Skip to main content
Molecules logoLink to Molecules
. 2024 Feb 29;29(5):1083. doi: 10.3390/molecules29051083

Anti-Inflammatory and Cytotoxic Compounds Isolated from Plants of Euphorbia Genus

Sarai Rojas-Jiménez 1, María Guadalupe Valladares-Cisneros 2, David Osvaldo Salinas-Sánchez 3, Julia Pérez-Ramos 4, Leonor Sánchez-Pérez 5, Salud Pérez-Gutiérrez 4,*, Nimsi Campos-Xolalpa 4,*
Editor: Athina Geronikaki
PMCID: PMC10934959  PMID: 38474596

Abstract

Euphorbia is a large genus of the Euphorbiaceae family. Around 250 species of the Euphorbia genus have been studied chemically and pharmacologically; different compounds have been isolated from these species, especially diterpenes and triterpenes. Several reports show that several species have anti-inflammatory activity, which can be attributed to the presence of diterpenes, such as abietanes, ingenanes, and lathyranes. In addition, it was found that some diterpenes isolated from different Euphorbia species have anti-cancer activity. In this review, we included compounds isolated from species of the Euphorbia genus with anti-inflammatory or cytotoxic effects published from 2018 to September 2023. The databases used for this review were Science Direct, Scopus, PubMed, Springer, and Google Scholar, using the keywords Euphorbia with anti-inflammatory or cytotoxic activity. In this review, 68 studies were collected and analyzed regarding the anti-inflammatory and anti-cancer activities of 264 compounds obtained from 36 species of the Euphorbia genus. The compounds included in this review are terpenes (95%), of which 68% are diterpenes, especially of the types ingenanes, abietanes, and triterpenes (approximately 15%).

Keywords: Euphorbia genus, anti-inflammatory, anti-cancer activities

1. Introduction

Inflammation is a homeostatic defense of the body against any injurious stimulus, whether physical, chemical, or biological [1]. It is characterized by the presence of pain, redness, swelling, heat, and loss of function, and it can be classified as acute or chronic. Acute inflammation is a protective response that disappears within minutes, hours, or a few days after the stimulus or injury. It is characterized by the release of phagocytes and mediators that act on endothelial cells, causing changes in vascular permeability and generating the migration of leukocytes and plasma proteins to produce edema. At this level, a generalized systemic reaction is triggered, and it is dynamic to resolve the inflammation. If unresolved, there is a risk that the inflammation could become chronic [2].

Chronic inflammation is long-term, lasting months to years, and it is characterized by the infiltration of macrophages, lymphocytes, and plasma cells into the injured tissue. It is a proliferation of fibroblasts and small blood vessels [2] producing pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6), and IL-8, and they stimulate reactive oxygen species (ROS), which are involved in modulating inflammation and activating the transcription factor NF-κβ [3].

Currently, in the treatment of inflammatory problems, steroidal (SAIDs) and non-steroidal anti-inflammatory drugs (NSAIDs) and disease-modifying antirheumatic drugs (DMARDs) are used. However, their constant or long-term use produces undesirable side effects on the renal, liver, gastric, cardiovascular, and central nervous systems [4].

The progress and permanence of inflammation are the reasons for most chronic diseases, and inflammation presents one of the major threats to the health and longevity of persons. Chronic inflammation is involved in several diseases, including, for example, Alzheimer’s, type 2 diabetes, obesity, hypertension, and cancer [5].

Cancer is a disease where some cells of the body grow uncontrollably and can blowout to other organs of the body; this disease is caused by mutations, and the inflammation process produces oxidative stress, which causes damage to DNA and initiates signaling pathways, thus deregulating the cell cycle and increasing the risk of developing cancer [6]. The most common treatment for cancer is chemotherapy, which produces side effects and can result in resistance to the compounds used [7].

Since ancient times, many cultures have used plants for therapeutic purposes as an important source of natural products for treating different health problems, such as inflammation and cancer. Recently, the research on medicinal plants has been increasing [8]; about 80% of chemotherapeutic drugs have been obtained from plants in addition to anti-inflammatory compounds [9].

Ethnobotany

The Euphorbiaceae family is one of the most diverse families of flowering plants of angiosperms. This family contains around 6745 species in 317 genera, distributed mainly in the tropics and subtropics of the world [10]. In Mexico, Euphorbia species are found mainly in Nayarit, Veracruz, Chiapas, Michoacán, Oaxaca, Jalisco, Guerrero, Puebla, Sonora, Sinaloa, and Tamaulipas. Only about 250 species of the Euphorbia genus have been studied chemically and pharmacologically [11,12]; from these species, terpenes, flavonoids, alkaloids, coumarins, cyanogenetic glycosides, and mainly tannins have been isolated. Several reports show that some species have anti-inflammatory activity, which can be attributed to the presence of diterpenes, such as tiglians, ingenanes, and dafnanes. In addition, it was found that some diterpenes isolated from different Euphorbia species have anti-inflammatory and cytotoxic activity against some types of cancer [13,14,15].

The aim of this review is to provide an overview of scientific studies on 264 natural products isolated from 36 species of the Euphorbia genus with anti-inflammatory and cytotoxic activities reported from 2018 to September 2023. In Table 1 are shown the different species evaluated in this review.

Table 1.

Species of Euphorbia analyzed in this review, 2018–2023.

Species Collection Place Plant Material Extract Solvent
E. alatavica [16] China Stems Acetone
E. antiquorum [17,18] Thailand Aerials parts Methanol
China Stems Methanol
E. atoto [19] China Aerial parts Ethanol
E. balsamifera [20] Saudi Arabia Aerial parts Ethanol
E. dendroides [21] Egypt Aerial parts Methanol
E. denticulata [22] Iran Whole plant Acetone
E. ebracteolata [23,24,25,26,27] China Roots Ethanol
Korea Methanol
China Ethanol
E. fischeriana [28,29,30,31,32,33] Mongolia Roots Ethanol
China Acetone
E. formosana [34] Taiwan Roots Methanol
E. gedrosiaca [35] Iran Aerial parts Dichloromethane: Acetone
E. glomerulans [36] China Whole plant Acetone
E. grandicornis [37,38] South Africa Aerial parts and roots Dichloromethane
Hungary Aerial parts Methanol
E. grantii [39] Egypt Aerial parts Methanol
E. helioscopia [40,41,42] China Whole plant Ethanol
Methanol
Aerials parts Ethanol
E. hypericifolia [43] China Aerial parts Ethanol
E. kansuensis [44,45] China Roots Ethanol
E. kansui [46,47,48] China Roots Ethanol
E. kopetdaghi [49] Iran Aerial parts Dichloromethane: Acetone 2:1
E. láctea [50] Thailand Aerial parts Ethanol
E. lathyris [51,52,53,54,55,56,57,58,59,60] China Seeds Ethanol
Petroleum Ether
Ethanol
Ethanol
Petroleum Ether
Ethanol
Ethanol
Ethanol
South Korea Seeds Methanol
E. maculata [61,62] China Whole plant Ethanol
Japan Whole plant Methanol
E. microsphaera [63] Iran Aerial parts Chloroform
E. neriifolia [64,65,66,67] Taiwan Stems Ethanol
China Aerial parts Ethanol
Whole plant Acetone: Water 3:1
E. pedroi [68] Portugal Aerial parts Methanol
E. pekinensis [69] China Roots Ethanol
E. peplus [70] China Leaves Methanol
E. pulcherrima [71] Pakistan Whole plant Methanol
E. resinifera [72] China Latex Methanol
E. saudiarabica [73] Saudi Arabia Aerial parts Methanol
E. schimperiana [74] Saudi Arabia Aerial parts Ethanol
E. sororia [75] China Fructus Ethanol
E. stracheyi [76] China Whole plant Methanol
E. thymifolia [77] China Aerial parts Ethanol
E. tirucalli [78,79,80] Vietnam Whole plant Ethanol
Brazil Sap Hexane
E. umbellata [81] Brazil Latex H2SO4 1%
E. wallichii [82,83] China Whole plant Methanol

In Table 2 is shown the anti-inflammatory activity of the compounds obtained from 16 species of Euphorbia.

Table 2.

The anti-inflammatory activity of the compounds obtained from 16 species of Euphorbia.

