血管内皮生长因子的表达。

不同于化学交联法形成的不可逆永久性壳聚糖凝胶,物理交联法则借助分子间物理连接包括氢键、疏水作用、静电吸引、离子作用,从而形成可逆性凝胶网络。壳聚糖是一种带正电荷的阳离子多糖,因此带负电荷的阴离子高分子聚合物或小分子化合物的引入可与壳聚糖分子产生静电吸引作用从而形成交联网络。天然高分子聚合物如海藻酸钠[25]、果胶[26]、硫酸葡聚糖[27]能通过与壳聚糖分子形成聚电解质复合体实现壳聚糖凝胶化。William等[25]指出:壳聚糖/海藻酸钠水凝胶作为载体可显著延缓促血管生成药物磷酸鞘氨醇的释放,促进内皮生长细胞成芽和迁移以及体内血管发生。合成聚合物如具有良好生物相容性的聚乙烯醇被证实可应用于温敏性壳聚糖基水凝胶制备,促进抗癌药物紫杉醇的持续平稳释放[28]。值得注意的是,利用阴离子小分子β-甘油磷酸钠可制备壳聚糖/β-甘油磷酸钠水凝胶体系,因具有出色的可注射性和温敏性而逐渐在口腔组织工程领域崭露头角[29]。该水凝胶体系在室温或低于室温时呈溶胶状态,具有可注射性,可通过微创方式注射于口腔颌面部狭窄的不规则缺损处;而当温度升高至人体生理温度时,该水凝胶可呈现温敏性特征,发生显著的溶胶-凝胶转变,从而保证该水凝胶在体温下获得满足缺损处不规则形态的凝固成形能力。Qi等[30]研究表明:壳聚糖/β-甘油磷酸钠温敏性水凝胶负载海藻酸钠微球能实现双氯芬酸钠缓慢持久释放,经膝关节腔注射后能显著降低新西兰兔类的风湿性关节炎症状。相较于阴离子分子通过静电吸引作用促进壳聚糖溶液凝胶化,金属离子可凭借作用力更强的配位键形成更加稳定的壳聚糖基水凝胶。Wahid等[31]借助银离子、铜离子、锌离子与羧甲基壳聚糖氨基、羧基、羟基之间的快速配位反应制备了具有出色抗菌性能及良好可塑性、弹性和机械性能的水凝胶,为其在生物医学和组织工程学中的应用奠定基础。

2. 壳聚糖基水凝胶在口腔组织工程中的应用

2.1. 牙髓-牙本质复合体再生

保持牙髓-牙本质复合体的结构和功能完整性十分重要[3],牙髓负责维持牙齿活力,而牙本质则承担保护牙髓责任[32]。龋病、外伤均可损伤牙髓-牙本质复合体,严重者将导致牙髓炎及根尖周病变。传统根管治疗虽可消除根管炎症、保存患牙,却不能恢复牙髓-牙本质复合体的生物学功能,并非理想的治疗方法[33]。再生性牙髓治疗(regenerative endodontic therapy,RET)致力于牙本质-牙髓复合体再生,以恢复管样牙本质结构和牙髓的血管分布、神经支配及免疫功能,有望成为一种理想的治疗方法。

壳聚糖基水凝胶应用于RET具有以下5点优势[29, 34-37]:1)操作便捷性,可快速注射到狭窄根管中;2)良好的流动性,能紧密完整填充不规则髓腔;3)显著的抗菌性能,可抑制残留细菌生长;4)优异的生物相容性,可模拟天然细胞外基质促进干细胞黏附、迁移和增殖;5)可控的生物降解性,能适时被降解并被新生牙髓组织所取代。多项研究[38-39]表明壳聚糖基水凝胶作为支架材料能显著促进牙髓-牙本质复合体再生。El Ashiry等[38]以壳聚糖/海藻酸钠水凝胶负载生长因子和犬自体牙髓干细胞(dental pulp stem cells, DPSCs),可在犬年轻恒切牙髓腔中生成牙髓-牙本质复合体,且促进牙根延伸、根尖牙本质增厚和根尖孔闭合,成功实现根尖周炎症的消除和牙根的继续发育。温敏性壳聚糖/β-甘油磷酸钠水凝胶具有适宜的髓腔内可注射性和紧密贴附髓腔不规则形态的成形能力。Wu等[39]发现该水凝胶能促进人DPSCs的黏附、增殖,作为血管内皮生长因子载体可实现其缓慢持续释放且显著增强DPSCs矿化结节的形成及成牙分化标志物碱性磷酸酶(alkaline phosphatase,ALP)、牙本质涎磷蛋白(dentin sialophosphoprotein,DSPP)、骨钙素(osteocalcin,OCN)、Runt相关转录因子2(Runt-related transcription factor 2,RUNX-2)等表达。外部物理因素(光、电、热、磁等)被称为构成组织工程的第四要素[40]。Moreira等[41]指出壳聚糖/β-甘油磷酸钠水凝胶结合光生物调节疗法可显著提高根尖乳头干细胞的活性、增殖和迁移能力,且该体系配合根尖充血可诱导干细胞归巢,在大鼠磨牙髓腔中生成前期牙本质及伴有成牙本质细胞样细胞排列和丰富血管的牙髓组织。以壳聚糖基水凝胶为基础,诱导内源性干细胞募集和归巢以实现牙髓-牙本质复合体再生具有简单、安全、易于接受的优点,可避免高昂的细胞培养、存储和移植费用,将为再生性根管治疗技术的临床应用提供更加广阔的前景和发展空间。

