Skip to main content
Journal of Central South University Medical Sciences logoLink to Journal of Central South University Medical Sciences
. 2021 Dec 28;46(12):1409–1414. [Article in Chinese] doi: 10.11817/j.issn.1672-7347.2021.200797

IL-34与冠心病合并糖尿病

IL-34 and coronary heart disease complicated with diabetes mellitus

刘 慧卿 1,2, 金 凤表 2, 李 青联 1, 高 宇 2, 刘 晓腾 1, 侯 瑞田 1,
Editor: 彭 敏宁
PMCID: PMC10930576  PMID: 35232912

Abstract

冠心病和糖尿病与慢性低度炎症密切相关。白细胞介素-34(interleukin-34,IL-34)是近年来发现的一种促炎因子,主要通过与集落刺激因子-1受体(colony stimulating factor-1 receptor,CSF-1R)结合,参与单核巨噬细胞系统的病理生理过程,与机体炎症和自身免疫性疾病密切相关。IL-34在冠心病、糖尿病患者体内高表达,它通过多途径发挥促炎作用,诱发动脉粥样硬化和胰岛素抵抗,最终导致冠心病、2型糖尿病及其共病的发生和发展。

Keywords: 白细胞介素-34, 炎症因子, 冠心病, 糖尿病, 单核巨噬细胞系统


冠心病和2型糖尿病(type 2 diabetes mellitus,T2DM)是常见的慢性病,且随着人口老龄化的到来,已成为我国公共卫生系统的重大负担[1]。动脉粥样硬化(atherosclerosis,AS)、胰岛素抵抗(insulin resistance,IR)及胰岛β细胞功能障碍的发生均与慢性炎症关系紧密。在对冠心病、T2DM及其共病的研究中,炎症介质越来越受到重视。白细胞介素-34(interleukin-34,IL-34)作为新型促炎因子,与巨噬细胞集落刺激因子(macrophagecolony-stimulating factor,M-CSF)功能相似,可调节单核巨噬细胞的生存、增殖、分化与迁移,诱导多种炎症递质和趋化因子的合成,在涉及各类细胞和分子的复杂炎症信号网络中占据重要位置,参与多种炎症性疾病的发生[2-3]

1. IL-34概述

IL-34是2008年由Lin等[4]发现的白细胞介素家族新成员,人类IL-34基因位于染色体16q22.1,编码分子量为39 kD(1 D=1 u)的由242个氨基酸组成的二聚体蛋白质。IL-34由角质形成细胞、神经元、成骨细胞及滑膜成纤维细胞等分泌,广泛表达于以脾为主的多种人体器官和组织。在病理状态下,机体IL-34的表达水平与疾病的发生、进展及严重程度相关[3, 5]。M-CSF和IL-34均为集落刺激因子-1受体(colony stimulating factor-1 receptor,CSF-1R)的配体,通过与CSF-1R结合,磷酸化自身酪氨酸残基,激活细胞外信号调节激酶1/2(ertracellular-signal regulated kinase 1/2,ERK1/2)、蛋白激酶B(protein kinase B,PKB/Akt)、信号转导和活化转录因子3(signal transducers and activators of transcription 3,STAT3)、核因子κB(nuclear factor-κB,NF-κB)等信号通路,触发一系列级联反应,进而诱导单核巨噬细胞系统的生物学活动[4]。但两者无基因序列同源性,所结合受体的结构域也存在差异[2],因此IL-34和M-CSF的生物学活性相似却不完全相同。除CSF-1R外,IL-34还有多配体蛋白聚糖-1(syndecan-1)和在脑组织中表达丰富的蛋白酪氨酸磷酸酶ξ(protein tyrosine phosphatase ξ,PTP-ξ)两种次要受体,参与细胞的增殖和迁移[6-7]。另外,IL-34蛋白分子结构中有一个高度保守的无受体面[8],提示IL-34可能有其他潜在的生物学功能。

