Abstract
目的
筛选与口腔鳞状细胞癌(oral squamous cell carcinoma,OSCC)预后相关的基因,并探究其在OSCC发生、发展中的作用及机制。
方法
筛选并纳入癌症基因组图谱(the cancer genome atlas,TCGA)数据库中头颈部鳞状细胞癌(head and neck squamous cell carcinoma,HNSCC)数据集下的OSCC肿瘤样本(OSCC组)330例,正常样本(正常样本组)37例,通过生物信息学分析的方法筛选出两组之中差异表达的基因。进一步通过肿瘤T分级(T1+T2组为114例,T3+T4组为216例)、转移(阳性组为163例,阴性组为167例)及病理分级(G1+G2组为244例,G3+G4组为86例)分别对其进行分组,分别求得差异基因后取交集,筛选出与OSCC预后相关的差异表达基因。进一步选择差异倍数最大的差异基因[透明质酸介导运动因子受体(hyaluronan mediated motility receptor,HMMR)基因]进行下一步研究,探讨HMMR基因与临床分级(Stage I+II组为69例,Stage III+IV组为261例)、T分级、转移及病理分级之间的关系,并根据HMMR基因表达的中位值分为高表达组和低表达组(高表达组为165例,低表达组为165例),采用Kaplan-Meier生存分析探讨HMMR表达的高低与预后相关因子之间的关系。收集2014年1月至2016年1月在湖南中医药大学第一附属医院接受手术治疗的50例OSCC患者的肿瘤组织标本及配对的正常口腔黏膜组织标本,采用real-time RT-PCR、蛋白质印迹法及免疫组织化学等技术对生物信息学的分析结果进行验证,采用Kaplan-Meier生存分析检测HMMR免疫组织化学染色阳性及阴性表达(阳性组为32例,阴性组为18例)与预后之间的关系,采用Cox回归分析模型探讨OSCC预后相关危险因子,再分别通过细胞增殖实验及细胞划痕实验评估下调HMMR表达后对OSCC细胞增殖及迁移能力的影响。
结果
在OSCC组织中HMMR呈高表达,且HMMR高表达组的预后相关因子相对于低表达组显著降低,差异均有统计学意义(均P<0.05),HMMR高表达与T分级(RR=1.33,P<0.05)、淋巴结转移(RR=1.74,P<0.05)、临床分期(RR=1.49,P<0.05)显著相关,是OSCC预后的一个独立危险因子(RR=1.45,P<0.05)。与下调前相比,下调HMMR后可抑制OSCC细胞的增殖及迁移,差异均有统计学意义(P<0.05或P<0.01)。
结论
HMMR作为OSCC的一个原癌基因,可促进OSCC的发生、发展,其可能可作为一个潜在的早期诊断标志物及靶向治疗的新靶标。
Keywords: 透明质酸介导运动因子受体, 口腔鳞状细胞癌, 细胞增殖
Abstract
Objective
To screen genes related to the prognosis of oral squamous cell carcinoma (OSCC), and to explore its role and mechanism in the occurrence and development of OSCC.
Methods
The data and the biological information in 330 OSCC tumor samples with head and neck squamous cell carcinoma (HNSCC) (OSCC group) and 37 normal samples (normal sample group) were screened and included, which came from the cancer genome atlas (TCGA) database. The differentially expressed genes were screened out by biological information analysis between the 2 groups. Furthermore, according to the tumor T grade (T1+T2 group: 114 cases, T3+T4 group: 216 cases), metastasis (positive group: 163 cases, negative group: 167 cases) and pathological grade (G1+G2 group: 244 cases, G3 +G4 group: 86 cases), the samples were divided into different groups respectively, and the differential genes were obtained separately, then the intersections of the differential expressed genes related to the prognosis of OSCC were screened. The different gene with the largest different multiples [hyaluronan mediated motility receptor (HMMR)] was selected for the next step in order to explore the relationship between HMMR and clinical grading (Stage I+II group: 69 cases, Stage III +IV group: 261 cases), as well as the relationship between T grade, metastasis and pathological grade. According to the median value of HMMR expression, the samples were divided into a high expression group and a low expression group (high expression group: 165 cases, low expression group: 165 cases); Kaplan-Meier survival analysis was used to explore the relationship between HMMR expression and prognosis. Tumor tissue specimens and corresponding normal oral mucosal tissue specimens in 50 OSCC patients, who underwent surgery in the First Affiliated Hospital of Hunan University of Traditional Chinese Medicine from January 2014 to January 2016, were collected. Real-time RT-PCR and Western blotting and immunohistochemistry were used to verify the bioinformatics analysis results. Kaplan-Meier survival analysis was used to examine the relationship between the positive and negative expression of HMMR immunohistochemical staining (positive group: 32 cases, negative group: 18 cases) and prognostic related factors, and Cox regression analysis model was used to explore the prognostic risk factors of OSCC. The cell proliferation experiment and the cell scratch experiment were used to evaluate the effect of down-regulation of HMMR on the proliferation and migration of OSCC cells.