成功的RET离不开无菌性根管环境的营造。为此,Ducret等[34]研制了壳聚糖/纤维蛋白水凝胶并发现其具有显著的抗粪肠球菌性能,且对人DPSCs形态、活力、增殖和胶原蛋白合成无不良影响。Renard等[42]以大鼠切牙为研究模型,发现壳聚糖/纤维蛋白水凝胶在不引起牙髓急性炎症的前提下可促进抗炎型M2巨噬细胞的极化,为诱导牙髓-牙本质复合体再生创造了适宜的免疫微环境。集抗菌、抗炎和成牙分化诱导性能“三位一体”的水凝胶材料无疑会促进再生性根管治疗术的发展。Zhu等[43-44]报道壳聚糖/银掺杂生物活性玻璃水凝胶一方面可显著抑制变形链球菌和乳酸杆菌的生长,另一方面能通过失活NF-κB信号通路降低炎性DPSCs促炎因子IL-1β、IL-6、IL-8、TNF-α的表达,同时增强ALP、OCN、RUNX-2表达。该凝胶体系相较于三氧化矿物凝聚体能显著诱导修复性牙本质形成,提高牙髓组织存活率,促进牙髓-牙本质复合体的再生。

因此,壳聚糖基水凝胶在促进RET临床转化方面具有明显优势。但鉴于目前相关研究尚处于实验室阶段,在作为临床常规治疗方法之前,需进一步明确适应证的选择、实施方法、效果评价和临床随机对照研究的开展等问题。

2.2. 牙周组织再生

牙周炎是一种以菌斑为始动因子的慢性感染性疾病,将导致牙周支持组织(牙龈、牙槽骨、牙周膜和牙骨质)的进展性破坏和附着丧失,是引起成人牙齿缺失的首要原因[45]。此外,牙周炎与多种全身系统性疾病密切相关,如糖尿病、动脉粥样硬化。全球超过30%的成人患有牙周炎[46],中国成人牙周健康率仅为9.1%[47]。目前传统牙周治疗策略主要以清除菌斑因素为基础的抗感染治疗,难以实现牙周组织重塑和功能重建。牙周膜干细胞的发现为牙周组织再生提供了重要的生物学依据[48]

利用壳聚糖基水凝胶进行牙周再生的技术不断进步,从早期借助凝胶本身抗菌活性到负载抗菌药物以实现感染炎症的控制,再发展到双重负载药物和生长因子促进抗菌和组织再生。Ji等[49]最早开展了壳聚糖基温敏水凝胶对牙周致病菌抗性的研究,表明季铵化壳聚糖/α, β-甘油磷酸钠和壳聚糖/α, β-甘油磷酸钠水凝胶均能显著抑制牙龈卟啉单胞菌和中间普氏菌,且前者抑菌效能更明显。Zang等[50]指出采用高压蒸汽灭菌壳聚糖粉末制备的壳聚糖/β-甘油磷酸钠水凝胶对人牙周膜干细胞无明显细胞毒性,能显著促进犬三类根分叉缺损的牙骨质-牙周膜-牙槽骨复合体再生。同时,鉴于其体温下溶胶-凝胶转变的独特优点,壳聚糖基温敏水凝胶被视为牙周再生治疗中较为理想的支架选择。

壳聚糖基水凝胶单独负载抗菌抗炎药物或协同负载生长因子为牙周再生治疗提供一种可行有效的策略。Ganguly等[51]研究表明以壳聚糖水凝胶为载体,可实现盐酸莫西沙星缓慢持续释放,对牙周致病菌伴放线放线杆菌和变形链球菌产生显著的抗菌活性。Yadav等[52]发现包覆奥硝唑和盐酸多西环素的壳聚糖/香兰素微球原位凝胶能显著抑制金黄色葡萄球菌、大肠杆菌、粪肠球菌生长,有效改善临床慢性牙周炎患者的菌斑指数等牙周参数。Özdoğan等[53-54]指出承载阿托伐他汀的壳聚糖水凝胶能显著降低炎症因子水平,阻止大鼠牙周炎进展,促进牙槽骨再生和提升附着水平。Xu等[55]以温敏性壳聚糖/β-甘油磷酸钠/明胶水凝胶联合负载阿司匹林和促红细胞生成素既能控制大鼠牙周炎症,消除环氧合酶-2阳性细胞和基质金属蛋白酶-9阳性细胞浸润,又可恢复牙槽骨高度,组织矿物密度,骨矿物密度,骨体积分数,骨小梁的厚度、数目和间隙,实现牙槽骨完全再生。Zang等[56]揭露,协同负载骨形成蛋白-7和奥硝唑的壳聚糖/β-甘油磷酸水凝胶一方面对牙周致病菌牙龈卟啉单胞菌具有明显抗菌活性,另一方面能显著降低犬三类根分叉缺损中破骨细胞数量、增加成骨细胞数量,促进牙骨质-牙周膜-牙槽骨复合体再生。

宿主免疫炎症反应的失调是最终导致牙周炎患者牙周破坏的原因。胞外体是一种直径30~100 nm的胞外囊泡,作为细胞间交流的媒介几乎能由任何细胞产生[57]。最新研究[58]表明:壳聚糖/β-甘油磷酸水凝胶搭载的人DPSCs来源胞外体发挥免疫调控作用,通过转运miRNA-1246促进牙周炎小鼠牙周组织的巨噬细胞由促炎型向抗炎型转化,从而显著降低炎症水平,减少牙槽骨丢失和牙周上皮损害。该研究揭示了搭载间充质干细胞衍生胞外体的壳聚糖基水凝胶在牙周炎再生治疗中的前景,为开发一种新型的通过调控宿主免疫反应进行牙周结构和功能性再生的方法指明方向。