Species Active Compounds Biological Model Results Ref.
E. antiquorum Ent-15-Acetoxylabda-8(17),13E-diene-3-one (1) Griess assay
J774.A1 cells
stimulated LPS
NO
IC50 (μM)11.7 [17]
Ent-15-Oxolabda-8(17),13E-diene-3-one (2) 12.5
Ent-13-epi-8,13-epoxy-14α,15-isopropylidenedioxylabdane-3-one (3) 44.6
Ent-3β,20-Epoxy-3α-hydroxy-15-beyeren-18-acetate (4) 36.6
Ent-3β,20-epoxy-3α-hydroxy-18-norbeyer-15-ene (5) 40.4
Rhizophorin B (6) 16.1
Ent-15-Acetoxylabda-8(17),13E-diene-3-one (1) Western blot iNOS IC50 (μM)
11.7
Ent-15-Oxolabda-8(17),13E-diene-3-one (2) 12.5
Euphorin A (7) Griess assay
BV-2 cells stimulated LPS
NO
IC50 (µM)
35.8
[18]
Euphorin B (8) 41.4
Euphorin D (9) 32.0
Euphorin E (10) 40.7
3,12-O-diacetyl-7-O-[(E)-2-methyl-2-butenoyl]-8,12-diepjing-ol (11) 49.2
3,12-diacetyl-8-benzoylingol (12) 14.5
12-O-acetyl-8-O-benzoylingol-3-tiglate (13) 14.9
Ent-(3α,5β,8α,9β,10α,12α)-3-hydroxyatis-16-en-14-one (14) 31.6
E. atoto 3-oxo-ent-trachyloban-17-oic acid (15) Griess assay
RAW264.7 cells
stimulated LPS
NO
IC50 (µM)
41.61
[19]
Ent-kauran-16β-ol-3-one (16) 16.00
Ent-16-hydroxy-3-oxosanguinane (17) 33.41
E. ebracteolata Ebractenoid F (18) Griess assay
RAW264.7 cells
stimulated LPS
NO
IC50 (µg/mL)
2.39
[24]
SEAP Assay
NF-kB
Decreased NF-kB.
Inhibited the phosphorylation of Akt and mitogen-activated protein kinases (MAPKs)
Western blot Inhibited levels of IL-6 and IL1
Ebractenoid O (19) Griess assay
RAW264.7 cells stimulated LPS
NO
IC50 (µM)
6.04
[27]
Ebractenoid P (20) 10.23
Ebractenoid Q (21) 1.97
γ-pyrone-3-O-β-d-(6-galloyl)-glucopyranoside (22) 42.49
Tricyclohumuladiol (23) 13.21
Ingenol (24) 6.25
Ingenol-20-acetate (25) 6.73
Langduin A4 (26) 18.50
E. fischeriana Bisfischoid A (27) Assay Inhibition of sEH IC50 (µΜ)
9.90
[30]
Bisfischoid B (28) 10.29
E. formosana Euphormin A (29) Superoxide Anion
In human neutrophils stimulated with formyl-L methionyl-l-leucyl-l-phenylalanine/cytochalasin B
IC50 (µM)
4.51
[34]
Euphormin B (30) 3.68
Larixol (31) 3.81
Methylbrevifolincarboxylate (32) 0.68
Brevifolin (33) 1.39
Euphormins A (29) Elastase Release
In human neutrophils stimulated with formyl-L methionyl-l-leucyl-l-phenylalanine/cytochalasin B
IC50 (µM)
>10
Euphormins B (30) >10
Larixol (31) >10
Methylbrevifolincarboxylate (32) >10
Brevifolin (33) >10
epi-manool (34) 8.07
E. helioscopia Euphohelide A (35) Griess assay
RAW264.7 cells
stimulated LPS
NO
IC50 (µM)
32.98
[40]
Helioscopinolide C (36) 33.82
E. kansuensis Euphkanoid A (37) Griess assay RAW264.7 cells stimulated LPS
NO
IC50 (µM)
9.41
[44]
Euphkanoid B (38) 11.3
Euphkanoid C (39) 5.92
Euphkanoid D (40) 24.5
Euphkanoid E (41) 35.3
Euphkanoid F (42) 4.8
Prostratin (43) 45.9
Phorbol-13-acetate (44) 44.8
12-deoxyphorbol-13,20-diacetate (45) 37.9
Phorbol (46) 47.0
12-deoxyphorbol (47) 35.7
12-deoxyphorbol-13-hexadecanoate (48) 24.3
Helioscopinolide A (49) 23.5
E. kansui Cynsaccatol L (50) Na+-K+-ATPase Analysis Induced inactivation of AKT and ERK due to the downregulation of ATP1A1 expression [46,47]
Cynotophylloside B (51) Western blot Inhibited the phosphorylation of AKT and mTOR, as well as upregulating the expression of LC3-Band p62
Cynsaccatol L (50) Griess assay
RAW264.7 cells
stimulated LPS
NO
IC50 (µM)
0.02
Cynotophylloside B (51) 9.10
Kidjolanin (52) 30.7
Wilfoside G (53) 1.77
Cynotophylloside J (54) 17.39
Maslinic acid (55) 17.38
Kidjoranin 3-O-α-diginopyranosyl-(1→4)-β-
Cymaropyranoside (56)
2.79
Euphorkan A (57) Griess assay
RAW264.7 cells stimulated LPS
NO
IC50 (µM)
4.90
[48]
Euphorkan B (58) 10.4
3-O-(2,3-dimethylbutanoyl)-13-O-dodecanoyl-20-O-acetylingenol (59) 5.69
3-O-(2,3-dimethylbutyryl)-13-O-n-dodecanoyl-13-hydroxyingenol (60) 5.80
3-O-(2′E,4′E-decadienoyl) ingenol (61) 2.78
3-O-(2′E,4′Z-decadienoyl) ingenol (62) 10.6
3-O-(2′E,4′Z-decadienoyl)-20-O-acetylingenol (63) 2.86
20-O-(2′E,4′E-decadienoyl) ingenol (64) 9.05
20-O-(2′E,4′Z-decadienoyl) ingenol (65) 9.45
20-O-acetyl-[5-O-(2′E,4′Z)-decadienoyl]-ingenol (66) 4.60
13-O-docecanoylingenol (67) 8.86
Euphorkan A (57) Luciferase assay
NF-κB
IC50 (µM)
11.0
3-O-(2′E,4′E-decadienoyl) ingenol (61) 17.9
E. lathyris Euphorbia Factor L1 (68) Cytokines were determined using ELISA SHI-induced inflammatory cell infiltration and IL-1β, IL-6, TNF-α were decreased [52]
Western blot Treatment with EFL1 downregulated DDR1 protein expression and immuno-reactivity in SHI mice, leading to the surge of CD4+, CD8+, and CD49b+ (NK) T cells
Euphorbia Factor L3 (69) Fibroblast-like synoviocytes
(FLSs)
Ameliorated inflammatory phenotype FLSs (decreased viability, migration, invasion, and cytokine production) [53]
Collagen-induced arthritis (CIA) Inhibited arthritic progression
Wester blotting and immunofluorescence Inhibited nuclear translocation of the p65
Molecular analysis Target of EFL3 is RACI
Euplarisan A (70) Griess assay
RAW264.7 cells
stimulated LPS
NO
IC50 (μM)
7.50
[54]
Enzyme-linked immunoassay (ELISA) Inhibited IL-1β, IL-6, and TNF-α
Western blot assay Decreased the expression of iNOS, COX-2, and p-IκBα
Lathyranoic acid A (71) Griess assay
BV-2 cells stimulated LPS
NO
% Inhibitory
74.51
[55]
Euphorbia Factor L3 (69) 61.85
Euphorbia Factor L31 (72) 50.46
Euphorbia Factor L30 (73) 50.01
Euphorbia Factor L9 (74) 63.68
Euphorbia Factor L11 (75) 76.66
Euphorbia Factor L3 (69) Griess assay
RAW264.7 cells
stimulated LPS
NO
IC50 (μM)
11.24
[56]
Euphorbia Factor L29 (76) Griess assay
RAW264.7 cells stimulated LPS
NO
IC50 (µM)
47.9
[60]
Euphordracunculin C (77) 12.7
Epoxyboetirane A (78) 26.2
Euphorbia Factor L1 (68) 12.7
Deoxy Euphorbia Factor L1 (79) 47.0
Euphorbia Factor L2 (80) 16.2
Euphorbia Factor L3 (69) 15.0
Euphorbia Factor L7a (81) 44.4
Euphorbia Factor L7b (82) 23.9
Euphorbia Factor L8 (83) 30.3
Euphorbia Factor L9 (74) 11.2
Euphorbia Factor L17 (84) 48.5
Euphorbia Factor L22 (85) 16.6
Euphorbia Factor L23 (86) 19.5
Euphorbia Factor L24 (87) 18.2
Euphorbia Factor L25 (88) 28.9
Jolkinol A (89) 12.5
E. maculata Spiromaculatol A (90) Griess assay
RAW264.7 cells
stimulated LPS
NO
IC50 (μM)
23.1
[61]
Spiromaculatol B (91) 17.4
Spiromaculatol C (92) 8.8
Euphomaculatoid B (93) 31.3
Euphomaculatoid D (94) 15.9
Spiropedroxodiol (95) 12.7
Spiroinonotsuoxodiol (96) 20.6
4-methyl-3,7-dihydroxy-7 (8 → 9) abeo-lanost-24 (28) -en-8-one (97) Ear edema in induced mouse by TPA ID50 (nM/ear)
803
[62]
24-hydroperoxylanost-7,25-dien-3β-ol (98) 356.3
3-hydroxycycloart-25-ene-24-hydroperoxide (99) 301.7
3β-hydroxy-26-nor-9,19-cyclolanost-23-en-25-one (100) 558
Cicloart-23(24)-ene-3β,25-hydroxy (101) 355.7
(23E)-3,25-dihydroxythirucalla-7,23-diene (102) 855
(23Z)-3,25-dihydroxy-thyrucalla-7,23-diene (103) 1087
Obtusifoliol (104) 87.7
4α, 14α-dimethyl-5α-ergosta-7,9 (11), 24 (28) -trien-3β-ol (105) 363.1
Gramisterol (106) 204
Cycloeucalenol (107) 463.9
E. neriifolia Neritriterpenol H (108) Griess assay
RAW264.7 cells stimulated LPS
All compounds inhibited IL-6 [64]
Neritriterpenol I (109)
Neritriterpenol J (110)
Neritriterpenol K (111) ELISA kits Secretion in a dose-dependent manner
Neritriterpenol L (112)
Neritriterpenol M (113)
Neritriterpenol N (114)
11-Oxo-kansenonol (115)
Sooneuphanone B (116) Griess assay
RAW264.7 cells stimulated LPS
NO
% inhibition
20 (µg/mL)
58.4%
[65]
(23E)-eupha- 8,23-diene-3β,25-diol-7-one (117) 27–39%
(+)-(24S)-eupha-8,25-diene-3β,24-diol-7-one (118)
(24R)-eupha-8,25-diene-3β,24-diol-7-one (119)
E. peplus Euphopepluanone N (120) Griess assay
RAW264.7 stimulated LPS
Inhibited NO production [70]
Euphopepluanone B (121)
(2S*, 3S, 4R*, 5R*, 7S*, 13R*, 15R*)−3, 5, 7,15-tetraacetoxy-9, 14-dioxojatropha-6(17), 11E-diene (122)
11E-diene-9, 14-dione (123) RT-qPCR analysis Inhibited generation of cytokines (Il-6, IL-1β, TNF-α)
(11E, 2S, 3S, 4R, 5R, 7S, 13R, 15R)−3, 5, 7,15-tetraacetoxy-9, 14-dioxojatropha-6(17), 11E-diene (122)
E. pulcherrima Spinacetin (124) Paw edema induced by Carrageen % Edema inhibition
79.22
[71]
Patuletin (125) 89.01
Spinacetin (124) Paw edema histamine model 78.33
Patuletin (125) 94.00
E. resinifera Euphatexols C (126) Griess assay
RAW264.7 cells stimulated LPS
NO
IC50 (μM)
22.30
[72]
Euphatexols D (127) 48.04
Euphatexols E (128) 21.89
Euphatexols F (129) 38.15
Euphatexols G (130) 41.15
E. thymifolia (1S, 2R, 5R, 6S, 7R, 8R, 10R, 11S)-4-oxo-2-methoxy-6-angeloyloxy-pesudoguai-8,12-olide (131) Griess assay
BV-2 stimulated LPS
NO
IC50 (μM)
6.46
[77]
Minimolide B (132) 15.32
4-oxo-2-ethoxy-6-tigloyloxy-pesudoguai-8,12-olide (133) 7.15
6-O-angeloylplenolin (134) 0.41
6-O-tigloyl-11,13-dihydrohelenalin (135) 0.54
E. wallichii Jolkinolide B (136) Griess assay
RAW264.7
stimulated LPS NO
IC50 (µM)
3.84
[82]
ELISA assay
IL-6
TNF-α
IC50 (µM)
>4
>16
Wallkaurane A (137) Griess assay
RAW264.7
stimulated LPS NO
IC50 (µM)
3.84
[83]
ELISA assay The production of inflammatory cytokines (IL-6 and TNF-α)
Western blot Increased the expression of the antiapoptotic marker Bcl-2.
Decreased the expression of iNOS and COX-2