Results
HMMR was highly expressed in OSCC tissues. Compared with the low HMMR expression group, the prognostic related factors in the HMMR high expression group was significantly lower, with significant difference (all P<0.05); the high expression of HMMR was significantly related with the T grade (RR=1.33, P<0.05), lymphonodus metastasis (RR=1.74, P<0.05), the clinical stage (RR=1.49, P<0.05), and it was an independent prognostic risk factor for OSCC (RR=1.45, P<0.05). Down-regulation of HMMR can inhibit the proliferation and migration of OSCC cells, with significant difference (P<0.05 or P<0.01).
Conclusion
HMMR, as a proto-oncogene of OSCC, can promote the occurrence and development of OSCC, and it may be used as a potential early diagnostic marker and a new target for therapy.
Keywords: hyaluronic acid-mediated motility factor receptor, oral squamous cell carcinoma, cell proliferation
目前,全球每年有超过50万人被诊断为口腔鳞状细胞癌(oral squamous cell carcinoma,OSCC),其发病率长期居全身恶性肿瘤的前十位,约占全身所有恶性肿瘤的5%[1-3]。OSCC患者就诊时,肿瘤往往已处于中晚期阶段,同时由于颌面部血管、神经及淋巴结较为丰富,故易发生肿瘤的侵袭和转移[4-5],因此尽管治疗方式日新月异,但目前OSCC患者的预后仍然较差,5年生存率长期徘徊在60%左右,而复发和转移是造成OSCC患者预后较差的主要原因[6-7]。目前OSCC的治疗方法很多,包括手术切除、放射治疗(以下简称放疗)、化学治疗(以下简称化疗)及免疫治疗等,但以手术治疗为主的综合序列治疗仍然是治疗OSCC的主要方式。同时,这些治疗也容易产生严重的不良反应,如放射性骨坏死、胃肠道反应、化疗后全身疾病等。因此,有必要对口腔癌的分子机制进行阐述,以寻找新的靶向治疗位点和早期诊断标志物,以期控制复发和转移,提高患者的生存率及生存质量。
透明质酸介导运动因子受体(hyaluronan mediated motility receptor,HMMR)主要存在于细胞膜及细胞质内,在细胞表面时则称为CD168。既往研究[8-11]表明:HMMR具有促癌和抑癌的双重作用,其异常表达可促进多种肿瘤的发生和发展,且与肿瘤的病理分期、临床分级、浸润程度呈一定的正相关关系。如Lu等[12-14]发现:在肝癌及乳腺癌的进展过程中,HMMR作为关键基因调控多个癌基因表达,并与不良预后显著相关。而He等[15-16]发现其可作为H-ras通路下游的调节因子参与细胞内信号的无序转导和恶性转化,并与肿瘤细胞增殖、化疗药物抵抗、肿瘤细胞干性维持过程等密切相关。同时也有学者[17-18]通过体外细胞实验发现:人工合成的RHAMM蛋白可抑制多种肿瘤细胞的增殖和细胞克隆的形成,但其机制目前仍不清楚,需要进一步阐明。尽管HMMR作为一个肿瘤促进因子或抑制因子在多种肿瘤的发生、发展过程中的作用及机制已得到一定程度的阐述,但其在OSCC发生及发展过程中的作用及其作用机制,目前仍不清楚。
本研究首先通过生物信息学方法对癌症基因组图谱(the cancer genome atlas,TCGA)数据库中OSCC患者的mRNA表达谱数据及临床数据进行相关性分析,筛选出与临床预后相关的因子(T分级、转移、病理分级)具有相关性的基因,并从中筛选出差异倍数最大的基因。针对其生物信息学分析结果,通过临床OSCC肿瘤组织样本及配对正常口腔黏膜组织样本的免疫组织化学及real-time RT-PCR对其进行验证,再采用CCK8、细胞增殖实验及细胞划痕实验探讨其在OSCC发生及发展中的作用机制。
1. 材料与方法
1.1. 细胞系、试剂及仪器