壳聚糖基水凝胶在牙周组织工程中表现出巨大的临床应用潜力,但致力于诱导具有正常“三明治”样结构的生理性和功能性牙周软硬组织复合体有序再生,如何将壳聚糖基水凝胶与其他支架材料叠加以构建多层复合材料或负载“一体多用”生长因子(如血小板源性生长因子、成纤维细胞生长因子、牙釉蛋白)尚待深入研究。同时,利用新兴组织工程技术如干细胞归巢技术、细胞膜片技术、静电纺丝技术、三维打印技术拓展壳聚糖基水凝胶的应用方式,有望为牙周组织再生带来新的希望。

2.3. 颌骨再生

颌骨缺损是发病率最高的口腔颌面部疾病。虽然自体骨移植被认为是骨缺损修复的金标准,但存在供区骨量有限、术后供区骨缺损及并发症等难题,而同种异体骨移植面临免疫排斥、感染等严峻挑战。以生物支架材料为基础、结合干细胞构建的组织工程化骨为颌骨再生提供了新的途径和希望。

壳聚糖基水凝胶具有微创性、敏感性和可注射性。联合药物、生长因子、无机材料、金属及高分子材料等可进一步改善水凝胶生物活性和机械性能,使其在骨组织工程中具有广阔的应用前景。Divband等[59]的研究表明:原位可注射性壳聚糖双胍盐酸盐/羧甲基纤维素水凝胶具备比拟松质骨的良好机械性能,且可通过血管内皮生长因子和骨形成蛋白-2的有序缓释促进人DPSCs增殖和成骨分化。Song等[60]以光敏性壳聚糖甲基丙烯酸酯水凝胶包裹聚乳酸乙醇酸微球实现了万古霉素和人重组骨形成蛋白-2的序贯释放,为初期抑制细菌侵袭和后期促进骨再生提供了新思路。

羟基磷灰石是天然骨的主要矿物成分,具有良好的骨传到性、骨诱导性和骨结合性,能促进干细胞的增殖和成骨分化[61]。Chen等[62]研究表明:壳聚糖/β-甘油磷酸钠温敏性水凝胶包裹羟基磷灰石颗粒能为人DPSCs的黏附、增殖提供三维支撑,且促进ALP、OCN、RUNX-2和1型胶原(collagen type 1,Col1)的表达,诱导DPSCs成骨分化。锌是构成骨骼的一种重要微量元素,能促进成骨细胞生长、抑制破骨细胞形成,且具有优良的抗菌性能,广泛应用于骨种植材料。Dhivya等[63]研制了掺杂锌和纳米羟磷灰石颗粒的可注射温敏壳聚糖/β-甘油磷酸钠水凝胶,并经体内外实验表明其可促进成骨细胞分化和大鼠胫骨临界骨缺损的再生修复。相较于羟基磷灰石,β-磷酸三钙的生物相容性和可吸收性更佳,内部有大量交错连通、均匀分布的微孔,是一种可靠的骨组织工程材料。李鑫平等[64]证实壳聚糖/β-磷酸三钙水凝胶孔隙大小均一、形态稳定,能促进人DPSCs的黏附和增殖,诱导成骨分化和钙化结节的形成。近年,氧化石墨烯因具有亲水性好、机械强度高、比表面积大、生物毒性低、成骨诱导能力强等优点而被引入组织工程领域[61, 65]。研究[66]表明:壳聚糖/β-甘油磷酸钠/氧化石墨烯温敏性水凝胶可作为大鼠骨髓间充质干细胞的生物相容性支架,且通过上调RUNX-2、ALP、Col1、OCN表达促进成骨分化。Amiryaghoubi等[65]指出,温敏性壳聚糖/聚N-异丙基丙烯酰胺/氧化石墨烯水凝胶具有良好的DPSCs相容性,能促进RUNX-2、OCN的表达,增强ALP活性和矿化结节堆积,突出了该体系作为一种方便的生物活性材料在骨组织工程中的应用潜力。

壳聚糖基水凝胶作为骨组织工程支架材料在促进颌骨缺损再生修复方面具有明显优势,但相关研究尚处于初步阶段,临床应用不足。未来研究可考虑将现有技术与不同的生物制造技术相结合,以创造更好的壳聚糖基水凝胶基骨组织工程支架。

2.4. 软骨再生

颞下颌关节创伤或炎症可引起颞下颌关节紊乱病,导致关节疼痛、缺损及下颌运动障碍,并可伴有颞部疼痛、头晕、耳鸣等症状。由于血液供应有限,颞下颌关节软骨缺损后的自我修复能力不足,目前临床治疗策略尚无法恢复原始软骨的生物学功能和机械特性。基于干细胞、生物信号因子和支架材料的组织工程技术为缺损软骨的结构再生和功能重建带来希望。然而壳聚糖软骨诱导性不足,将其作为软骨再生中的单一支架材料再生潜力有限。为克服壳聚糖水凝胶软骨诱导潜能低、机械性能不足、稳定性差的瓶颈,Baharlou等[67]利用两层壳聚糖水凝胶包裹聚己内酯电纺纳米纤维垫,成功制备一种适用于软骨组织工程的“三明治”样多层支架,体内移植实验证实该复合支架可实现软骨细胞分化诱导剂的缓慢持续释放,促进体内软骨再生。