IL-34同时具有免疫细胞调节和促炎活性。IL-34既可通过NF-κB通路激活炎症因子从而促进其表达,又可诱导免疫及非免疫细胞(如上皮细胞、成纤维细胞)分化及分泌趋化因子等炎症介质来扩大炎症反应[3, 9]。体外研究[10]显示:IL-34可刺激人全血细胞因子(如IL-6)和趋化因子(如IL-8、MCP-1)产生增加。IL-34与CSF-1R结合,可诱导活性氧(reactive oxygen species,ROS)生成,上调Th17细胞水平和促进IL-6表达,参与免疫炎症反应[11];同时通过丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)、PI3K-Akt、NF-κB等信号通路来诱导人原代肺成纤维细胞表达IL-6、IL-8等炎症介质[12]。在不同的疾病中IL-34发挥的作用不同,如在动脉粥样硬化、代谢性疾病及自身免疫性疾病中,血清IL-34水平升高,且与传统炎症因子和自身抗体水平、IR和滑膜炎病理严重程度呈正相关,提示IL-34作为有害的促炎因子和免疫细胞调节因子促进疾病的形成和发展,但具体机制尚未完全阐明;IL-34还可通过神经保护作用延缓阿尔茨海默症的进展,促进肿瘤细胞增殖和迁移,使肿瘤细胞形成化疗耐药。此外,在病毒、细菌等导致的感染性疾病中,IL-34可通过促进或抑制免疫细胞分化及诱导刺激因子分泌等在不同疾病免疫应答中起保护或有害作用。

2. IL-34与冠心病

2.1. IL-34参与动脉粥样硬化的进程

目前普遍认为,AS是一种慢性炎症性疾病。在免疫细胞及促炎介质的共同作用下,巨噬细胞、平滑肌细胞吞噬脂质形成泡沫细胞,参与粥样硬化斑块的形成和扩大[13]。巨噬细胞的分化、自噬、炎症递质的分泌及脂质的摄取在AS发展过程中起重要作用,而IL-34是单核巨噬细胞系统关键的调节因子,可见IL-34参与AS的发病。A类清道夫受体(scavenger receptor class A,SR-A)Ⅰ/Ⅱ、CD36等多种清道夫受体家族成员通过介导脂质摄取参与形成泡沫细胞[14]。在离体小鼠骨髓源巨噬细胞中,IL-34通过p38 MAPK信号通路上调CD36表达,增加促炎因子IL-6、TNF-α、IL-1β的分泌,增强巨噬细胞对氧化低密度脂蛋白(oxidized low-density lipoprotein,ox-LDL)的摄取,并且对胆固醇外排无明显影响,最终促进泡沫细胞的形成[15]。Ras同源基因-Rho相关螺旋卷曲蛋白激酶(Ras homolog gene/a Rho-associated coiled coil-forming protein kinase,Rho-ROCK)信号通路在内皮功能障碍、炎症及氧化应激反应中起重要作用。对动脉粥样硬化(ApoE-/-)小鼠模型的研究[16]发现:生地黄呈剂量依赖性抑制IL-34介导的Rho-ROCK信号通路,改善血管内皮功能,抑制巨噬细胞的脂质摄取并促进胆固醇外流,有效减少泡沫细胞的形成,从而阻止AS的发生和发展。以上研究表明IL-34可通过p38 MAPK及Rho-ROCK信号通路促进泡沫细胞的形成,推动AS的发生和发展,这为阐明AS的潜在发病机制提供了新线索,但实验模型均为小鼠细胞,该机制是否也存在于人类还需进一步研究。