J774.A1 cells macrophages isolated from ascites of female mice with reticulum cell sarcoma; RAW264.7 cells are a macrophage-like, Abelson leukemia virus-transformed cell line derived from BALB/c mice; BV-2 cells are a unique type of microglial cells derived from C57/BL6 murine; Griess assay is a colorimetric method for the quantitative analysis of nitrites; CCK-8 assay: Cell Counting Kit-8 using WST-8 (2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt); LPS: Lipopolysaccharide or endotoxin is the major component of the outer membrane of Gram-negative bacteria; DDR1: Discoid in domain receptor 1; TPA: 12-O-Tetradecanoylphorbol-13-acetate; NO: nitric oxide; IL-1β: Proinflammatory cytokine 1β; IL-6: Proinflammatory cytokine 6; TNF-α: tumor necrosis factor α; NF-kβ: Nuclear Factor enhancer of kappa light chains of activated B cells; iNOS: Inducible Nitric Oxide Synthase; SOD: Superoxide Dismutase; sEH: Soluble Epoxide Hydrolase; RT-qPCR: Quantitative real-time PCR.

In Figure 1, Figure 2, Figure 3, Figure 4, Figure 5, Figure 6, Figure 7, Figure 8, Figure 9 and Figure 10 are shown the structures of the compounds that evaluated their anti-inflammatory activity.

Figure 1.

Figure 1

Structures of compounds isolated from E. antiquorum.

Figure 2.

Figure 2

Structures of compounds isolated from E. atoto and E. ebracteolata.

Figure 3.

Figure 3

Structures of compounds isolated from E. fischeriana and E. formasana.

Figure 4.

Figure 4

Structures of compounds isolated from E. helioscopia and E. kansuensis.

Figure 5.

Figure 5

Structures of compounds isolated from E. kansui.

Figure 6.

Figure 6

Structures of compounds isolated from E. lathyris.

Figure 7.

Figure 7

Structures of compounds isolated from E. maculata.

Figure 8.

Figure 8

Structures of compounds isolated from E. neriifolia.

Figure 9.

Figure 9

Structures of compounds isolated from E. peplus and E. pulcherrima.

Figure 10.

Figure 10

Structures of compounds isolated from E. resinifera, E. thymifolia, and E. wallichii.

In Table 3 is shown the anti-cancer activity of the compounds obtained from 27 species of Euphorbia.

Table 3.

The cytotoxic activity of the compounds obtained from 27 species of Euphorbia.