壳聚糖水凝胶经透明质酸等细胞外基质化合物仿生修饰后可模拟软骨组织的微环境,为软骨再生营造适宜条件。KhaliliJafarabad等[68]以壳聚糖/透明质酸水凝胶负载富血小板血浆,证实该水凝胶体系有助于脂肪间充质干细胞生长增殖,并促进其向软骨细胞分化。Heirani-Tabasi等[69]将脂肪间充质干细胞培养于搭载人关节软骨细胞胞外囊泡的可注射壳聚糖/透明质酸水凝胶中,体外实验表明干细胞的软骨分化能力明显增强,软骨形成基因COL2A1SOX9的表达显著升高,而兔软骨缺损模型实验生成的透明样软骨再次明确该水凝胶体系可为干细胞的成软骨分化和软骨再生重塑适宜微环境。Talaat等[70]结合纳米纤维素在流变性能、机械性能等方面的优势成功制备可注射温敏性纳米纤维素/壳聚糖/β-甘油磷酸钠水凝胶体系,揭示该体系具有良好的生物相容性、稳定的机械性能和适宜的降解速率,且多孔性结构有利于细胞黏附、营养物质扩散,显著提高DPSCs和骨髓间充质干细胞的增殖潜能。另外,该体系可促进体内软骨生成及新生组织生长,提高COL2A1、聚集蛋白聚糖、COL10A1的表达水平,提示纳米纤维素/壳聚糖/β-甘油磷酸钠水凝胶体系作为一种微创、高效和便捷的可注射性支架材料在颞下颌关节软骨再生中具有广阔的应用前景。

壳聚糖基水凝胶所具有的软骨再生潜能有望为改进颞下颌关节软骨缺损的治疗方案提供新思路。但目前研究多局限于异位再生实验,其作为自体细胞支架能否促进颞下颌关节软骨原位再生仍需进一步探究。

3. 结 语

壳聚糖基水凝胶作为一种独特的壳聚糖衍生聚合物,主要通过化学交联法和物理交联法制备而成。壳聚糖基水凝胶协同负载抗炎药物和生物活性因子可促进炎症消退,同时诱导缺损组织再生修复。将壳聚糖基水凝胶与其他天然材料或合成材料复合能显著改善其理化性能及生物学功能,其中可注射温敏性壳聚糖基水凝胶因具有溶胶-凝胶转变特性而使其在口腔不规则缺损再生修复中具有优势。

然而,壳聚糖基水凝胶在促进口腔软硬组织再生的临床转化应用中仍面临以下诸多挑战:1)化学修饰后壳聚糖基水凝胶的抗菌性能、生物相容性等虽得到显著改善,但其合成过程中复杂大分子官能团利用效率不足、水凝胶生物基含量占比不高,费时费力,性价比较低;2)壳聚糖基水凝胶的机械性能不足是限制其在口腔硬组织再生方面应用前景的主要因素,如何突破瓶颈,在将壳聚糖基水凝胶与其他无机材料结合以改善其机械性能的同时,保证其生物性能的稳定仍有待研究;3)如何更好地保证水凝胶对释放生物活性因子或药物的可控性、如何降低材料自身可能引发的炎症反应对组织再生修复的不良影响尚待解决;4)将壳聚糖基水凝胶与其他先进合成材料、天然材料或生物制造技术如三维打印相结合的研究还较为局限,目前研究多处于实验室探究阶段,各方面性能尚不明确,缺乏临床随机对照试验的支持。因此,未来的研究可基于口腔内复杂的生物环境开展更多的临床体内探索,并将壳聚糖基水凝胶与多种不同的活性因子、生物材料和先进生物制造技术相结合,以实现多层次的全面口腔组织再生。

基金资助

中华口腔医学会中西部口腔正畸临床研究项目(CSA-MWO2021-03);口腔颌面发育与再生湖北省重点实验室青年基金(2020kqhm002)。

This work was supported by the Chinese Stomatological Association Orthodontic Clinical Research Project for Central and West China (CSA-MWO2021-03) and the Youth Fund of Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration (2020kqhm002), China.

利益冲突声明

作者声称无任何利益冲突。

作者贡献

王宇洁 文献查阅和分析,文章撰写及修改;邹杰林 文献查阅和分析,文章审校;蔡明轩 文献整理和汇总;汪一帆 文献查阅和分析;毛靖 选题指导和文章审校;石鑫 选题指导,文章撰写及审校。所有作者阅读并同意最终的文本。