正常口腔黏膜细胞株OKC、OSCC细胞株(SCC4、SCC25和CAL27)均购于中国科学院上海生命科学研究院细胞资源中心;胎牛血清购于杭州四季青生物工程材料有限公司;兔抗HMMR多克隆抗体购于美国Epitomics公司;小鼠/兔IgG和二甲基联苯胺溶液购于北京中杉金桥生物技术有限公司;免疫组织化学抗原修复缓冲液、TBST及ECL检测试剂盒均购于英国Abcam公司;DEAE-Dextran细胞转染试剂盒购于上海恒斐生物科技有限公司;DMEM培养基、TRIzol试剂、加热板、烘箱、-20 ℃及-80 ℃冰箱均购于美国Thermo Fisher Scientific公司;4 ℃冰箱购于美国Beckman公司;高温高压灭菌箱购于瑞士Roche公司;普通光学显微镜购于日本Olympus公司;病理图像测量分析系统购于厦门麦克奥迪实业集团有限公司。
1.2. 方法
1.2.1. TCGA数据库中的数据获取及分析
生物信息学方法分析的数据皆下载自TCGA数据库(https://portal.gdc.cancer.gov/)中的头颈部鳞状细胞癌(head and neck squamous cell carcinoma,HNSCC)类别,通过筛选其发病部位在口腔颌面部的肿瘤样本,形成分析所需要的数据集,其包括OSCC临床肿瘤组织样本(OSCC组)330例及正常口腔组织样本(正常样本组)37例,下载的数据类型包括mRNA数据及临床数据,临床数据主要为患者性别、年龄、肿瘤TNM分期(T分级、N分级、M分级)、临床分级、病理分级等。当患者出现淋巴结转移(N≥1)和/或出现远处转移时(M=1)定义为肿瘤转移。按照肿瘤T分级分为T1+T2组(114例)、T3+T4组(216例);按照是否转移分为转移阳性组(163例)、转移阴性组(167例);按照临床分级分为Stage I+II组(69例)、Stage III+IV组(261例);按照肿瘤病理分级分为G1+G2组(244例)、G3+G4组(86例);依据HMMR mRNA丰度中位值将其分为高表达组、低表达组(高表达组为165例,低表达组为165例)。由于所有数据均来自开放式公开数据库,因而不再需要进行伦理审查。
1.2.2. 用于免疫组织化学的临床OSCC样本及配对
正常样本的获取及分组
用于HMMR免疫组织化学染色的所有临床OSCC肿瘤组织样本及配对正常口腔黏膜组织样本均获得了湖南中医药大学第一附属医院伦理委员会的审批(审批号:HN-LL-KY-2019-09-01),并与患者签署了知情同意书。OSCC肿瘤组织标本(n=50)取自2014年1月年至2016年1月间经湖南中医药大学第一附属医院头颈肿瘤外科行手术治疗的OSCC患者,配对的正常口腔黏膜组织样本(n=50)取自同一患者术中的阴性切缘。纳入本研究的患者,术前均未接受术前的放疗或化疗。根据美国癌症联合委员会2017年第8版《AJCC肿瘤分期手册》(AJCC为美国癌症联合会),并结合患者病理检查结果及影像学资料对各个TNM分期的口腔癌患者进行分类,结合患者影像学资料划分其临床分期。患者病理分级依据术后病理检查结果确定。按照肿瘤T分级分为T1+T2组(36例)、T3+T4组(14例);按照是否转移分为转移阳性组(22例)、转移阴性组(28例);按照其临床分级分为Stage I+II组(27例)、Stage III+IV组(23例)。
1.2.3. 免疫组织化学法检测HMMR的蛋白质表达
用于免疫组织化学评分的所有OSCC肿瘤组织及正常口腔黏膜组织样本均由至少两位病理科医生独立阅片以确认诊断。检测步骤如下:1)将组织标本在二甲苯中脱蜡后,使用乙醇梯度脱水,在室温(25 ℃)下,用3%过氧化氢的甲醇淬灭内源性过氧化物酶,随后将切片置于的95 ℃的免疫组织化学抗原修复缓冲液(pH值为6)中进行抗原修复。2)用于检测HMMR蛋白质的一抗为兔抗HMMR多克隆抗体,将其置于4 ℃下,以1꞉50稀释后孵育过夜。采用多克隆辣根过氧化物酶缀合包被的二抗(小鼠/兔免疫球蛋白IgG)同一抗进行结合。3)现用现配二甲基联苯胺溶液(按照1 mL꞉1滴的比例分别添加显色剂A及显色剂B,混匀),将其滴加在切片的组织上进行染色,应用光学显微镜及时对染色进行观察,当染色到理想程度时将切片置于蒸馏水中终止染色,一般染色时间为1~ 2 min。蒸馏水冲洗2次,每次5 min。4)采用苏木精复染,即将显色的片子冲洗之后,用苏木精染色30~60 s,流水冲洗4~5次。5)首先用流动水冲洗复染的片子,随后将载玻片放入75%乙醇(5 min,1次)→95%乙醇(5 min,1次)→100%乙醇(5 min,3次)→二甲苯(20 min,3次)进行脱水处理。6)中性树脂封片,晾干备用。7)免疫组织化学玻片采用半定量评分法进行评估。依次使用低倍及高倍光学显微镜观察封片晾干后的标本,将HMMR染色阳性定义为镜下细胞内可见淡黄色、棕色或褐色斑点。通过将阳性细胞的百分比乘以细胞核染色强度(0为无;1为轻度;2为中度;3为重度)来计算其免疫组织化学评分。根据蛋白质表达的免疫评分中位值大小,将肿瘤组织分为HMMR阳性表达组(n=32)和HMMR阴性表达组 (n=18)。
1.2.4. 蛋白质印迹法检测CAL27细胞中HMMR蛋白的表达