Species Compounds Biological Model Result Ref
E. alatavica 3α,7α,12α-trihydroxyisopimara-8(14), 15-diene (Alatavnol A) (138) MTT assay
MCF7
A549
IC50 (µg/mL)
14.327
12.033
[16]
Helioscopinolide A (49) HeLa
MCF7
23.802
33.476
Jolkinolide E (139) MCF7 22.066
E. balsamifera Kampferol-3,4′-dimethyl ether (140) MTT assay
HePG2
MCF7
IC50 (µM)
42.67
44.90
[20]
E. dendroides 23R/S-3β-hydroxycycloart-24-ene-23-methyl ether (141) MTT assay
HepG2
Huh-7
KLM-1
1321N1
HeLa
IC50 (µM)
20.67
16.24
22.59
25.99
40.50
[21]
24-methylene cycloartan-3β-ol (142) HepG2
Huh-7
KLM-1
1321N1
HeLa
10.93
7.42
21.48
12.32
13.68
Cycloart-23-ene-3β,25-diol
monoacetate (143)
HepG2
Huh-7
KLM-1
1321N1
12.81
<0.47
22.48
25.17
3β-hydroxy-cycloart-23-ene-25
methyl ether (144)
HepG2
Huh-7
KLM-1
1321N1
HeLa
12.72
<0.44
<0.44
0.63
3.7
24R/S-3β-hydroxy-25-methylenecycloartan-24-ol (145) HepG2
Huh-7
KLM-1
1321N1
HeLa
15.54
16.33
22.38
13.53
>4.52
E. denticulata 12-taraxast-3β, 19, 21 (α)-triol (146) MTT assay
DU-145
IC50 (µM)
12.2
27.5
18.3
[22]
Cycloartane-3, 25-diol (147)
Cycloartane-3,24, 25-triol (148)
E. ebracteolata Euphebracteolatin C (149) CCK-8 assay
HepG2
MCF7
A549
IC50 µM
14.29
34.81
40.85
[23]
Euphebracteolatin D (150) HepG2
MCF7
A549
23.69
28.62
39.25
Euphebracteolatin E (151) HepG2
MCF7
A549
38.96
29.67
36.27
Euphorpekone B (152) HepG2
MCF7
A549
12.33
25.29
38.82
Jolkinolide B (136) MTS assay
HL-60
SMMC-7721
A549
MCF-7
SW480
IC50 (µM)
5.2
3.8
11.9
16.2
10.2
[25]
Euphoroid B (153) MTT assay
A549
IC50 (µM)
22.87
[26]
Euphoroid C (154) A549
MCF-7
Lovo
HepG2
28.7
28.57
27.0
28.0
Jolkinolide A (155) A549 18.56
E. fischeriana 12-deoxyphorbol-13-(9Z,12Z)-octadecadienoate (156) MTT assay
HeLa
HepG2
IC50 (µM)
3.54
8.32
[28]
12-deoxyphorbol-13-dimethylpentadecanoate (157) HeLa
HepG2
5.72
11.45
Euphonoid H (158) MTT Assay
MDA-MB-231
HCT-15
RKO
C4-2B
C4-2B/ENZR
IC50 (µM)
21.8
28.57
20.46
5.52
4.16
[29]
Euphonoid I (159) MDA-MB-231
HCT-15
RKO
C4-2B
C4-2B/ENZR
7.95
12.45
8.78
4.49
5.74
Raserrane A (160) C4-2B 34.09
Raserrane B (161) C4-2B
C4-2B/ENZR
23.34
36.98
Fischerianin A (162) MTT assay
HepG2
A375
HL-60
K562
HeLa
IC50 (µM)
17.59
21.46
15.59
14.99
13.24
[31]
Fischerianin B (163) HepG2
A375
HL-60
K562
HeLa
11.23
18.34
12.82
17.82
5.31
Langduin A (164) HepG2
A375
HL-60
K562
HeLa
14.47
13.34
20.18
13.28
19.36
Langduin A6 (165) HepG2
A375
HL-60
K562
HeLa
16.55
9.64
21.03
8.46
11.57
Euphonoid A (166) MTT assay
C4-2B
C4-2B/ENZR
HCT-15
RKO
IC50 (µM)
9.18
9.70
18.3
16.2
[32]
Euphonoid B (167) C4-2B
C4-2B/ENZR
RKO
13.4
11.1
35.1
Euphonoid C (168) C4-2B
C4-2B/ENZR
HCT-15
RKO
17.7
15.2
13.4
21.3
Euphonoid D (169) C4-2B
C4-2B/ENZR
HCT-15
RKO
9.23
15.1
23.2
34.4
Euphonoid E (170) C4-2B
C4-2B/ENZR
16.1
22.1
Euphonoid F (171) C4-2B
C4-2B/ENZR
24.9
40.1
Euphonoid G (172) C4-2B
C4-2B/ENZR
18.1
20.1
Euphonoid H (158) C4-2B
C4-2B/ENZR
HCT-15
RKO
7.39
9.20
19.0
22.9
Raserrane B (161) C4-2B
C4-2B/ENZR
HCT-15
RKO
16.3
16.4
28.2
42.1
11-oxo-ebracteolatanolide B (173) C4-2B
C4-2B/ENZR
HCT-15
MDA-MB-231
2.85
2.42
15.2
14.5
Caudicifolin (174) C4-2B
C4-2B/ENZR
HCT-15
RKO
MDA-MB-231
2.22
5.39
12.6
15.3
8.81
Jolkinolide A (155) C4-2B
C4-2B/ENZR
10.1
16.1
17-hydroxyjolkinolide B (175) C4-2B
C4-2B/ENZR
12.3
14.0
Jolkinolide B (136) C4-2B
C4-2B/ENZR
HCT-15
RKO
MDA-MB-231
4.43
5.89
47.9
35.8
30.7
Methyl-8,11-3-dihydroxy-12-
oxo-ent-abietadi-13,15(17)-ene-16-oate (176)
C4-2B
C4-2B/ENZR
HCT-15
RKO
MDA-MB-231
4.95
4.27
25.6
23.3
23.8
7-dehydroabietanone (177) C4-2B
C4-2B/ENZR
14.2
29.9
Abieta-8,11,13-triene (178) C4-2B
C4-2B/ENZR
20.1
37.1
15-hydroxydehydroabietic acid (179) C4-2B 33.1
(4αS,10αS)-1,2,3,4,4α,10α-hexahydro-1,1,4α-trimethyl-7-(1-methyl)phenanthrene (180) C4-2B
C4-2B/ENZR
36.2
26.2
2-phenanthrenyl] ethanone (181) C4-2B 34.0
(4βS,8αS)-2-phenanthrenecarboxylic acid,4β,5,6,7,8,8α,9,10-octahydro-3-hydroxy-4β,8,8-trimethyl-methyl ester (182) C4-2B 23.1
Isopimara-7,15-dien-3-one (183) C4-2B
C4-2B/ENZR
21.9
24.2
Araucarol (184) C4-2B
C4-2B/ENZR
19.2
34.3
Araucarone (185) C4-2B
C4-2B/ENZR
HCT-15
16.0
24.1
47.1
Ent-3β, (13S)-dihydroxyatis-16-
en-14-one (186)
C4-2B
C4-2B/ENZR
13.2
25.3
Ent-(13R,14R)-13,14-dihydroxyatis-16-en-3-one (187) C4-2B
C4-2B/ENZR
HCT-15
18.8
15.2
39.2
Ent-atis-16-ene-3,14-dione (188) C4-2B 26.7
Ent-(13S)-13-hydroxyatis-
16-ene-3,14-dione (189)
C4-2B 30.5
3-oxoatisane-16α,17-diol (190) C4-2B
C4-2B/ENZR
23.7
29.1
3α-hydroxy-ent-16-kauren (191) C4-2B 26.2
Ent-kaurane-3β,16β,17-triol (192) C4-2B/ENZR
HCT-15
21.7
28.1
Ent-16β-H-3-oxokauran-17-ol (193) C4-2B
C4-2B/ENZR
22.8
20.1
Ent-kaurane-3-oxo-16β,17-diol (194) C4-2B
C4-2B/ENZR
HCT-15
17.0
23.0
43.2
Fischerianoid A (195) MTT assay
MM-231
SMMC-7721
HEP3B
IC50 (µM)
12.10 
32.48
15.95
[33]
Fischerianoid B (196) HL-60
MM-231
HEP3B
SW-480
28.78
9.12
8.50
35.52
Fischerianoid C (197) MM-231
HEP3B
25.45
27.34 
E. gedrosiaca 13β-O-propanoyl-5α-O-methylbutanoyl-7α,13β-O-diacetyl-17α-O-nicotinoyl-14-oxopremyrsinane (198) MTT assay
MDA-MB-231
MCF-7
IC50 (µM)
10.8
22.2
[35]
3β-O-propanoyl-5α-O-benzoyl-7α,13β, 17α-O-triacetyl-14-oxopremyrsinane (199) MDA-MB-231
MCF-7
22.2
27.8
3β-O-propanoyl-5α-O-isobutanoyl-7α,13β,17α-O-triacetyl-14-oxopremyrsinane (200) MDA-MB-231 24.5
3β-O-propanoyl-5α-O-isobutanoyl-7α,13β-O-diacetyl-17α-O-nicotinoyl-14-oxopremyrsinane (201) MDA-MB-231 27.3
2,5,7,10,15-O-pentaacetyl-3-O-propanoyl-14-O-benzoyl-13,17-epoxy-8-myrsinene (202) MDA-MB-231 33.7
E. glomerulans Euphoglomeruphane H (203) MTT assay
MCF-7/ADR
IC50 (µM)
39.3
[36]
E. grandicornis Hexyl(E)-3-(4-hydroxy-3-methoxyphenyl)-2-propenoate (204) MTT assay
MCF-7
HCC70
IC50 (µM)
23.41
29.45
[37]
6-Angeloyloxy-20-acetoxy-13-isobutanoyloxy-4,9-dihydroxytiglia-1,6-dien-3-one (205) MTT assay
A549
Cell viability (%)
49.2
[38]
E. grantii Eupha-8,24-dien-3β-ol (Euphol) (206) SRB assay
MCF-7
MCF-7ADR
IC50 (µM)
26.25
27.77
[39]
Cycloartenyl acetate (207) MCF-7
MCF-7ADR
25.3
18.56
Cycloartenol (208) MCF-7
MCF-7ADR
23.73
15.6
Epifriedelinyl acetate (209) MCF-7
MCF-7ADR
26.18
19.04
Euphylbenzoate (210) MCF-7
MCF-7ADR
3.47
3.22
Flow cytometry The death is induced by apoptosis
E. helioscopia Euphohelinoid A (211) SRB assay
HepG2
HeLa
HL-60
SMMC-7221
IC50 (µM)
24.3
28.4
18.6
29.6
[41]
Euphohelinoid B (212) HepG2
HeLa
HL-60
SMMC-7221
10.2
9.3
8.1
9.8
Euphohelinoid D (213) HeLa
HL-60
SMMC-7221
34.5
34.1
30.1
Euphohelinoid F (214) HepG2
HeLa
HL-60
SMMC-7221
12.5
14.1
13.3
11.1
Euphornin L (215) HepG2
HeLa
HL-60
SMMC-7221
22.8
25.7
13.1
14.3
Helioscopianoid O (216) HeLa
HL-60
SMMC-7221
26.2
18.2
19.5
Euphoscopin I (217) HepG2
HeLa
HL-60
SMMC-7221
24.1
29.7
14.3
18.7
Euphoscopin J (218) HepG2
HeLa
HL-60
SMMC-7221
14.9
13.7
12.4
15.0
Euphoscopin B (219) HepG2
HeLa
HL-60
SMMC-7221
23.3
29.2
20.2
27.1
Euphelionolide F (220) MTT assay
MCF-7
PANC-1
IC50 (µM)
9.5
10.7
[42]
Euphelionolide L (221) MCF-7
PANC-1
9.8
10.3
E. hypericifolia Euphypenoid A (222) MTT assay
HCT-116
IC50 (µM)