原文网址

http://xbyxb.csu.edu.cn/xbwk/fileup/PDF/202301138.pdf

参考文献

  • 1. Khattak S, Wahid F, Liu LP, et al. Applications of cellulose and chitin/chitosan derivatives and composites as antibacterial materials: current state and perspectives[J]. Appl Microbiol Biotechnol, 2019, 103(5): 1989-2006. 10.1007/s00253-018-09602-0. [DOI] [PubMed] [Google Scholar]
  • 2. Yang JM, Olanrele OS, Zhang X, et al. Fabrication of hydrogel materials for biomedical applications[J]. Adv Exp Med Biol, 2018, 1077: 197-224. 10.1007/978-981-13-0947-2_12. [DOI] [PubMed] [Google Scholar]
  • 3. Mantha S, Pillai S, Khayambashi P, et al. Smart hydrogels in tissue engineering and regenerative medicine[J]. Materials (Basel), 2019, 12(20): 3323. 10.3390/ma12203323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4. Rajabi M, McConnell M, Cabral J, et al. Chitosan hydrogels in 3D printing for biomedical applications[J]. Carbohydr Polym, 2021, 260: 117768. 10.1016/j.carbpol.2021.117768. [DOI] [PubMed] [Google Scholar]
  • 5. Shariatinia Z. Carboxymethyl chitosan: properties and biomedical applications[J]. Int J Biol Macromol, 2018, 120(Pt B): 1406-1419. 10.1016/j.ijbiomac.2018.09.131. [DOI] [PubMed] [Google Scholar]
  • 6. Xu H, Fang ZH, Tian WQ, et al. Green fabrication of amphiphilic quaternized β-chitin derivatives with excellent biocompatibility and antibacterial activities for wound healing[J]. Adv Mater, 2018: e1801100[2022-06-30]. 10.1002/adma.201801100. [DOI] [PubMed] [Google Scholar]
  • 7. Xu T, Xin MH, Li MC, et al. Synthesis, characterization, and antibacterial activity of N, O-quaternary ammonium chitosan[J]. Carbohydr Res, 2011, 346(15): 2445-2450. 10.1016/j.carres.2011.08.002. [DOI] [PubMed] [Google Scholar]
  • 8. Upadhyaya L, Singh J, Agarwal V, et al. Biomedical applications of carboxymethyl chitosans[J]. Carbohydr Polym, 2013, 91(1): 452-466. 10.1016/j.carbpol.2012.07.076. [DOI] [PubMed] [Google Scholar]
  • 9. Cao JF, Wu P, Cheng QQ, et al. Ultrafast fabrication of self-healing and injectable carboxymethyl chitosan hydrogel dressing for wound healing[J]. ACS Appl Mater Interfaces, 2021, 13(20): 24095-24105. 10.1021/acsami.1c02089. [DOI] [PubMed] [Google Scholar]
  • 10. Imran M, Sajwan M, Alsuwayt B, et al. Synthesis, characterization and anticoagulant activity of chitosan derivatives[J]. Saudi Pharm J, 2020, 28(1): 25-32. 10.1016/j.jsps.2019.11.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11. Kim S, Fan JB, Lee CS, et al. Sulfonate hydrogel-siRNA conjugate facilitates osteogenic differentiation of mesenchymal stem cells by controlled gene silencing and activation of BMP signaling[J]. ACS Appl Bio Mater, 2021, 4(6): 5189-5200. 10.1021/acsabm.1c00369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12. Nah JW, Jeong GW. Preparation and encapsulation techniques of chitosan microsphere for enhanced bioavailability of natural antioxidants[J]. Carbohydr Res, 2021, 500: 108218. 10.1016/j.carres.2020.108218. [DOI] [PubMed] [Google Scholar]
  • 13. Khan MIH, An XY, Dai L, et al. Chitosan-based polymer matrix for pharmaceutical excipients and drug delivery[J]. Curr Med Chem, 2019, 26(14): 2502-2513. 10.2174/0929867325666180927100817. [DOI] [PubMed] [Google Scholar]
  • 14. Li YY, Na RW, Wang XM, et al. Fabrication of antimicrobial peptide-loaded PLGA/chitosan composite microspheres for long-acting bacterial resistance[J]. Molecules, 2017, 22(10): 1637. 10.3390/molecules22101637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15. Garg U, Chauhan S, Nagaich U, et al. Current advances in chitosan nanoparticles based drug delivery and targeting[J]. Adv Pharm Bull, 2019, 9(2): 195-204. 10.15171/apb.2019.023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16. Xu S, Zhou QH, Jiang ZX, et al. The effect of doxycycline-containing chitosan/carboxymethyl chitosan nanoparticles on NLRP3 inflammasome in periodontal disease[J]. Carbohydr Polym, 2020, 237: 116163. 10.1016/j.carbpol.2020.116163. [DOI] [PubMed] [Google Scholar]
  • 17. Hussein H, Kishen A. Proteomic profiling reveals engineered chitosan nanoparticles mediated cellular crosstalk and immunomodulation for therapeutic application in apical periodontitis[J]. Bioact Mater, 2022, 11: 77-89. 10.1016/j.bioactmat.2021.09.032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18. Hamedi H, Moradi S, Hudson SM, et al. Chitosan based hydrogels and their applications for drug delivery in wound dressings: a review[J]. Carbohydr Polym, 2018, 199: 445-460. 10.1016/j.carbpol.2018.06.114. [DOI] [PubMed] [Google Scholar]
  • 19. Atwe A, Gupta A, Kant R, et al. A novel microfluidic switch for pH control using Chitosan based hydrogels[J]. Microsyst Technol, 2014, 20(7): 1373-1381. 10.1007/s00542-014-2112-0. [DOI] [Google Scholar]