取对数生长期的CAL27细胞,消化后调整细胞密度为2.0×106~3.0×106个/mL,接种于6孔板中,每孔2 mL,置于37 ℃、5% CO2培养箱中培养,分别孵育24、48、72 h,提取细胞总蛋白,检测蛋白质的表达。采用蛋白质裂解液裂解细胞,提取细胞总蛋白质后测定蛋白浓度,取40 μg蛋白加样于10%的十二烷基硫酸钠及12%的聚丙烯酰胺凝胶中电泳。于室温封闭2 h,然后用一抗(按1꞉1 000稀释)4 ℃孵育过夜。用TBST洗膜5 min,共3次,加入辣根过氧化物酶标记的二抗(按1꞉2 000稀释),室温孵育1 h后,再用TBST洗膜5 min,共3次。用ECL检测试剂盒检测醋酸纤维素膜上的条带,扫描各条带灰度值,采用Image J软件进行半定量分析,以HMMR蛋白质电泳条带灰度值与内参照GAPDH条带灰度值的比值作为HMMR蛋白质的相对表达值。
1.2.5. 细胞培养及转染
所有细胞(包括正常口腔黏膜OKC细胞及OSCC细胞SCC25、SCC4及CAL27等)均在DMEM(含10%的胎牛血清及1%的青霉素/链霉素)溶液中培养,并将其置于含5% CO2的37 ℃培养箱中。细胞转染严格按照转染DEAE-Dextran细胞转染试剂盒的说明书进行,其中siRNA序列分别为HMMR-siRNA_1:5'-GCCTTATTCCTTCACGTCA-3';HMMR-siRNA_2:5'-GGA-CCTATGAGTCCTTCGAGA-3'。
1.2.6. 细胞增殖实验及划痕实验
通过设计两种siRNA(si-HMMR_1及si-HMMR_2)来下调HMMR表达,并将实验分为对照组、si-HMMR_1组和si-HMMR_2组。细胞增殖实验步骤如下:将上述3组CAL27细胞接种到96孔板中(密度为2×103个/孔),随后在37 ℃,5% CO2培养箱中对细胞进行培养,在24、48、72和96 h后分别将10 μL CCK-8溶液加入细胞板中。加入溶液后再额外培养 3 h后,用微板分光光度计测量细胞在450 nm处的吸光度值。
划痕实验步骤如下:将上述3组CAL27细胞以相同密度接种在6孔板中,数量以贴壁后铺满板底为宜,隔天换液。细胞长到90%的融合时,吸取培养基,用PBS冲洗3次,最后1次浸泡10 min后去除。饥饿10 h后,用5 μL移液管尖端垂直于孔板制造细胞划痕,尽量保证各个划痕宽度一致。用PBS冲洗3次以除去脱落细胞,并将贴壁细胞加入无血清培养基中培养。使用普通光学显微镜(放大倍数为10)分别在3和6 h后捕获每个孔的4个随机视野的图像。通过观察记录这些特定位置伤口的宽度来量化细胞迁移的速率。
1.2.7. OSCC细胞系中real-time RT-PCR测定HMMR mRNA相对丰度
针对OKC、SCC4、SCC25及CAL27细胞,使用TRIzol试剂盒分离总RNA,RNA浓度和纯度通过紫外分光光度法测定,将分离得到的cDNA(5 μL)用作real-time RT-PCR的模板,其特定引物如下:HMMR正向5'-TTCCTCCAGAGTTAACCACAA-3',反向5'-GTACATTTCGATATCTCTTTCT-3';GAPDH正向5'-GATCTTCAGTAATGTCTCCT-3',反向5'-TGAGGT-TGTGATTCATTCCA-3'。Real-time RT-PCR使用Power SYBR Green PCR Master Mix试剂盒介绍的步骤进行。每个基因的所有样品均重复3次。以GAPDH作为内部对照,使用2-ΔΔCt方法计算mRNA表达的倍数变化。
1.3. 统计学处理
采用SPSS 26.0统计软件和R语言对数据进行差异分析、生存分析、相关性分析及作图;采用Cox多因素危险比例模型预测OSCC预后危险因子。计量资料以均数±标准差( ±s)表示,不同组别间的HMMR表达差异采用Student’s t检验进行分析,以P<0.05为差异有统计学意义。
2. 结 果
2.1. 筛选出的与OSCC预后相关的差异表达基因
通过对TCGA数据库中330例OSCC组织样本及37例正常口腔黏膜样本的mRNA表达谱数据进行差异表达分析后,一共可得到2 810个差异表达基因,其中上调基因1 738个,下调基因1 072个(图1A)。进一步结合肿瘤T分级(图1B)、是否转移(局部淋巴结转移和/或远处转移)(图1C)、病理分级(图1D)对上述差异基因进行进一步筛选,分别得到104、84及74个差异表达基因,对三者取交集后得到包括HMMR在内的9个差异表达基因(图1E)。
图1.
差异表达基因火山图及韦恩图
Figure 1 Volcano map and Venn diagram of differentially expressed genes