2.2. IL-34与冠心病的严重程度及预后

超敏C反应蛋白(high sensitive-C reactive protein,hs-CRP)是冠心病的独立预测因子,且与不稳定斑块破裂和急性冠脉综合征的发生密切相关[17]。Li等[18]研究发现:冠心病患者血清IL-34水平明显升高,且与hs-CRP水平呈正相关,多元线性回归分析显示IL-34、hs-CRP是冠心病的独立预测因子。这提示IL-34可能是一种对冠心病及其斑块不稳定性具有重要诊断价值的促炎因子。Gensini评分常用来评估冠状动脉病变的严重程度。张文才等[19]将30例稳定型心绞痛、26例不稳定型心绞痛和24例急性心肌梗死(acute myocardial infarction,AMI)患者分为低、中、高3个Gensini评分组,Pearson相关分析提示IL-34与Gensini评分无显著相关性,但AMI组和不稳定型心绞痛组患者血清IL-34水平显著高于稳定型心绞痛组和对照组,提示IL-34与冠心病患者病情严重程度有关,与冠状动脉病变严重程度无明显相关。IL-1β、IL-6等炎症因子可导致慢性心力衰竭患者病情进展及并发症出现[20],故推测IL-34可能参与心力衰竭患者冠状动脉粥样硬化并发症的发生。Fan等[21]研究显示:合并冠心病的心力衰竭患者IL-34水平显著高于不合并冠心病患者,logistic回归分析表明IL-34是心力衰竭患者并发冠心病的独立危险因素,且在调整了年龄、性别、BMI等影响因素后,这种关系依然存在,进一步相关分析显示IL-34水平和Gensini评分呈显著正相关,即IL-34与心力衰竭患者冠心病的存在和冠状动脉病变严重程度独立相关。这与张文才等[19]关于冠心病患者血清IL-34与冠心病严重程度有关的研究结论不一致,原因可能是心力衰竭的炎症环境影响了IL-34水平,未来需要大样本进一步探讨。另有研究[22]发现:AMI患者急性期血清IL-34水平与Gensini评分无显著相关,即IL-34不能反映AMI急性期冠状动脉病变的严重程度,这可能是急性期机体极度紊乱的代谢状态所致。

缺血性心肌病是一种继发于严重冠状动脉粥样硬化病变的心肌疾病。一项研究[23]表明:缺血性心肌病患者血清IL-34水平明显升高,且与病情严重程度及心功能障碍参数N末端前体脑利钠钛(Nterminal pro B type natriuretic peptide,NT-proBNP)水平、左室舒张末期内径(left ventricular end diastolic diameter,LVEDd)、NYHA分级呈显著正相关。Fan等[22]选取287例AMI患者进行队列研究,发现血清IL-34水平与hs-CRP、NT-proBNP、LVEDd、左室收缩末期内径(left ventricular end-systolic dimension,LVESd)、左房内径(left atrial dimension,LAd)呈正相关,与左室射血分数呈负相关,且IL-34水平较高的患者Killip分级往往也较高,logistic回归分析进一步证实IL-34是AMI患者心功能不全的独立预测因子。这提示血清IL-34水平对评估AMI患者心功能障碍及危险分层有一定指导价值。对AMI患者随访5年发现:较高的IL-34水平与不良心血管事件独立相关,Cox比例风险模型进一步表明血清IL-34水平越高,AMI患者的预后越差。

综上,IL-34参与冠心病的发生和发展,可能是冠心病诊断的一项潜在炎症指标,可评估冠心病预后及AMI患者发生心力衰竭风险,但在反映冠状动脉病变严重程度上仍存在诸多争议,需要更多的研究去探讨。

3. IL-34T2DM

3.1. IL-34IR、胰岛β细胞功能障碍

IR的本质是由于胰岛素信号转导通路的破坏,导致细胞糖代谢能力降低,与T2DM、肥胖、脂肪肝等代谢性疾病密切相关。IR的发病机制目前尚未完全明确,炎症反应、氧化应激、内质网应激及线粒体功能障碍与IR发病有关是被广泛接受的观点。既往研究[24]显示:TNF-α、C反应蛋白(C reactive ptotein,CRP)及IL等传统炎症因子通过诱导胰岛素受体底物蛋白1(insulin receptor substrate-1,IRS-1)丝氨酸磷酸化、下调IRS-1的表达及减少葡萄糖转运蛋白4(glucose transporter type 4,GLUT-4)的数目等途径干扰胰岛素信号转导通路引起的IR。因此IL-34作为IL家族的单核巨噬细胞系统的关键调节因子,可能与IR相关。Chang等[25]首次证明IL-34与稳态模型胰岛素抵抗指数(homeostasis model assessment for insulin resistance,HOMA-IR)和hs-CRP呈正相关,进一步研究发现:脂肪组织中浸润的巨噬细胞通过分泌TNF-α、IL-1β促进已分化的脂肪细胞表达和分泌IL-34,IL-34又促进脂肪累积致脂肪细胞肥大,抑制已分化脂肪细胞中胰岛素对葡萄糖运输的刺激作用。之后的研究[26]也显示:血清IL-34水平与hs-CRP、空腹血清胰岛素(fasting serum insulin,FINS)、HOMA-IR呈正相关。另外,对妊娠糖尿病患者的研究[27]发现:IL-34与CSF-1R结合,可抑制胰岛β细胞功能和活性。以上提示IL-34可能作为一种潜在的血浆炎症标志物参与机体IR和糖脂代谢紊乱。