  • 20. Liu L, Gao Q, Lu XM, et al. In situ forming hydrogels based on chitosan for drug delivery and tissue regeneration[J]. Asian J Pharm Sci, 2016, 11(6): 673-683. 10.1016/j.ajps.2016.07.001. [DOI] [Google Scholar]
  • 21. De Angelis AA, Capitani D, Crescenzi V. Synthesis and 13C CP-MAS NMR characterization of a new chitosan-based polymeric network[J]. Macromolecules, 1998, 31(5): 1595-1601. 10.1021/ma971619x. [DOI] [Google Scholar]
  • 22. Li N, Bai RB. A novel amine-shielded surface cross-linking of chitosan hydrogel beads for enhanced metal adsorption performance[J]. Ind Eng Chem Res, 2005, 44(17): 6692-6700. 10.1021/ie050145k. [DOI] [Google Scholar]
  • 23. Jin R, Moreira Teixeira LS, Dijkstra PJ, et al. Injectable chitosan-based hydrogels for cartilage tissue engineering[J]. Biomaterials, 2009, 30(13): 2544-2551. 10.1016/j.biomaterials.2009.01.020. [DOI] [PubMed] [Google Scholar]
  • 24. He M, Han BQ, Jiang ZW, et al. Synthesis of a chitosan-based photo-sensitive hydrogel and its biocompatibility and biodegradability[J]. Carbohydr Polym, 2017, 166: 228-235. 10.1016/j.carbpol.2017.02.072. [DOI] [PubMed] [Google Scholar]
  • 25. Williams PA, Campbell KT, Gharaviram H, et al. Alginate-chitosan hydrogels provide a sustained gradient of sphingosine-1-phosphate for therapeutic angiogenesis[J]. Ann Biomed Eng, 2017, 45(4): 1003-1014. 10.1007/s10439-016-1768-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26. Neufeld L, Bianco-Peled H. Pectin-chitosan physical hydrogels as potential drug delivery vehicles[J]. Int J Biol Macromol, 2017, 101: 852-861. 10.1016/j.ijbiomac.2017.03.167. [DOI] [PubMed] [Google Scholar]
  • 27. Yucel Falco C, Falkman P, Risbo J, et al. Chitosan-dextran sulfate hydrogels as a potential carrier for probiotics[J]. Carbohydr Polym, 2017, 172: 175-183. 10.1016/j.carbpol.2017.04.047. [DOI] [PubMed] [Google Scholar]
  • 28. Jiang YC, Meng XY, Wu ZH, et al. Modified chitosan thermosensitive hydrogel enables sustained and efficient anti-tumor therapy via intratumoral injection[J]. Carbohydr Polym, 2016, 144: 245-253. 10.1016/j.carbpol.2016.02.059. [DOI] [PubMed] [Google Scholar]
  • 29. Saravanan S, Vimalraj S, Thanikaivelan P, et al. A review on injectable chitosan/beta glycerophosphate hydrogels for bone tissue regeneration[J]. Int J Biol Macromol, 2019, 121: 38-54. 10.1016/j.ijbiomac.2018.10.014. [DOI] [PubMed] [Google Scholar]
  • 30. Qi XL, Qin XX, Yang R, et al. Intra-articular administration of chitosan thermosensitive in situ hydrogels combined with diclofenac sodium-loaded alginate microspheres[J]. J Pharm Sci, 2016, 105(1): 122-130. 10.1016/j.xphs.2015.11.019. [DOI] [PubMed] [Google Scholar]
  • 31. Wahid F, Wang HS, Zhong C, et al. Facile fabrication of moldable antibacterial carboxymethyl chitosan supramolecular hydrogels cross-linked by metal ions complexation[J]. Carbohydr Polym, 2017, 165: 455-461. 10.1016/j.carbpol.2017.02.085. [DOI] [PubMed] [Google Scholar]
  • 32. Fawzy El-Sayed KM, Elsalawy R, Ibrahim N, et al. The dental pulp stem/progenitor cells-mediated inflammatory-regenerative axis[J]. Tissue Eng Part B Rev, 2019, 25(5): 445-460. 10.1089/ten.TEB.2019.0106. [DOI] [PubMed] [Google Scholar]
  • 33. 刘斌, 梁景平. 牙髓再生的临床应用与未来[J]. 中华口腔医学杂志, 2020, 55(1): 50-55. 10.3760/cma.j.issn.1002-0098.2020.01.011. [DOI] [Google Scholar]; LIU Bin, LIANG Jingping. Regenerative endodontics: clinical application status and future perspective[J]. Chinese Journal of Stomatology, 2020, 55(1): 50-55. 10.3760/cma.j.issn.1002-0098.2020.01.011. [DOI] [Google Scholar]
  • 34. Ducret M, Montembault A, Josse J, et al. Design and characterization of a chitosan-enriched fibrin hydrogel for human dental pulp regeneration[J]. Dent Mater, 2019, 35(4): 523-533. 10.1016/j.dental.2019.01.018. [DOI] [PubMed] [Google Scholar]
  • 35. Moussa DG, Aparicio C. Present and future of tissue engineering scaffolds for dentin-pulp complex regeneration[J]. J Tissue Eng Regen Med, 2019, 13(1): 58-75. 10.1002/term.2769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36. Verma P, Nosrat A, Kim JR, et al. Effect of residual bacteria on the outcome of pulp regeneration in vivo [J]. J Dent Res, 2017, 96(1): 100-106. 10.1177/0022034516671499. [DOI] [PubMed] [Google Scholar]
  • 37. Vishwanat L, Duong R, Takimoto K, et al. Effect of bacterial biofilm on the osteogenic differentiation of stem cells of apical papilla[J]. J Endod, 2017, 43(6): 916-922. 10.1016/j.joen.2017.01.023. [DOI] [PubMed] [Google Scholar]