A: Volcano map of differentially expressed genes in the OSCC tissues and the normal tissues. A total of 2 810 differentially expressed genes can be obtained. B: Volcano map of T grade-related differential expressed gene. A total of 104 differential expressed genes related to T grade can be obtained. C: Volcano map of transfer-related differentially expressed genes. A total of 84 differential expressed genes related to T grade can be obtained. D: Volcano map of pathological grade-related differential expressed gene. A total of 74 differentially expressed genes related to pathological grade can be obtained. E: Intersection of differentially expressed genes related to metastasis, T grade, and pathological grade. A total of 9 differentially expressed genes (PRDM9, MUC5B, LTF, LMO3, HOXB9, LUZP4, TFF1, HMMR, PASD1) can be obtained. FC: Fold change of mRNA expression; FDR: P value.
2.2. HMMR表达及其与OSCC预后之间的关系
选择9个差异表达基因中差异倍数最大的HMMR进行进一步研究。结合TCGA数据库中330例OSCC组织样本及37例正常口腔黏膜样本的HMMR mRNA表达数据及临床数据分析后发现:与正常口腔黏膜样本相比,OSCC肿瘤组织样本中的HMMR表达水平显著增高(P<0.01)、其高表达与5年生存率显著相关(P<0.05),且其表达水平在不同的T分级(P<0.01)、临床分期(P<0.01)、病理分级(P<0.05)之间存在显著差异;且相对于非转移组,肿瘤转移组的HMMR表达显著增高(P<0.01,图2)。
图2.
HMMR表达水平与临床预后因子之间的关系
Figure 2 Relationship of the expression level of HMMR and clinical prognosis fators
A: HMMR expression in 330 OSCC tumor tissues in the OSCC group and 37 normal tissues in the normal sample group in TCGA database; B: HMMR expression in 37 OSCC tumor tissues in the OSCC group and the 37 normal tissues in the normal sample group in TCGA database; C: HMMR expression among patients with different T grades in TCGA database; D: HMMR expression among patients with different clinical stages in TCGA database; E: HMMR expression in the metastatic and non-metastatic patients in TCGA database; F: HMMR expression in the patients with different pathological grades; G: Survival analysis of the median HMMR expression in the 330 OSCC patients in TCGA database; H: Survival analysis of HMMR negative or positive expression in the 50 clinical OSCC patients.
为验证这一生物信息分析结果,本研究进一步通过real-time RT-PCR检测了正常口腔黏膜OKC细胞系及OSCC细胞系(SCC25、SCC4、CAL27)中HMMR的表达水平,结果发现:OSCC细胞系(SCC25、SCC4、CAL27细胞)与OKC细胞系相比,HMMR表达均显著增高(均P<0.01,图3)。同时,50例临床OSCC肿瘤组织及配对正常口腔黏膜组织的免疫组织化学结果显示:相对于正常口腔黏膜,HMMR在OSCC肿瘤组织中呈高表达(P<0.05),且在癌巢周围其表达显著增高(P<0.01,图3)。
图3.