3.2. IL-34T2DM、肥胖

一项全基因组关联研究[28]发现IL-34基因序列位于T2DM的易感位点,首次从基因水平上发现两者之间存在关联。Guruprasad等[29]研究显示:伴有T2DM的牙周炎患者牙龈沟液和血浆IL-34水平高于单纯牙周炎、T2DM及健康个体。这提示IL-34在T2DM的发生、发展中扮演关键角色。肥胖被认为是巨噬细胞浸润脂肪组织所引起的一种慢性炎症,发病机制与IR紧密相关。Chang等[25]研究发现:IL-34在肥胖患者体内显著高表达,且与BMI和腹部脂肪面积呈正相关。另有研究[26, 30]显示血清IL-34水平在肥胖/超重人群中较正常体重人群显著升高,与腰围、臀围及BMI呈正相关,且腰围、BMI是血清IL-34的独立影响因素,提示IL-34和肥胖的发生和发展密切相关。

然而IL-34与糖尿病的相关性存在争议。张欣欣等[26]研究指出:T2DM患者血清IL-34水平与FINS、HOMA-IR呈正相关,与空腹血糖(fasting plasma glucose,FPG)不相关,即IL-34与IR有关,但与T2DM的关系尚不明确。目前研究显示IL-34相关的IR及胰岛β细胞功能障碍与T2DM发病有关,但IL-34在糖尿病中作用的研究较少,未来需要更多的前瞻性及基础研究来探索。

4. IL-34与冠心病合并糖尿病

慢性低度炎症的共同发病基础和糖尿病本身产生的糖基化终末产物及氧化应激微环境,引起血管内皮功能障碍及细胞因子分泌,常导致冠心病和糖尿病同时存在[31]。冠心病合并糖尿病患者的冠状动脉多表现为非典型的弥漫性多支血管病变,病情重且预后差,及早诊断和干预对控制病情进展、改善预后至关重要。既往研究[32-34]显示:传统炎症因子hs-CRP、IL-6、TNF-α水平在冠心病合并T2DM患者中明显升高,抗炎因子脂联素水平显著降低,且两者与冠状动脉病变的严重程度呈正相关,提示炎症因子在冠心病合并T2DM的诊断和评估病情严重程度方面具有重要价值。然而,IL-34作为多效性炎症因子与冠心病合并糖尿病关系的研究尚少。Zorena等[35]选取了49例T2DM患者和23例糖尿病高危患者进行研究,发现T2DM患者血清IL-34和CRP水平显著高于糖尿病高危患者。受试者工作特征曲线分析显示:IL-34预测血管并发症风险的截断值为91.2 pg/mL,敏感性为87%,特异性为83.7%,IL-34诊断血管并发症的曲线下面积大于CRP。这提示IL-34可能是糖尿病及其血管并发症的潜在炎症生物标志物,且比CRP预测糖尿病血管并发症风险的能力更优,这为推动IL-34的临床应用提供了重要依据。

5. 结 语

以炎症为靶点治疗冠心病、T2DM及其共病的相关研究从未中断。IL-1是IL-6、hs-CRP炎症反应通路中的上游信号因子。IL-1β拮抗剂卡纳单抗在大样本随机对照试验(Randomized Controlled Tria,RCT)-CANTOS研究[36]中被证实可降低冠心病患者血浆IL-6和hs-CRP水平,随访显示可显著减少心血管终点事件,这为未来冠心病抗炎治疗的临床试验提供了重要依据。研究[37]发现:IL-1受体拮抗剂可通过调节免疫反应改善胰岛β细胞功能,降低T2DM患者血糖水平。二甲双胍作为T2DM一线用药,可抑制免疫细胞IL-1β的产生并诱导抗炎因子IL-10的分泌,改善胰岛素敏感性[38]。此外,有关白三烯拮抗剂、白藜芦醇及姜黄素等抗炎药物在慢性低度炎症性疾病中作用的研究正在进行基础及临床试验。炎症反应是个复杂的调控网络,找出网络中关键的调节因子才是临床研究的重点。IL-34作为炎症通路的核心成员,被视为一种有前景的治疗靶点。