  • 38. El Ashiry EA, Alamoudi NM, El Ashiry MK, et al. Tissue engineering of necrotic dental pulp of immature teeth with apical periodontitis in dogs: radiographic and histological evaluation[J]. J Clin Pediatr Dent, 2018, 42(5): 373-382. 10.17796/1053-4625-42.5.9. [DOI] [PubMed] [Google Scholar]
  • 39. Wu S, Zhou YC, Yu Y, et al. Evaluation of chitosan hydrogel for sustained delivery of VEGF for odontogenic differentiation of dental pulp stem cells[J]. Stem Cells Int, 2019, 2019: 1515040. 10.1155/2019/1515040. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40. Du YY, Guo JL, Wang JL, et al. Hierarchically designed bone scaffolds: from internal cues to external stimuli[J]. Biomaterials, 2019, 218: 119334. 10.1016/j.biomaterials.2019.119334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41. Moreira MS, Sarra G, Carvalho GL, et al. Physical and biological properties of a chitosan hydrogel scaffold associated to photobiomodulation therapy for dental pulp regeneration: an in vitro and in vivo study[J]. Biomed Res Int, 2021, 2021: 6684667. 10.1155/2021/6684667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42. Renard E, Amiaud J, Delbos L, et al. Dental pulp inflammatory/immune response to a chitosan-enriched fibrin hydrogel in the pulpotomised rat incisor[J]. Eur Cell Mater, 2020, 40: 74-87. 10.22203/eCM.v040a05. [DOI] [PubMed] [Google Scholar]
  • 43. Zhu NX, Chatzistavrou X, Ge LH, et al. Biological properties of modified bioactive glass on dental pulp cells[J]. J Dent, 2019, 83: 18-26. 10.1016/j.jdent.2019.01.017. [DOI] [PubMed] [Google Scholar]
  • 44. Zhu NX, Chatzistavrou X, Papagerakis P, et al. Silver-doped bioactive glass/chitosan hydrogel with potential application in dental pulp repair[J]. ACS Biomater Sci Eng, 2019, 5(9): 4624-4633. 10.1021/acsbiomaterials.9b00811. [DOI] [PubMed] [Google Scholar]
  • 45. Kinane DF, Stathopoulou PG, Papapanou PN. Periodontal diseases[J]. Nat Rev Dis Primers, 2017, 3: 17038. 10.1038/nrdp.2017.38. [DOI] [PubMed] [Google Scholar]
  • 46. Shen Z, Kuang S, Zhang Y, et al. Chitosan hydrogel incorporated with dental pulp stem cell-derived exosomes alleviates periodontitis in mice via a macrophage-dependent mechanism[J]. Bioact Mater. 2020. ,5(4): 1113-1126. 10.1016/j.bioactmat.2020.07.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47. 郭贵高, 周倩冰, 周万兴. 牙周炎与高血压[J]. 中华高血压杂志, 2021, 29(5): 485-488. 10.16439/j.issn.1673-7245.2021.05.013. [DOI] [Google Scholar]; GUO Guigao, ZHOU Qianbing, ZHOU Wanxing. Periodontitis and hypertension[J]. Chinese Journal of Hypertension, 2021, 29(5): 485-488. 10.16439/j.issn.1673-7245.2021.05.013. [DOI] [Google Scholar]
  • 48. Shi X, Mao J, Liu Y. Pulp stem cells derived from human permanent and deciduous teeth: biological characteristics and therapeutic applications[J]. Stem Cells Transl Med, 2020, 9(4): 445-464. 10.1002/sctm.19-0398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49. Ji QX, Chen XG, Zhao QS, et al. Injectable thermosensitive hydrogel based on chitosan and quaternized chitosan and the biomedical properties[J]. J Mater Sci Mater Med, 2009, 20(8): 1603-1610. 10.1007/s10856-009-3729-x. [DOI] [PubMed] [Google Scholar]
  • 50. Zang SQ, Dong GY, Peng B, et al. A comparison of physicochemical properties of sterilized chitosan hydrogel and its applicability in a canine model of periodontal regeneration[J]. Carbohydr Polym, 2014, 113: 240-248. 10.1016/j.carbpol.2014.07.018. [DOI] [PubMed] [Google Scholar]
  • 51. Ganguly A, Ian CK, Sheshala R, et al. Application of diverse natural polymers in the design of oral gels for the treatment of periodontal diseases[J]. J Mater Sci Mater Med, 2017, 28(3): 39. 10.1007/s10856-017-5852-4. [DOI] [PubMed] [Google Scholar]
  • 52. Yadav SK, Khan G, Bansal M, et al. Multiparticulate based thermosensitive intra-pocket forming implants for better treatment of bacterial infections in periodontitis[J]. Int J Biol Macromol, 2018, 116: 394-408. 10.1016/j.ijbiomac.2018.04.179. [DOI] [PubMed] [Google Scholar]
  • 53. Özdoğan AI, Akca G, Şenel S. Development and in vitro evaluation of chitosan based system for local delivery of atorvastatin for treatment of periodontitis[J]. Eur J Pharm Sci, 2018, 124: 208-216. 10.1016/j.ejps.2018.08.037. [DOI] [PubMed] [Google Scholar]
  • 54. Özdoğan AI, İlarslan YD, Kösemehmetoğlu K, et al. In vivo evaluation of chitosan based local delivery systems for atorvastatin in treatment of periodontitis[J]. Int J Pharm, 2018, 550(1/2): 470-476. 10.1016/j.ijpharm.2018.08.058. [DOI] [PubMed] [Google Scholar]
  • 55. Xu XW, Gu ZY, Chen X, et al. An injectable and thermosensitive hydrogel: promoting periodontal regeneration by controlled-release of aspirin and erythropoietin[J]. Acta Biomater, 2019, 86: 235-246. 10.1016/j.actbio.2019.01.001. [DOI] [PubMed] [Google Scholar]