12.8
[43]
20(S),24(R)-20,24-epoxy-24-methyldammaran-3β-ol (223) HCT-116 26.8
(23E)-25-methoxycycloart-23-en-
3-one (224)
HCT-116 7.4
Isomotiol (225) HCT-116 10.6
E. kansuensis Euphorboside A (226) MTT assay
RKO
MDAMB-231
A375 8
HCT-15
HCT-15/5-FU
A549
A549/CDDP
HepG2
HepG2/DOX
IC50 (µM)
3.70
4.15
8.27
14.7
15.0
16.2
16.4
18.8
33.2
[45]
E. kansui Wilfoside KIN (227) MTT Assay
HepG2
MCF7
IC50 (µM)
12.55
>20
[47]
Cynsaccatol L (50) HepG2
MCF7
12.61
>20
Kanesulone A (228) HepG2
MCF7
18.24
>20
3β,7β,15β-triacetyloxy-5α-benzoyloxy-2α,8α-dihydroxyjatropha-6(17),11E-diene-9, 14-dione (229) HepG2
MCF7
18.26
>20
13-hydroxyingenol-3-(2,3-dimethylbutanoate)-13-dodecanoate (230) HepG2
MCF7
GSC3
GSC12
293T
HAC
T98G
>20
17.12
1.67
2.75
21.93
19.23
16.77
Euphol (206) GSC-3
GSC-12
8.89
13.0
Lucidal (231) GSC-3
GSC-12
293T
HAC
T98G
4.71
3.25
21.07
30.22
20.77
E. kopetdaghi 14-Nicotinyl-3,5,10,15,17-pentaacetyl-8-isobutanoyl-cyclomyrsinol-7- one (Kopetdaghinane A) (232) MTT assay
MCF-7
IC50 (µM)
38.10
[49]
OVCAR-3 51.23
E. lactea Friedelan-3β-ol (233) HN22
Flow cytometry
It induced an S-phase cell cycle arrest [50]
E. lathyris Euphorbia Factor L1 (68) Tumour induced by Mouse 4T1 in
BALB/c
Decreased the generation of IL-β, IL-6, TNF-α [51]
ELISA Downregulated DDR1 protein expression and immuno-reactivity in SHI mice
Western blot
Flow cytometry
No differences were detected in CD4+, CD8+, CD49b+ T cells, and Tregs between the DDR1-OE group and the DDR1-OE+EFL1 group
15β-hydroxy-5α-acetoxy-3α-benzoyloxy-7β-nicotinoyloxylathyol (234) MTT assay
MCF-7
HepG2
IC50 (µM)
9.43
13.22
[57]
Euphorbia Factor L2 (80) MTT assay
KB
KB-VIN
IC50 (µM)
33.2
7.2
[58]
Euphorbia Factor L3 (69) A549
MDA-MB-231
KB
KB-VIN
MCF-7
14.6
31.6
7.9
8.0
25.9
Euphorbia Factor L8 (83) A549
MDA-MB-231
KB
KB-VIN
MCF-7
11.8
24.4
17.7
16.9
23.8
Euphorbia Factor L9 (74) A549
MDA-MB-231
KB
KB-VIN
MCF-7
6.7
21.9
6.1
5.7
8.4
Euphorbia Factor L24 (87) MTT assay
HCT116
MCF-7
786-0
HepG2
IC50 (µM)
6.44
8.43
15.3
9.32
[59]
E. microsphaera (3aR,4S,4aS,5R,7aS,9aS)-5-hydroxy-5,8-dimethyl-3-methylene-2-oxo- 2,3,3a,4,4a,5,6,7,7a,9a-decahydroazuleno [6,5-b] furan-4-yl acetate (Aryanin) (235) MTT assay
MCF7
24 h
72 h
IC50 (µg/mL)
13.81
49.35
[63]
E. neriifolia Neritriterpenols A (236) MTT assay
Hep G2
IC50 (µM)
25.9
[65]
(+)-(24R)-3β,24,25-trihydroxyeuph-8-en-7-one (Neritriterpenol B) (237) WiDR
HepG2
47.2
44.0
Neritriterpenol E (238) A549
WiDR
HepG2
45.7
32.3
35.9
(+)-(23R,24R)-epoxy-3α,25-dihydroxyeuph-8-en-7-one (Neritriterpenol F) (239) HepG2 39.4
(+)-(24R)-24,25-dihydroxyeuph-8-en-3,7-dione (Neritriterpenol G) (240) WiDR
HepG2
48.9
36.6
(23E)-eupha-8,23-diene-3β,25-diol-7-one (117) A549
WiDR
HepG2
25.5
20.5
37.6
(+)-(24S)-eupha-8,25-diene-3β,24-diol-7-one (118) A549
WiDR
MCF7
HepG2
23.8
20.8
32.3
15.2
(24R)-eupha-8,25-diene-3β,24-diol-7-one (119) A549
WiDR
MCF7
HepG2
20.4
17.1
30.7
12.2
Sooneuphanone B (116) A549
WiDR
MCF7
HepG2
12.8
23.3
17.9
8.0
Phonerilin B (241) SRB assay
A549
HL-60
IC50 (µM)
8.6
9.1
[66]
Phonerilin E (242) A549
HL-60
4.9
9.2
Phonerilin F (243) A549
HL-60
3.8
4.5
Phonerilin H (244) A549
HL-60
7.5
5.7
20-O-diacetyl-ingenol (245) HL-60 3.1
7,12-O-diacetyl-8-O-tigloylingol (246) A549
HL-60
6.4
9.5
Ent-atisane-3α,16α,17-triol (247) MTT assay
HepG2
HepG2/Adr
IC50 (µM)
13.7
15.57
[67]
(4R,5S,8S,9R,10S,13R,16S)-
ent-16α,17-dihydroxy-19-tigloyloxykauran-3-one (248)
HepG2 0.01
E. pedroi Spiropedroxodiol (95) MTT assay
L5178Y-PAR
L5178Y-MDR
Colo205
Colo320
IC50 (µM)
42.3
46.8
16.8
27.7
[68]
β-sitostenone (249) Colo 205
Colo320
46.6
21.3
Cycloart-23-ene-3β,25-diol (250) L5178Y-PAR
Colo 205
Colo320
MRC-5
49.4
16.7
31.6
12.9
Helioscopinolide E (251) L5178Y-PAR 32.9
E. pekinensis (11R,12S)-2,11,12-trihydroxy-ent-isopimara-1,7,15-trien-3-one (252) CCK8 method
U-937
LOVO
IC50 (µM)
25.1
27.7
[69]
Isopimara-7,15-dien-3β-ol (253) K-562 0.87
Eupneria R (254) U-937
LOVO
30.5
27
Euphodane A (255) U-937
LOVO
K-562
5.9
26.8
32.2
Euphodane B (256) U-937
LOVO
36.7
35.03
Euphodane C (257) U-937
LOVO
K-562
24.5
39.3
31.3
Euphodane D (258) U-937
LOVO
25.1
29.7
Jolkinol B (259) U-937
LOVO
K-562
3.6
8.44
25.3
E. saudiarabica Glutinol (260) MTT assay
MCF-7
Flow cytometry
IC50 (µM)
9.83
Induced apoptosis
[73]
E. schimperiana 3,30-di-O-methylellagic acid (261) MTT assay
PC3
IC50 (µg/mL)
5.5
[74]
E. sororia Euphosorophane I (262) P-gp ATPase activity assay This compound reversed P-gp-mediated MDR cell (multidrug resistance) by inhibiting the ABCB1 drug efflux function in drug-resistant MCF-7/ADR cells [75]
E. stracheyi 3-O-benzoyl-20-deoxymgenol (263) MTT assay
HL-60
A-549
SMMC-7721
MCF-7
SW480
IC50 (µM)
10.5
21.47
18.36
18.82
16.25
[76]
E. tirucalli Tirucadalenone (264) MTT assay
K562
IC50 (μg/mL)
22
[78]
Euphol (206) MTT assay
U87-MG
U373
U251
GAMG
SW1088
SW1783
SNB19
RES186
RES259
KNS42
UW479
SF188
HCB2
HCB149
IC50 (µM)
26.41
30.48
29.01
8.73
27.12
19.62
31.05
16.70
10.34
19.94
15.26
5.98
11.66
21.68
[79]
Euphol (206) MTS assay
T47D
MDA-MB-231
MDA-MB-468
BT20
HS587T
MCF-7
MCF7/AZ
JHU-O22
HN13
SCC25
SCC4
SCC14
FADU
SW480
SW620
CO115
HCT15
HT29
SK-CO-10
DLD1
LOVO
DIFI
Caco2
U87-MG
U373
U251
GAMG
SW1088
SW1783
RES186
RES259
KNS42
UW479
SF188
PC-3
LNCaP
T24
5637
HT1376
MCR
DAOY
ONS76
JEG3
A431
H292
SKMES1
A549
SK-LU-1
SIHA
CASKI
C33A
HELA
KYSE30
KYSE70
KYSE270
KYSE410
Mia PaCa-2
PANC-1
PSN-1
BXPC-3
Capan-1
COLO858
COLO679
A375
WM1617
WM9
WM852
WM278
WM35
WN793
SKMEL-37
PA-1
SW626
IC50 (µM)
38.89
9.08
30.89
8.96
18.15
18.76
33.42
26.35
8.89
6.65
19.82
15.81
20.17
5.79
10.02
9.58
5.47
6.52
17.53
2.56
11.49
11.38
35.19
26.41
30.48
29.01
8.73
27.12
19.62
16.70
10.34
19.94
15.26
5.98
11.95
1.41
30.72
4.83
25.25
7.40
5.72
21.72
16.65
17.79
13.25
25.62
11.01
22.83
24.74
24.74
21.32
17.55
3.52
8.77
10.71
4.35
8.46
21.47
3.71
5.47
16.33
14.02
8.93
9.67
16.32
9.67
7.61
27.46
12.40
5.96
10.07
7.97
30.40
[80]
E. umbellata Euphol (206) MTT assay
K-562
HL-70
IC50 (µM)
34.44
39.98
[81]

MTT: 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide; MTS: 3-(4, 5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)- 2-(4-sulfophenyl)- H-tetrazolium; SRB: sulforhodamine B assay; 5637: carcinoma from the urinary bladder; 1321N1: astrocytoma (malignant gliomas); 293T: clone derivative of the human embryonic kidney (HEK) 293 cell line; A375: melanoma; A431: squamous carcinoma; A549: lung cancer; A549/CDDP: Cisplatin resistance in lung cancer; BT20: breast cancer; BXPC-3: pancreatic adenocarcinoma; C33A: cervical cancer; C4-2B: prostate cancer; C4-2B/ENZR: prostate cancer enzalutamide resistant; Caco2: colon cancer; Capan-1: pancreatic adenocarcinoma; CASKI: epithelial cell from the cervix with epidermoid; CO115: colon carcinoma in vitro from solid xenografts; Colo205: colon carcinoma; Colo320: colon carcinoma; COLO679: skin melanoma; COLO858: skin melanoma; DAOY: medulloblastoma; DIFI: colorectal cancer; DLD1: colorectal adenocarcinoma; DU-145: prostate cancer; FADU: hypopharyngeal carcinoma; GAMG: glioblastoma; GSC12: glioma; GSC3: glioma; H292: pulmonary mucoepidermoid carcinoma; HAC: ovarian adenocarcinoma; HCB149: immortalized glioma; HCB2: Primary Glioma; HCC70: epithelial cell from primary ductal carcinoma; HCT116: colon cancer; HCT-15: colorectal adenocarcinoma; HCT-15/5-FU 5-: Fluorouracil Resistance in Colon Cancer; HeLa: Cervix Adenocarcinoma; HEP3B: hepatoma; HepG2: Hepatocarcinoma; HepG2/Adr: hepatoblastoma adriamycin resistant; HepG2/DOX: hepatoblastoma doxorubicin resistant; HL-60: promyelocytic leukemia; HL-70: lymphoblast promyeolocytic leukemia; HN13: squamous cell carcinoma of the oral tongue; HS587T: carcinoma of the breast; HT1376: urinary bladder carcinoma; HT29: colorectal adenocarcinoma; Huh-7: hepatoma; JEG3: choriocarcinoma; JHU-O22: Laryngeal carcinoma; K562: chronic myelogenous leukemia; KB: epithelial carcinoma; KB-VIN: epithelial carcinoma vincristine resistant; KLM-1: pancreatic cancer; KNS42: glioma; KYSE270: esophageal squamous carcinoma; KYSE30: squamous carcinoma; KYSE410: esophageal carcinoma; KYSE70: esophageal carcinoma; L5178Y-MDR: lymphoma multidrug resistant; L5178Y-PAR: lymphoma parental; LNCaP: prostate carcinoma; Lovo: prostate carcinoma; MCF-7: breast cancer; MCF-7ADR: breast cancer adriamycin resistant; MCF7/AZ: breast cancer; MCR: bladder cancer; MDA-MB-231: human breast cancer cell line; MDA-MB-468: breast cancer; Mia PaCa-2: pancreas carcinoma; MM-231: breast cancer; MRC-5: lung fibroblast (breast cancer); ONS76: medulloblastoma; OVCAR-3: ovarian adenocarcinoma; PA-1: ovarian teratocarcinoma; PANC-1: pancreatic carcinoma; PC-3: prostatic adenocarcinoma; PSN-1: pancreatic carcinoma; RES186: glioma; RES259: glioma; RKO: colon carcinoma; SCC14: head and neck squamous cell carcinoma cell lines; SCC-25: tongue squamous cell carcinoma; SCC4: tongue squamous cell carcinoma; SF188: glioblastoma; SIHA: uterine squamous cell carcinoma; SK-CO-10: colon cancer; SK-LU-1: lung adenocarcinoma; SKMEL-37: melanoma; SKMES1: lungs squamous cell carcinoma; SMMC-7721: hepatocellular carcinoma; SNB19: glioblastoma; SW1088: brain astrocytoma; SW1783: brain astrocytoma; SW480: colon cancer; SW620: colorectal cancer; SW626: ovary adenocarcinoma; T24: urinary bladder carcinoma; T47D: breast cancer; T98G: glioblastoma; U251: glioblastoma; U373: glioblastoma astrocytoma; U87-MG: glioblastoma; U-937: histiocytic lymphoma; UW479: glioma; WiDR: colorectal adenocarcinoma; WM1617: melanoma; WM278: melanoma; WM35: melanoma; WM852: melanoma; WM9: melanoma; WN793: melanoma.