IL-34可能通过自身或调节单核巨噬细胞系统刺激炎症介质分泌和激活免疫细胞来诱发、放大和维持炎症反应,进而促进冠心病和T2DM的发生和进展。但研究仍处于初步阶段,IL-34与冠心病病情严重程度及T2DM的相关性研究结论仍存在矛盾,具体的信号转导通路尚未完全明确。考虑到单核巨噬细胞系统是一个具有强大可塑性和多功能性的细胞群体,控制着机体免疫应答,故IL-34/CSF-1R轴作为心血管及代谢性疾病的潜在靶点具有广阔的临床研究前景。

利益冲突声明

作者声称无任何利益冲突。

原文网址

http://xbyxb.csu.edu.cn/xbwk/fileup/PDF/2021121409.pdf

参考文献

  • 1. 曹新西, 徐晨婕, 侯亚冰, 等. 1990—2025年我国高发慢性病的流行趋势及预测[J]. 中国慢性病预防与控制, 2020, 28(1): 14-19. [Google Scholar]; CAO Xinxi, XU Chenjie, HOU Yabing, et al. The epidemic trend and prediction of chronic diseases with high incidence in China from 1990 to 2025[J]. Chinese Journal of Prevention and Control of Chronic Diseases, 2020, 28(1): 14-19. [Google Scholar]
  • 2. Chihara T, Suzu S, Hassan R, et al. IL-34 and M-CSF share the receptor Fms but are not identical in biological activity and signal activation[J]. Cell Death Differ, 2010, 17(12): 1917-1927. [DOI] [PubMed] [Google Scholar]
  • 3. Baghdadi M, Umeyama Y, Hama N, et al. Interleukin-34, a comprehensive review[J]. J Leukoc Biol, 2018, 104(5): 931-951. [DOI] [PubMed] [Google Scholar]
  • 4. Lin HS, Lee E, Hestir K, et al. Discovery of a cytokine and its receptor by functional screening of the extracellular proteome[J]. Science, 2008, 320(5877): 807-811. [DOI] [PubMed] [Google Scholar]
  • 5. Ushach I, Zlotnik A. Biological role of granulocyte macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) on cells of the myeloid lineage[J]. J Leukoc Biol, 2016, 100(3): 481-489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6. Nandi S, Cioce M, Yeung YG, et al. Receptor-type protein-tyrosine phosphatase zeta is a functional receptor for interleukin-34[J]. J Biol Chem, 2013, 288(30): 21972-21986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7. Segaliny AI, Brion R, Mortier E, et al. Syndecan-1 regulates the biological activities of interleukin-34[J]. Biochim Biophys Acta, 2015, 1853(5): 1010-1021. [DOI] [PubMed] [Google Scholar]
  • 8. Kryshtafovych A, Moult J, Bales P, et al. Challenging the state of the art in protein structure prediction: Highlights of experimental target structures for the 10th Critical Assessment of Techniques for Protein Structure Prediction Experiment CASP10[J]. Proteins, 2014, 82(Suppl 2): 26-42. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9. Udomsinprasert W, Jittikoon J, Honsawek S. Interleukin-34 as a promising clinical biomarker and therapeutic target for inflammatory arthritis[J]. Cytokine Growth Factor Rev, 2019, 47: 43-53. [DOI] [PubMed] [Google Scholar]
  • 10. Eda H, Zhang J, Keith RH, et al. Macrophage-colony stimulating factor and interleukin-34 induce chemokines in human whole blood[J]. Cytokine, 2010, 52(3): 215-220. [DOI] [PubMed] [Google Scholar]
  • 11. Wang B, Tang YW, Sun XT, et al. Increased IL-6 expression on THP-1 by IL-34 stimulation up-regulated rheumatoid arthritis Th17 cells[J]. Clin Rheumatol, 2018, 37(1): 127-137. [DOI] [PubMed] [Google Scholar]
  • 12. 吴夏楠, 罗艳, 邹鳞, 等. IL-34诱导肺成纤维细胞IL-6、IL-8表达机制研究[J]. 中国免疫学杂志, 2020, 36(4): 405-410. [Google Scholar]; WU Xianan, LUO Yan, ZOU Lin, et al. Molecular mechanism of IL-34 induces expression of IL-6 and IL-8 in lung fibroblasts[J]. Chinese Journal of Immunology, 2020, 36(4): 405-410. [Google Scholar]