OSCC肿瘤组织及细胞系中的HMMR高表达
Figure 3 High expression of HMMR in OSCC tumor tissues and cell lines
A: HMMR immunohistochemical staining in the normal mucosa tissues and the OSCC tumor tissues [×100 (left) and ×400 (right) magnifications, respectively]. The expression level of HMMR in the OSCC tumor tissue is higher, and the HMMR expression can be seen around the cancer nest. B: Abundance of HMMR mRNA in the OKC cell line and OSCC cell lines (SCC25, SCC4 and CAL27) by real-time RT-PCR. *P<0.05, **P<0.01 vs the OKC cell line. C: HMMR expression in the human normal mucosal tissues and the OSCC tumor tissues by quantitative analysis of horizontal immunohistochemistry. **P<0.01 vs the normal mucosa tissues.
Kaplan-Meier 生存曲线显示:HMMR阳性表达的患者5年生存率显著降低(P<0.05,图2)。此外,多因素Cox回归分析显示:HMMR阳性表达是OSCC的独立预后危险因子(RR=1.45,P<0.05;表1)。
表1.
与OSCC患者预后相关临床因子的多因素Cox比例风险模型分析
Table 1 Multivariate Cox proportional hazards model analysis of clinical factors related to the prognosis in the OSCC patients
| 变量 | 总生存 | P | 变量 | 总生存 | P | ||
|---|---|---|---|---|---|---|---|
| RR | 95% CI | RR | 95% CI | ||||
| HMMR表达 | 1.45 | 1.14~1.55 | 0.022 | 临床分期 | 1.49 | 0.77~1.98 | 0.013 |
| 性别 | 1.23 | 0.91~2.38 | 0.122 | T分级 | 1.33 | 0.74~2.93 | 0.023 |
| 年龄 | 1.23 | 1.17~1.353 | 0.846 | 病理分级 | 1.29 | 0.75~1.76 | 0.065 |
| 吸烟史 | 1.35 | 0.58~2.44 | 0.237 | 淋巴结转移 | 1.74 | 1.44~2.55 | 0.031 |
| 饮酒史 | 0.96 | 0.63~1.24 | 0.442 | ||||
2.3. HMMR表达对OSCC细胞增殖和迁移能力的影响
在CAL27细胞系中,两种siRNA都能较好地干扰HMMR表达(图4A、4B)。CCK8及划痕实验结果显示:相对于对照组,si-HMMR_1组及si-HMMR_2组CAL27细胞的增殖(图4C~4E)及迁移能力显著下降(图4F、4G,P<0.05或P<0.01)。
图4.
下调HMMR表达对Cal27细胞的增殖及迁移能力的影响
Figure 4 Effect of down-regulation of HMMR expression on the proliferation and migration ability of Cal27 cells
A: Electrophoretogram of the expression of HMMR by Western blotting. GAPDH is used as the internal control and the relative density is calculated by Image J. B: Histogram of the expression of HMMR. C: Effect of interference with HMMR expression on the proliferation ability of Cal27 cells by CCK-8. D: Cell proliferation of Cal27 cells by colony formation experiment. E: Histogram of cell proliferation of Cal27 cells. F: Cell migration ability of Cal27 cells by cell scratch experiment. G: Histogram of cell scratch experiment. All data are the average of three independent experiments. *P<0.05, **P<0.01 vs the control group.