In Figure 11, Figure 12, Figure 13, Figure 14, Figure 15, Figure 16, Figure 17, Figure 18 and Figure 19 are shown the structures of the compounds that evaluated their cytotoxic activity.

Figure 11.

Figure 11

Structures of compounds isolated from E. alatavica, E. balsamifera, E. dendroides, and E. denticulata.

Figure 12.

Figure 12

Structures of compounds isolated from E. ebracteolata.

Figure 13.

Figure 13

Figure 13

Structures of compounds isolated from E. fisheriana.

Figure 14.

Figure 14

Structures of compounds isolated from E. gedrosiaca, E. glomerulans, E. grandicornis, and E. grantii.

Figure 15.

Figure 15

Figure 15

Structures of compounds isolated from E. helioscopia.

Figure 16.

Figure 16

Structures of compounds from E. hypericifolia, E. kansuensis, E. kansui, and E. kopetdaghi.

Figure 17.

Figure 17

Structures of compounds isolated from E. lactea, E. lathyris, E. microsphaera, and E. neriifolia.

Figure 18.

Figure 18

Structures of compounds isolated from E. pedroi and E. pekinensis.

Figure 19.

Figure 19

Structures of compounds isolated from E. saudiarabica, E. schimperiana, E. sororia, E. stracheyi, and E. tirucalli.

2. Discussion

At present, the study of natural products obtained from medicinal plants continues to be of great interest because they provide a wide range of compounds with pharmacological activity against diseases, such as cancer, diabetes, and cardiovascular and chronic respiratory diseases, which, according to the World Health Organization (WHO), are the leading causes of mortality worldwide [84]. Furthermore, these diseases involve acute and chronic inflammatory processes. For this reason, it is of great importance to conduct reviews of scientific studies that provide an overview of the molecules isolated from plants used in traditional medicine, such as those of the Euphorbia genus. In this review, 68 studies were collected and analyzed regarding the anti-cancer and anti-inflammatory effects of 264 compounds isolated from 36 species of the Euphorbia genus. The anti-inflammatory activity of 104 compounds was evaluated for NO inhibition on macrophages or BV-2-cells stimulated with LPS using the Griess assay. Also, we found that compounds 97–107 have been investigated through vivo studies on ear edema in mice induced with TPA or paw edema induced with carrageenan or histamine. The cytotoxic activity of 147 secondary metabolites was evaluated against human cancer cell lines. Both activities, anti-inflammatory and cytotoxic effects, were evaluated only in 14 metabolites isolated from E. kansuensis and E. alatavica (49), E. kansui (50), E. lathyris (68, 69, 74, 80, 83, 87), E. maculate and E. pedroi (95), E. nerifolia (116, 117, 118, 119), and E. wallichii and E. fisheriana (136).

Some species of the genus Euphorbia produce latex, also known as “milky sap.” These latexes are characterized by containing a variety of compounds with pharmacological activities [85]. In Table 1 is shown that the latexes obtained from E. resinifera and E. umbellata were extracted with methanol and a solution of 1% H2SO4, respectively. From the methanol extract of E. resinifera, latexes were isolated Euphatexols C (126), Euphatexols D (127), Euphatexols E (128), Euphatexols F (129), and Euphatexols G (130); all of them had anti-inflammatory activity (Table 2) [72]. From the latex of E. umbellata was obtained Euphol (206); its cytotoxic activity was evaluated on the K-562 and HL-70 cancer cell lines (Table 3) [81].

The compounds included in this review are terpenes (95%), of which 159 are diterpenes, especially abietanes and lathyranes; also, other diterpenes classes have been isolated from plants of the Euphorbia genus, such as labdanes (1–3, 255–258), abietanes (35, 36, 49, 136, 149–155,158–161, 166–171,173–190, 195–197, 220, 221, 247, 253, 254), lathyranes (9–11, 68–89, 230, 234, 259), jatrophanes (120–123, 204, 211–219, 228, 229, 262), rosanes (15–21, 138), atisanes (7, 8), kauranes (137, 172, 191–194, 248), beyeranes (4–6), ingenanes (24, 25, 57–67, 241–243, 245, 263), daphnanes (162–165), tiglianes (26, 37, 48, 156, 157), premyrsinanes (198–201), and ingols (12–14, 244, 246).

Abietanes, rosanes, atisanes, beyeranes, and kauranes are characterized by three fused rings of six members, and some carbons are substituted with carbonyl or hydroxyl groups (264). Frequently, an olefin bond is found in the structure (Figure 20) [86].

Figure 20.

Figure 20

Hidrocarbon skeleton of Euphorbia diterpene classes.

Tiglianes, daphnanes, and ingenanes are characterized by a tetracyclic fused ring. Tiglianes usually have a configuration trans of the fusion of rings A and B and cis for the fusion of rings B and C. Daphnane diterpenoids have a tricyclic skeleton and the fusion of the rings A and B and B and C is trans [86]. Ingenanes diterpenes belong to the polycyclic diterpenoids related to daphnanes and tiglianes [87]; these diterpenes frequently contain hydroxyl and carbonyl groups and double bonds.

Lathyranes, jathropanes, and ingol are macrolides. Lathyranes diterpenes have a fused trycyclic system (5/11/3 members). Jathropanes have a bycyclo [9.3.0] pentadecane skeleton without a ring of cyclopropane. Ingol diterpenes are a subgroup of lathyranes characterized by a 5/11/3 carbon ring system with a 4,15-epoxy ring [88]. Their structure can contain hydroxyl, carbonyl, and ester groups and an olefin bond.

Labdanes are byciclic diterpenes with a branched six-carbon side chain [89]. Premyrsinanes are diterpenes with a [5-7-6-3] tetracyclic ring system [90].

These types of diterpenes show several pharmacological activities, some of which might be used clinically to treat health problems, such as cancer and inflammation [91].

Different researchers have found many diterpenes have anti-inflammatory activity through the inhibition of NF-κβ activation [86]; also, they diminish in macrophages stimulated with LPS, the production of TNF-α, NO, PGE2, the expression of COX-2, and iNOS mRNA [14].

For example, the factors L3 and L9 diminished the production of NO in LPS-stimulated macrophages by 61.85% and 63.68%, respectively. Also, both compounds had cytotoxic activity against BK (IC50 values of 7.9 and 6.1 µM, respectively) and BK-VIN (IC50 values of 8 and 5.7 µM, respectively) [58]. The compounds 1, 2, 70, and 137 promoted the suppression of iNOS expression and consequently decreased inflammation [17,54,83]. iNOS is the enzyme primarily responsible for the release of NO in inflammatory processes.

In another study, it was determined that the compounds Bisfischoid A and B (27, 28) isolated from E. fischeriana inhibited the activity of the soluble enzyme epoxide hydrolase (sEH) [30], and the compounds 29–34 obtained from E. formosana inhibited azurophilic degranulation of neutrophils [34]. On the other hand, compounds 70, 122, 123, and 137 diminished the levels of pro-inflammatory cytokines IL-1α, IL-6, and TNF-α [54,70,83]. The compounds 70 and 137 also inhibited the activation of COX-2 [54,83].

The compounds 18, 57, 61, and 69 suppressed NF-κβ, which is a light polypeptide gene enhancer in B cells produced and expressed by macrophages stimulated with LPS [53,54,55,60]; it promotes vasodilation and vascular permeability of blood vessels, facilitating the formation of edema and the recruitment of inflammatory cells around an injury [92]. For this reason, the compounds that decreased the levels of this polypeptide are candidates to be used in the treatment of inflammation.

Cynsaccatol L (50) isolated from E. lathyris shows the highest effect on the inhibition of the production of NO for macrophages stimulated with LPS. This compound regulated the levels of TNF-α and IFN-ɤ and promoted the phagocytosis of macrophages of the M2 subtype [46]

Cancer is a multifaceted ailment arising from mutations in cell proliferation. Interestingly, chronic inflammation has also been identified as a potential precursor to cancer in certain instances. The onset of cancer-promoting inflammation often precedes the formation of tumors. Notable examples of this connection can be found in certain conditions, such as Helicobacter-induced gastritis, chronic hepatitis, inflammatory bowel disease, and schistosomiasis-induced bladder inflammation. These conditions elevate the risk of developing several types of cancer, including, for example, colorectal, liver, stomach, and bladder cancer [93].