  • 13. Tabas I, Bornfeldt KE. Macrophage phenotype and function in different stages of atherosclerosis[J]. Circ Res, 2016, 118(4): 653-667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14. Volobueva A, Zhang DW, Grechko AV, et al. Foam cell formation and cholesterol trafficking and metabolism disturbances in atherosclerosis[J/OL]. Cor Vasa, 2018[2018-07-15]. https://www.e-coretvasa.cz/pdfs/cor/2019/01/07.pdf. DOI: 10.1016/crvasa.2018.06.006. [DOI] [Google Scholar]
  • 15. Liu QY, Fan J, Bai J, et al. IL-34 promotes foam cell formation by enhancing CD36 expression through p38 MAPK pathway[J]. Sci Rep, 2018, 8(1): 17347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16. 刘艳宾, 秦洁洁, 杨树涵, 等. 基于“IL-34”-Rho/Rock信号通路探讨生地黄水煎总提物对动脉粥样硬化的作用分析[J]. 中国药学杂志, 2019, 54(8): 624-631. [Google Scholar]; LIU Yanbin, QIN Jiejie, YANG Shuhan, et al. Effects of rehmanniae extracts against atherosclerosisin mice and “IL-34”-Rho/Rock pathway in vitro[J]. Chinese Pharmaceutical Journal, 2019, 54(8): 624-631. [Google Scholar]
  • 17. 陈羽乔, 叶飞. 超敏C反应蛋白与冠状动脉内薄纤维帽粥样斑块相关性研究进展[J]. 临床心血管病杂志, 2017, 33(8): 773-777. [Google Scholar]; CHEN Yuqiao, YE Fei. Hypersensitive C-reactive protein and thin-cap fibroatheroma in coronary artery disease[J]. Journal of Clinical Cardiology, 2017, 33(8): 773-777. [Google Scholar]
  • 18. Li Z, Jin D, Wu Y, et al. Increased serum interleukin-34 in patients with coronary artery disease[J]. J Int Med Res, 2012, 40(5): 1866-1870. [DOI] [PubMed] [Google Scholar]
  • 19. 张文才, 宫俊龙, 赵洛沙. 血清白细胞介素-34水平与冠心病严重程度的关系[J]. 临床心血管病杂志, 2019, 35(8): 702-705. [Google Scholar]; ZHANG Wencai, GONG Junlong, ZHAO Luosha. Association of serum IL-34 level with the severity of coronary heart disease[J]. Journal of Clinical Cardiology, 2019, 35(8): 702-705. [Google Scholar]
  • 20. Chaikijurajai T, Tang WHW. Reappraisal of inflammatory biomarkers in heart failure[J]. Curr Heart Fail Rep, 2020, 17(1): 9-19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21. Fan Q, Yan XX, Zhang H, et al. IL-34 is associated with the presence and severity of renal dysfunction and coronary artery disease in patients with heart failure[J]. Sci Rep, 2016, 6: 39324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22. Fan Q, Tao R, Zhang H, et al. Interleukin-34 levels were associated with prognosis in patients with acute myocardial infarction[J]. Int Heart J, 2019, 60(6): 1259-1267. [DOI] [PubMed] [Google Scholar]
  • 23. Xi R, Fan Q, Yan XX, et al. Increased serum interleukin-34 levels are related to the presence and severity of cardiac dysfunction in patients with ischemic cardiomyopathy[J]. Front Physiol, 2018, 9: 904. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24. Yaribeygi H, Farrokhi FR, Butler AE, et al. Insulin resistance: Review of the underlying molecular mechanisms[J]. J Cell Physiol, 2019, 234(6): 8152-8161. [DOI] [PubMed] [Google Scholar]
  • 25. Chang EJ, Lee SK, Song YS, et al. IL-34 is associated with obesity, chronic inflammation, and insulin resistance[J]. J Clin Endocrinol Metab, 2014, 99(7): E1263-E1271. [DOI] [PubMed] [Google Scholar]
  • 26. 张欣欣, 陆璧, 成兴波. 血清白介素34与2型糖尿病及肥胖的相关性研究[J]. 中国糖尿病杂志, 2018, 26(8): 632-636. [Google Scholar]; ZHANG Xinxin, LU Bi, CHENG Xingbo. Association between serum IL-34 and type 2 diabetes and obesity[J]. Chinese Journal of Diabetes, 2018, 26(8): 632-636. [Google Scholar]