3. 讨 论
近年来OSCC发病率不断提升,然而其预后长期未有显著改善,因此寻找早期诊断标志物及治疗新靶点成为了OSCC研究的热点及难点。肿瘤的发生、发展往往伴随着众多原癌基因及抑癌基因的异常表达,在本研究中,通过对TCGA数据库中OSCC的mRNA表达谱数据进行差异表达分析,并将差异基因与临床预后相关因子进行相关性及生存分析后得到了9个候选基因,并从中选择了差异倍数最大的HMMR进行研究。既往研究[8-11]发现:HMMR在多种肿瘤发生、发展过程中扮演了抑癌或原癌基因的作用,但在OSCC发展过程中的作用及机制目前尚未明确。本研究发现:HMMR是OSCC的独立预后危险因子,其高表达与不良预后显著相关,其高表达可促进OSCC细胞的增殖及迁移。
有研究[19]表明:HMMR高表达与纤维肉瘤的不良预后显著相关,且下调HMMR表达后可以抑制肉瘤细胞的增殖能力,Hippo-YAP1及转化生长因子-β信号通路可协调增强HMMR的促肿瘤作用。同时也有学者[6-7]研究发现:在肝癌及肺癌中,HMMR的表达水平与肿瘤的病理分期、临床分级、浸润程度呈一定的正相关关系,并与患者预后相关。本研究中,通过结合TCGA数据库、OSCC细胞系及临床OSCC样本的实验结果,发现HMMR在OSCC患者的肿瘤组织中呈异常高表达,并与不良总生存率显著相关,同时其表达水平与T分级、肿瘤转移、临床分期、病理分级相关。同时,多因素Cox危险比例模型分析结果显示:HMMR是OSCC预后的一个独立危险因子(RR=1.45)。这提示HMMR在OSCC的发生、发展过程中可能扮演了一个原癌基因的角色。HMMR异常高表达与肺腺癌[20]及前列腺癌[21]的局部及远处转移有关,同时体外细胞实验发现HMMR对细胞的迁移有促进作用[22],甚至有学者[23]认为其本身就是一个细胞运动型相关蛋白质。而在本实验中,通过siRNA抑制HMMR的表达后,发现肿瘤细胞增殖及迁移能力均显著下降。这说明在OSCC中HMMR呈高表达,降低HMMR表达可以使肿瘤细胞的增殖能力下降,同时损害其迁移的能力。
综上所述,HMMR在OSCC肿瘤组织中呈高表达,其表达与不良预后显著相关,下调HMMR表达可显著降低OSCC细胞的增殖及迁移能力,提示HMMR可能是OSCC潜在的一个早期诊断标志物及靶向治疗新靶标。但值得注意的是,尽管本研究首次证实了HMMR是OSCC的一个独立预后危险因子,其作为原癌基因,促进了OSCC的发生及发展,但其促进OSCC的具体分子机制仍然需要进一步探讨。
基金资助
湖南省自然科学基金(2021JJ70109)。
This work was supported by the Natural Science Foundation of Hunan Province, China (2021JJ70109).
利益冲突声明
作者声称无任何利益冲突。
原文网址
http://xbyxb.csu.edu.cn/xbwk/fileup/PDF/2021121315.pdf
参考文献
- 1. Bray F, Ferlay J, Soerjomataram I, et al. Erratum: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. Ca Cancer J Clin, 2020, 70(4): 313. [DOI] [PubMed] [Google Scholar]
- 2. Cronin KA, Lake AJ, Scott S, et al. Annual report to the nation on the status of cancer, part I: National cancer statistics[J]. Cancer, 2018, 124(13): 2785-2800. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3. Patel MA, Blackford AL, Rettig EM, et al. Rising population of survivors of oral squamous cell cancer in the United States[J]. Cancer, 2016, 122(9): 1380-1387. [DOI] [PubMed] [Google Scholar]
- 4. Attar E, Dey S, Hablas A, et al. Head and neck cancer in a developing country: a population-based perspective across 8 years[J]. Oral Oncol, 2010, 46(8): 591-596. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5. Bagan J, Sarrion G, Jimenez Y. Oral cancer: clinical features[J]. Oral Oncol, 2010, 46(6): 414-417. [DOI] [PubMed] [Google Scholar]
- 6. Thiagarajan S, Sawhney S, Jain S, et al. Factors predisposing to the unplanned hospital readmission (UHR) in patients undergoing surgery for oral cavity squamous cell carcinoma (OSCC): Experience from a tertiary cancer centre[J]. Indian J Surg Oncol, 2020, 11(3): 475-481. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7. Alcusky M, Keith SW, Karagiannis T, et al. Metformin exposure and survival in head and neck cancer: A large population-based cohort study[J]. J Clin Pharm Ther, 2019, 44(4): 588-594. [DOI] [PubMed] [Google Scholar]
- 8. Yang D, Ma Y, Zhao P, et al. Systematic screening of protein-coding gene expression identified HMMR as a potential independent indicator of unfavorable survival in patients with papillary muscle-invasive bladder cancer[J]. Biomed Pharmacother, 2019, 120: 109433. [DOI] [PubMed] [Google Scholar]
- 9. Li W, Pan T, Jiang W, et al. HCG18/miR-34a-5p/HMMR axis accelerates the progression of lung adenocarcinoma[J]. Biomed Pharmacother, 2020, 129: 110217. [DOI] [PubMed] [Google Scholar]
- 10. 舒琪, 马辉平, 樊阳阳, 等. HMMR-AS1介导EMT在宫颈癌顺铂耐药中的作用[J]. 临床输血与检验, 2020, 22(2): 184-190. [Google Scholar]; SHU Qi, MA Huiping, FANG Yangyang, et al. The role of HMMR-AS1 mediated EMT in acquired cisplatin resistance in cervical cancer[J]. Journal of Clinical Transfusion and Laboratory Medicine, 2020, 22(2): 184-190. [Google Scholar]