Many Euphorbia species contain compounds with cytotoxic activity. The mechanism of action of several types of diterpenoids has been investigated, and the results show that these compounds could have cytotoxic activity via induction of apoptosis through the suppression of IL-6-induced and STAT3 activation, the inhibition of topoisomerase II, and the impedance of NF-κβ activation [86].

The cytotoxic activity was evaluated mainly in the following cell lines: HepG2, MCF-7, C4-2B, CA2B/ENZR, A549, HL-60, HeLa, and more. Table 3 shows that the best cytotoxic effect on an MTT assay was obtained with 142–144 from E. dendroides on Huh-7, 156–159, 163, 173, 174, and 176 from E. fischeriana on HeLa, C4-2B, and CA-2B/ENZR, 210 from E. grantii on MCF7 and MCF7/ADR, 226 from E. kansuensis on RKO and MDA-MB-231, 230–231 from E kansui on GSC3, 242–243, 245, and 248 from E. neriifolia on A549, HL-60, and HepG2, 253 and 259 from E. pekinensis on K-562 and U-937, and 206 from E. tirucalli on DLD1, LNCaP, 5637, KYSE30, KYSE410, and P5N-1. Also, 136 isolated from several Euphorbia species demonstrated cytotoxic activity against HL-60, SMHC-7721, C4-2B, and C4-2B/ENZR.

The compounds factor L1 and Euphosorophane I were evaluated with tests other than cytotoxicity in cancer cell lines [51,75]. Euphosorophane I (262) inhibited the function of transmembrane P-glycoprotein (P-gp), which has the function of an energy-dependent “drug pump.” Its overexpression promotes multidrug resistance (MDR). This effect was tested on drug-resistant MCF-7/ADR cells; it was found that compound 262 exhibited a P-gp-mediated MDR reversal [75].

The anti-cancer activity of factor L1 was studied in in vivo and in vitro models. This molecule presented cytotoxic and antitumor activity downregulating DDR1 in the tumor of SHI mice. This compound avoids anti-liver metastasis. Factor L1, Euphylbenzoate, and Glutinol induced cell death through apoptosis [39,51,73].

Factor L2 had a potent cytotoxic activity on A549 and induced apoptosis via the mitochondrial pathway, promoting the release of cytochrome C and the activation of caspase 3 and 9 [94]

3. Methods

The literature search of documents and reviews on the anti-inflammatory and cytotoxic studies of the different species of Euphorbia was conducted in the PubMed, Springer, Science Direct, and Google Scholar online databases. The recovered information that is presented was published in the last 5 years. Only studies on isolated compounds were considered. Different in vivo models were used to establish anti-inflammatory activity. With respect to the cytotoxic activity, different in vitro colorimetric methods were used, as well as different cancer cell lines (murine, human, and resistant). Table 1 shows the species, the collection place, the part of the plant, and the bioactive extract studied to isolate the active compounds.

4. Conclusions

In summary, plants of the Euphorbia genus are a source of compounds with anti-inflammatory and anti-cancer activities. Furthermore, different compounds shown in this review might lead to possible new therapies for inflammation and cancer to increase the options for the treatment of inflammatory diseases that afflict the world. Thirty-six species of Euphorbia were studied, and the specie that predominated was E. lathyris, which was researched in ten studies.

One hundred forty-one compounds included in this review have anti-inflammatory activity; one hundred forty-three natural products have anti-cancer effects; and ten molecules present both activities.

This review shows that 159 diterpenes were isolated from the Euphorbia genus, including 55 abietanes, 27 lathyranes, 17 ingenanes, 16 jathropanes, 8 rosanes, 7 kauranes, 7 labdanes, 5 tiglianes, 5 permyrsinanes, 4 daphnanes, 3 beyeranes, 2 atisanes, and 3 others.

Cynsaccatol (50) isolated from E. lathyris shows the greatest effect on the inhibition of the production of NO for macrophages stimulated with LPS. (4R,5S,8S,9R,10S,13R,16S)-ent-16α,17-dihydroxy-19-tigloyloxykauran-3-one (248) and Euphorbia factors L1 and L3 have good cytotoxic activity. These results show that the compounds 50, 68, 69, and 248 are promising to develop new drugs.

Author Contributions

Conceptualization, S.P.-G. and N.C.-X.; methodology, S.R.-J.; software, S.R.-J., D.O.S.-S. and L.S.-P.; validation, S.R.-J., S.P.-G. and N.C.-X.; investigation, S.R.-J., M.G.V.-C., D.O.S.-S., J.P.-R., L.S.-P., S.P.-G. and N.C.-X.; data curation, S.P.-G. and S.R.-J.; writing—original draft preparation, S.P.-G., M.G.V.-C. and D.O.S.-S.; writing—review and editing, S.P.-G. and N.C.-X.; visualization, M.G.V.-C., D.O.S.-S. and L.S.-P.; supervision, S.P.-G. and N.C.-X. All authors have read and agreed to the published version of the manuscript.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflicts of interest.

Funding Statement

This research received no external funding.