  • 27. Piao C, Wang X, Peng S, et al. IL-34 causes inflammation and beta cell apoptosis and dysfunction in gestational diabetes mellitus[J]. Endocr Connect, 2019, 8(11): 1503-1512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28. Below JE, Gamazon ER, Morrison JV, et al. Genome-wide association and meta-analysis in populations from Starr County, Texas, and Mexico City identify type 2 diabetes susceptibility loci and enrichment for expression quantitative trait loci in top signals[J]. Diabetologia, 2011, 54(8): 2047-2055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29. Guruprasad CN, Pradeep AR. Interleukin-34 levels in gingival crevicular fluid and plasma in periodontal health and disease with and without type-2 diabetes mellitus[J/OL]. J Investig Clin Dent, 2018, 9(2): e12317[2020-11-16]. https://onlinelibrary.wiley.com/doi/10.1111/jicd.12317. [DOI] [PubMed] [Google Scholar]
  • 30. Guruprasad CN, Pradeep AR. Interleukin-34 levels in gingival crevicular fluid and plasma in healthy and diseased periodontal tissue in presence or absence of obesity: a clinico-biochemical study[J]. Bull Tokyo Dent Coll, 2018, 59(2): 79-86. [DOI] [PubMed] [Google Scholar]
  • 31. Pu LJ, Lu L, Zhang RY, et al. Glycation of apoprotein A-I is associated with coronary artery plaque progression in type 2 diabetic patients[J]. Diabetes Care, 2013, 36(5): 1312-1320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32. Phapale YS, Badade ZG, Kaul SK, et al. Glycaemic control and inflammatory mediators in diabetic patients with coronary artery disease[J]. J Clin Diagn Res, 2019, 13(8): 9-12. [Google Scholar]
  • 33. Wang CM, Li F, Guo JJ, et al. Insulin resistance, blood glucose and inflammatory cytokine levels are risk factors for cardiovascular events in diabetic patients complicated with coronary heart disease[J]. Exp Ther Med, 2018, 15(2): 1515-1519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34. 夏珂, 郭兰燕, 赵震宇, 等. 合并糖代谢异常的冠心病患者血浆脂联素水平变化及其临床意义[J]. 中南大学学报(医学版), 2012, 37(2): 179-184. [DOI] [PubMed] [Google Scholar]; XIA Ke, GUO Lanyan, ZHAO Zhenyu, et al. Plasma level of adiponectin in coronary heart disease patients combined with abnormal glucose metabolism[J]. Journal of Central South University. Medical Science, 2012, 37(2): 179-184. [DOI] [PubMed] [Google Scholar]
  • 35. Zorena K, Jachimowicz-Duda O, Wąż P. The cut-off value for interleukin 34 as an additional potential inflammatory biomarker for the prediction of the risk of diabetic complications[J]. Biomarkers, 2016, 21(3): 276-282. [DOI] [PubMed] [Google Scholar]
  • 36. Pareek AK, Messerli FH, Mehta RT, et al. Inflammatory pathways in CVD and diabetes[J]. J Am Coll Cardiol, 2018, 72(12): 1432. [DOI] [PubMed] [Google Scholar]
  • 37. Carstensen M, Herder C, Kivimäki M, et al. Accelerated increase in serum interleukin-1 receptor antagonist starts 6 years before diagnosis of type 2 diabetes: Whitehall II prospective cohort study[J]. Diabetes, 2010, 59(5): 1222-1227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38. Kelly B, Tannahill GM, Murphy MP, et al. Metformin inhibits the production of reactive oxygen species from NADH: ubiquinone oxidoreductase to limit induction of interleukin-1β (IL-1β) and boosts interleukin-10 (IL-10) in lipopolysaccharide (LPS)-activated macrophages[J]. J Biol Chem, 2015, 290(33): 20348-20359. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Central South University Medical Sciences are provided here courtesy of Central South University

RESOURCES