- 11. 黄晨阳, 李强, 程斌. HMMR促进原发性肝癌细胞增殖且与不良预后的相关性[J]. 国际检验医学杂志, 2020, 41(7): 861-866. [Google Scholar]; HUANG Chenyang, LI Qiang, CHENG Bin. Clinical significance of HMMR expression in liver cancer patients and its influence on proliferation of liver cancer cell[J]. International Journal of Laboratory Medicine, 2020, 41(7): 861-866. [Google Scholar]
- 12. Lu DL, Bai X, Zou QY, et al. Identification of the association between HMMR expression and progression of hepatocellular carcinoma via construction of a co-expression network[J]. Oncol Lett, 2020, 20(3): 2645-2654. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13. 李红, 吴玲红, 邓伟, 等. 基于GEO乙型肝炎病毒相关肝癌芯片数据的生物信息学分析[J]. 应用预防医学, 2019, 25(6): 439-444. [Google Scholar]; LI Hong, WU Linghong, DENG Wei, et al. Bioinformatics analysis of hepatitis B virus associated hepatocellular carcinoma microarray based on GEO[J]. Applied Preventive Medicine, 2019, 25(6): 439-444. [Google Scholar]
- 14. Isakova JT, Vinnikov D, Kipen VN, et al. Gene-to-gene interactions and the association of TP53, XRCC1, TNFalpha, HMMR, MDM2 and PALB2 with breast cancer in Kyrgyz females[J]. Breast Cancer, 2020, 27(5): 938-946. [DOI] [PubMed] [Google Scholar]
- 15. He Z, Mei L, Connell M, et al. Hyaluronan mediated motility receptor (HMMR) encodes an evolutionarily conserved homeostasis, mitosis, and meiosis regulator rather than a hyaluronan receptor[J]. Cells, 2020, 9(4): 819. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16. 王冉冉, 董珊珊, 龙瀛,等. HMMR-AS1介导EMT在上皮性卵巢癌顺铂获得性耐药中的作用[J]. 肿瘤药学, 2018, 8(4): 498-504. [Google Scholar]; WANG Ranran, DONG Shanshan, LONG Ying, et al. HMMR-AS1 Mediates the Role of EMT in Acquired Cisplatin Resistance in Epithelial Ovarian Cancer[J]. Oncology Pharmacy, 2018, 8(4): 498-504. [Google Scholar]
- 17. Willemen Y, Van den Bergh JM, Bonte SM, et al. The tumor-associated antigen RHAMM (HMMR/CD168) is expressed by monocyte-derived dendritic cells and presented to T cells[J]. Oncotarget, 2016, 7(45): 73960-73970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18. Ahmad S, Kolli S, Li DQ, et al. A putative role for RHAMM/HMMR as a negative marker of stem cell-containing population of human limbal epithelial cells[J]. Stem Cells, 2008, 26(6): 1609-1619. [DOI] [PubMed] [Google Scholar]
- 19. Ye S, Liu Y, Fuller AM, et al. TGFbeta and hippo pathways cooperate to enhance sarcomagenesis and metastasis through the hyaluronan-mediated motility receptor (HMMR)[J]. Mol Cancer Res, 2020, 18(4): 560-573. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20. Thangavel C, Boopathi E, Liu Y, et al. RB loss promotes prostate cancer metastasis[J]. Cancer Res, 2017, 77(4): 982-995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21. Hardwick C, Hoare K, Owens R, et al. Molecular cloning of a novel hyaluronan receptor that mediates tumor cell motility[J]. J Cell Biol, 1992, 117(6): 1343-1350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22. Chu T, Connell M, Zhou L, et al. Cell cycle-dependent tumor engraftment and migration are enabled by Aurora-A[J]. Mol Cancer Res, 2018, 16(1): 16-31. [DOI] [PubMed] [Google Scholar]
- 23. Entwistle KM, Silyn-Roberts H, Ochieng AS. The relative fracture strengths of the inner and outer surfaces of the eggshell of the domestic fowl[J]. Proc Biol Sci, 1995, 262(1364): 169-174. [DOI] [PubMed] [Google Scholar]