  • 56. Zang SQ, Mu R, Chen F, et al. Injectable chitosan/β- glycerophosphate hydrogels with sustained release of BMP-7 and ornidazole in periodontal wound healing of class III furcation defects[J]. Mater Sci Eng C Mater Biol Appl, 2019, 99: 919-928. 10.1016/j.msec.2019.02.024. [DOI] [PubMed] [Google Scholar]
  • 57. Shi X, Jiang N, Mao J, et al. Mesenchymal stem cell-derived exosomes for organ development and cell-free therapy[J]. Nano Sel, 2021, 2(7): 1291-1325. 10.1002/nano.202000286. [DOI] [Google Scholar]
  • 58. Shen ZS, Kuang SH, Zhang Y, et al. Chitosan hydrogel incorporated with dental pulp stem cell-derived exosomes alleviates periodontitis in mice via a macrophage-dependent mechanism[J]. Bioact Mater, 2020, 5(4): 1113-1126. 10.1016/j.bioactmat.2020.07.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59. Divband B, Aghazadeh M, Al-Qaim ZH, et al. Bioactive chitosan biguanidine-based injectable hydrogels as a novel BMP-2 and VEGF carrier for osteogenesis of dental pulp stem cells[J]. Carbohydr Polym, 2021, 273: 118589. 10.1016/j.carbpol.2021.118589. [DOI] [PubMed] [Google Scholar]
  • 60. Song W, Xiao Y. Sequential drug delivery of vancomycin and rhBMP-2 via pore-closed PLGA microparticles embedded photo-crosslinked chitosan hydrogel for enhanced osteointegration[J]. Int J Biol Macromol, 2021, 182: 612-625. 10.1016/j.ijbiomac.2021.03.181. [DOI] [PubMed] [Google Scholar]
  • 61. Yu P, Bao RY, Shi XJ, et al. Self-assembled high-strength hydroxyapatite/graphene oxide/chitosan composite hydrogel for bone tissue engineering[J]. Carbohydr Polym, 2017, 155: 507-515. 10.1016/j.carbpol.2016.09.001. [DOI] [PubMed] [Google Scholar]
  • 62. Chen YT, Zhang FL, Fu Q, et al. In vitro proliferation and osteogenic differentiation of human dental pulp stem cells in injectable thermo-sensitive chitosan/β-glycerophosphate/hydroxyapatite hydrogel[J]. J Biomater Appl, 2016, 31(3): 317-327. 10.1177/0885328216661566. [DOI] [PubMed] [Google Scholar]
  • 63. Dhivya S, Saravanan S, Sastry TP, et al. Nanohydroxyapatite-reinforced chitosan composite hydrogel for bone tissue repair in vitro and in vivo[J]. J Nanobiotechnology, 2015, 13: 40. 10.1186/s12951-015-0099-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64. 李鑫平, 崔秋菊, 曾曙光, 等. β-磷酸三钙/壳聚糖水凝胶改性对牙髓干细胞生长与矿化的影响[J]. 中国组织工程研究, 2021, 25(22): 3493-3499. 10.3969/j.issn.2095-4344.3240. [DOI] [Google Scholar]; LI Xinping, CUI Qiuju, ZENG Shuguang, et al. Effect of modification of β-tricalcium phosphate/chitosan hydrogel on growth and mineralization of dental pulp stem cells[J]. Chinese Journal of Tissue Engineering Research, 2021, 25(22): 3493-3499. 10.3969/j.issn.2095-4344.3240. [DOI] [Google Scholar]
  • 65. Amiryaghoubi N, Noroozi Pesyan N, Fathi M, et al. Injectable thermosensitive hybrid hydrogel containing graphene oxide and chitosan as dental pulp stem cells scaffold for bone tissue engineering[J]. Int J Biol Macromol, 2020, 162: 1338-1357. 10.1016/j.ijbiomac.2020.06.138. [DOI] [PubMed] [Google Scholar]
  • 66. Saravanan S, Vimalraj S, Anuradha D. Chitosan based thermoresponsive hydrogel containing graphene oxide for bone tissue repair[J]. Biomedecine Pharmacother, 2018, 107: 908-917. 10.1016/j.biopha.2018.08.072. [DOI] [PubMed] [Google Scholar]
  • 67. Baharlou Houreh A, Masaeli E, Nasr-Esfahani MH. Chitosan/polycaprolactone multilayer hydrogel: a sustained Kartogenin delivery model for cartilage regeneration[J]. Int J Biol Macromol, 2021, 177: 589-600. 10.1016/j.ijbiomac.2021.02.122. [DOI] [PubMed] [Google Scholar]
  • 68. KhaliliJafarabad N, Behnamghader A, Khorasani MT, et al. Platelet-rich plasma-hyaluronic acid/chondrotin sulfate/carboxymethyl chitosan hydrogel for cartilage regeneration[J]. Biotechnol Appl Biochem, 2022, 69(2): 534-547. 10.1002/bab.2130. [DOI] [PubMed] [Google Scholar]
  • 69. Heirani-Tabasi A, Hosseinzadeh S, Rabbani S, et al. Cartilage tissue engineering by co-transplantation of chondrocyte extracellular vesicles and mesenchymal stem cells, entrapped in chitosan-hyaluronic acid hydrogel[J]. Biomed Mater, 2021, 16(5). 10.1088/1748-605X/ac0cbf. [DOI] [PubMed] [Google Scholar]
  • 70. Talaat W, Aryal Ac S, Al Kawas S, et al. Nanoscale thermosensitive hydrogel scaffolds promote the chondrogenic differentiation of dental pulp stem and progenitor cells: a minimally invasive approach for cartilage regeneration[J]. Int J Nanomedicine, 2020, 15: 7775-7789. 10.2147/IJN.S274418. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Central South University Medical Sciences are provided here courtesy of Central South University

RESOURCES