Footnotes

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

References

  • 1.González-Costa M., Padrón-González A.A. La inflamación desde una perspectiva inmunológica: Desafío a la Medicina en el siglo XXl. [(accessed on 25 February 2024)];Rev. Haban Cienc. Méd. 2019 18:30–44. Available online: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1729-519x2019000100030&lng=es&nrm=iso. [Google Scholar]
  • 2.Kumar V., Abbas A.K., Fausto N., Mitchell R.N. Robbins Basic Pathology. 10th ed. McGraw-Hill Interamericana; New York, NY, USA: 2018. pp. 31–68. [Google Scholar]
  • 3.Yang H.Z., Wang J.P., Mi S., Liu H.Z., Cui B., Yan H.M., Lu W. TLR4 activity is required in the resolution of pulmonary inflammation and fibrosis after acute and chronic lung injury. Am. J. Pathol. 2012;180:275–292. doi: 10.1016/j.ajpath.2011.09.019. [DOI] [PubMed] [Google Scholar]
  • 4.Oscanoa-Espinoza T., Lizaraso-Soto F. Antiinflamatorios no esteroides: Seguridad gastrointestinal, cardiovascular y renal. [(accessed on 25 February 2024)];Rev. Gastroenterol. Perú. 2015 35:63–71. Available online: http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1022-51292015000100007&lng=es. [PubMed] [Google Scholar]
  • 5.Gordon S. Alternative activation of macrophages. Nat. Rev. Immunol. 2003;3:23–35. doi: 10.1038/nri978. [DOI] [PubMed] [Google Scholar]
  • 6.Fernandes J.V., Cobucci R.N., Jatobá C.A., Fernandes T.A., de Azevedo J.W., de Araújo J.M. The Role of the Mediators of Inflammation in Cancer Development. Pathol. Oncol. Res. 2015;21:527–534. doi: 10.1007/s12253-015-9913-z. [DOI] [PubMed] [Google Scholar]
  • 7.Campos-Xolalpa N., Alonso-Castro Á.J., Sánchez-Mendoza E., Zavala-Sánchez M.A., Pérez-Gutiérrez S. Cytotoxic activity of the chloroform extract and four diterpenes isolated from Salvia ballotiflora. Rev. Bras. Farmacogn. 2017;27:302–305. doi: 10.1016/j.bjp.2017.01.007. [DOI] [Google Scholar]
  • 8.Virshette S.J., Patil M.K., Somkuwar A.P. A review on medicinal plants used as anti-inflammatory agents. J. Pharmacogn. Phytochem. 2019;8:1641–1646. [Google Scholar]
  • 9.Schlaepfer L., Mendoza E.J.A. Las Plantas Medicinales en la Lucha Contra el cáNcer, Relevancia Para México. [(accessed on 25 February 2024)];Rev. Mex. Cienc. Farm. 2010 41:18–27. Available online: https://www.redalyc.org/articulo.oa?id=57916060003. [Google Scholar]
  • 10.Bittner M., Alarcón J., Aqueveque P., Becerra J., Hernández V., Hoeneise M., Silva M. Estudio químico de especies de la familia Euphorbiaceae en Chile. Bol. Soc. Chil. Quim. 2001;46:419–431. doi: 10.4067/S0366-16442001000400006. [DOI] [Google Scholar]
  • 11.Amtaghri S., Akdad M., Slaoui M., Eddouks M. Traditional uses, pharmacological, and phytochemical studies of Euphorbia: A review. Curr. Top. Med. Chem. 2022;22:1553–1570. doi: 10.2174/1568026622666220713143436. [DOI] [PubMed] [Google Scholar]
  • 12.Li Y.N., He J., Zhang J., Shi Y.X., Guo L.B., Peng Z.C., Xu J.K. Existing knowledge on Euphorbia fischeriana Steud (Euphorbiaceae): Traditional uses, clinical applications, phytochemistry, pharmacology and toxicology. J. Ethnopharmacol. 2021;275:114095. doi: 10.1016/j.jep.2021.114095. [DOI] [PubMed] [Google Scholar]
  • 13.Martínez G.M., Jiménez R.J., Cruz D.R., Juárez A.E., García R., Cervantes A., Mejía H.R. Los géneros de la familia Euphorbiaceae en México. (Parte A) [(accessed on 25 February 2024)];An. Inst. Biol. 2002 73:155–196. Available online: https://www.redalyc.org/articulo.oa?id=40073205. [Google Scholar]
  • 14.Xu Y., Tang P., Zhu M., Wang Y., Sun D., Li H., Chen L. Diterpenoids from the genus Euphorbia: Structure and biological activity (2013–2019) Phytochemistry. 2021;190:112846. doi: 10.1016/j.phytochem.2021.112846. [DOI] [PubMed] [Google Scholar]
  • 15.Zhao H., Sun L., Kong C., Mei W., Dai H., Xu F., Huang S. Phytochemical and pharmacological review of diterpenoids from the genus Euphorbia Linn (2012–2021) J. Ethnopharmacol. 2022;298:115574. doi: 10.1016/j.jep.2022.115574. [DOI] [PubMed] [Google Scholar]
  • 16.Rozimamat R., Hu R., Aisa H.A. New isopimarane diterpenes and nortriterpene with cytotoxic activity from Euphorbia alatavica Boiss. Fitoterapia. 2018;127:328–333. doi: 10.1016/j.fitote.2018.02.026. [DOI] [PubMed] [Google Scholar]
  • 17.Choodej S., Hanthanong S., Aree T., Pudhom K. Diterpenoids from the aerial parts of Euphorbia antiquorum and their efficacy on nitric oxide inhibition. Phytochemistry. 2020;180:112523. doi: 10.1016/j.phytochem.2020.112523. [DOI] [PubMed] [Google Scholar]
  • 18.An L., Liang Y., Yang X., Wang H., Zhang J., Tuerhong M., Li D., Wang C., Lee D., Xu J., et al. NO inhibitory diterpenoids as potential anti-inflammatory agents from Euphorbia antiquorum. Bioorg. Chem. 2019;92:103237. doi: 10.1016/j.bioorg.2019.103237. [DOI] [PubMed] [Google Scholar]
  • 19.Zhao H., Duan R.J., Kong C.H., Dai H.F., Mei W.L., Xu F.Q., Huang S.Z. Two new anti-inflammatory trachylobane diterpenoids from Euphorbia atoto. J. Asian Nat. Prod. Res. 2023:1–7. doi: 10.1080/10286020.2023.2224232. [DOI] [PubMed] [Google Scholar]
  • 20.Aljubiri S.M., Mahgoub S.A., Almansour A.I., Shaaban M., Shaker K.H. Isolation of diverse bioactive compounds from Euphorbia balsamifera: Cytotoxicity and antibacterial activity studies. Saudi J. Biol. Sci. 2021;28:417–426. doi: 10.1016/j.sjbs.2020.10.025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Hassan A.R., Ashour A., Amen Y., Nagata M., El-Toumy S.A., Shimizu K. A new cycloartane triterpene and other phytoconstituents from the aerial parts of Euphorbia dendroides. Nat. Prod. Res. 2022;36:828–836. doi: 10.1080/14786419.2020.1800693. [DOI] [PubMed] [Google Scholar]
  • 22.Shamsabadipour S., Zarei S.M., Ghanadian M., Ayatollahi S.A., Rahimnejad M.R., Saeedi H., Aghaei M. A New Taraxastane triterpene from Euphorbia Denticulata with cytotoxic activity against prostate cancer cells. Iran. J. Pharm. Res. 2018;17:336–342. [PMC free article] [PubMed] [Google Scholar]
  • 23.Ding K., Zhang Y.Y., Yang T., Lian W.W., Xia C., Wang W.P., Zhang W.K., He J., Xu J.K. New rosane diterpenoids and their analogs from Euphorbia ebracteolata Hayata. Chem. Biodivers. 2023;20:e202300013. doi: 10.1002/cbdv.202300013. [DOI] [PubMed] [Google Scholar]
  • 24.Chun J., Mah S.Y., Kim Y.S. Anti-inflammatory effect of ebractenoid f, a major active compound of Euphorbia ebracteolata Hayata, through inhibition of nuclear Factor-κB activation. Plants. 2023;12:2845. doi: 10.3390/plants12152845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Ma Y.L., Tang X.H., Yuan W.J., Ding X., Di Y.T., Hao X.J. Abietane diterpernoids from the roots of Euphorbia ebracteolata. Nat. Prod. Bioprospect. 2018;8:131–135. doi: 10.1007/s13659-018-0159-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Han C., Peng Y., Wang Y., Huo X., Zhang B., Li D., Leng A., Zhang H., Ma X., Wang C. Cytotoxic ent-Abietane-type diterpenoids from the roots of Euphorbia ebracteolata. Bioorg. Chem. 2018;81:93–97. doi: 10.1016/j.bioorg.2018.07.032. [DOI] [PubMed] [Google Scholar]
  • 27.Bai J., Huang X.Y., Liu Z.G., Gong C., Li X.Y., Li D.H., Hua H.M., Li Z.L. Four new compounds from the roots of Euphorbia ebracteolata and their inhibitory effect on LPS-induced NO production. Fitoterapia. 2018;125:235–239. doi: 10.1016/j.fitote.2017.12.006. [DOI] [PubMed] [Google Scholar]
  • 28.Ma X.M., Mo L.Y., Ren Z.P., Fan X.N., Sun P.H., Tian H.Y., Yang N., Zi J.C. New abietane and tigliane diterpenoids from the roots of Euphorbia fischeriana and their cytotoxic activities. J. Asian Nat. Prod. Res. 2023;25:519–527. doi: 10.1080/10286020.2023.2197224. [DOI] [PubMed] [Google Scholar]
  • 29.Zhu Q.F., Xu G.B., Liao S.G., Yan X.L. Ent-Abietane diterpenoids from Euphorbia fischeriana and their cytotoxic activities. Molecules. 2022;27:7258. doi: 10.3390/molecules27217258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Sun C.P., Chang Y.B., Wang C., Lv X., Zhou W.Y., Tian X.G., Zhao W.Y., Ma X.C. Bisfischoids A and B, dimeric ent-abietane-type diterpenoids with anti-inflammatory potential from Euphorbia fischeriana Steud. Bioorg. Chem. 2021;116:105356. doi: 10.1016/j.bioorg.2021.105356. [DOI] [PubMed] [Google Scholar]
  • 31.Xie R., Xia G., Zhu J., Lin P., Fan X., Zi J. Daphnane-type diterpenoids from Euphorbia fischeriana Steud and their cytotoxic activities. Fitoterapia. 2021;149:104810. doi: 10.1016/j.fitote.2020.104810. [DOI] [PubMed] [Google Scholar]
  • 32.Yan X.L., Zhang J.S., Huang J.L., Zhang Y., Chen J.Q., Tang G.H., Yin S. Euphonoids A-G, cytotoxic diterpenoids from Euphorbia fischeriana. Phytochemistry. 2019;166:112064. doi: 10.1016/j.phytochem.2019.112064. [DOI] [PubMed] [Google Scholar]
  • 33.Li M., He F., Zhou Y., Wang M., Tao P., Tu Q., Lv G., Chen X. Three new ent-abietane diterpenoids from the roots of Euphorbia fischeriana and their cytotoxicity in human tumor cell lines. Arch. Pharm. Res. 2019;42:512–518. doi: 10.1007/s12272-019-01151-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Lan Y.H., Chen I.H., Lu H.H., Guo T.J., Hwang T.L., Leu Y.L. Euphormins A and B, new pyranocoumarin derivatives from Euphorbia formosana Hayata, and their anti-inflammatory activity. Molecules. 2022;27:1885. doi: 10.3390/molecules27061885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Yazdiniapour Z., Sohrabi M.H., Motinia N., Zolfaghari B., Mehdifar P., Ghanadian M., Lanzotti V. Diterpenoids from Euphorbia gedrosiaca as potential anti-proliferative agents against breast cancer cells. Metabolites. 2023;13:225. doi: 10.3390/metabo13020225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Hasan A., Liu G.Y., Hu R., Aisa H.A. Jatrophane Diterpenoids from Euphorbia glomerulans. J. Nat. Prod. 2019;82:724–734. doi: 10.1021/acs.jnatprod.8b00507. [DOI] [PubMed] [Google Scholar]
  • 37.Kemboi D., Peter X., Langat M.K., Mhlanga R., Vukea N., de la Mare J.A., Noundou S.X., Krause R.W.M., Tembu V.J. In vitro cytotoxic effects of chemical constituents of Euphorbia grandicornis Blanc against breast cancer cells. Sci. Afr. 2021;14:90. doi: 10.1016/j.sciaf.2021.e01002. [DOI] [Google Scholar]
  • 38.Tsai J.Y., Rédei D., Hohmann J., Wu C.C. 12-Deoxyphorbol esters induce growth arrest and apoptosis in human lung cancer A549 cells via activation of PKC-δ/PKD/ERK signalling pathway. Int. J. Mol. Sci. 2020;21:7579. doi: 10.3390/ijms21207579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Radi M.H., El-Shiekh R.A., El-Halawany A.M., Al-Abd A.M., Abdel-Sattar E. In vitro cytotoxic study of Euphorbia grantii Oliv. aerial parts against MCF-7 and MCF-7ADR breast cancer cell lines: A bioactivity-guided isolation. ACS Omega. 2023;8:18299–18305. doi: 10.1021/acsomega.3c02091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Yang H.Y., Yao W., Huang P.Z., Xu H., Ma Q., Chen X., Chen J.J., Gao K. Euphohelides A-C, ent-abietane-type norditerpene lactones from Euphorbia helioscopia and their anti-inflammatory activities. J. Nat. Prod. 2023;86:1003–1009. doi: 10.1021/acs.jnatprod.3c00041. [DOI] [PubMed] [Google Scholar]
  • 41.Lu Y.B., Luo S., Wang Y.X., Feng Z.Y., Gao K., Chen J.J. Jatrophane diterpenoids with cytotoxic activity from the whole plant of Euphorbia helioscopia L. Phytochemistry. 2022;203:113420. doi: 10.1016/j.phytochem.2022.113420. [DOI] [PubMed] [Google Scholar]
  • 42.Wang W.P., Jiang K., Zhang P., Shen K.K., Qu S.J., Yu X.P., Tan C.H. Highly oxygenated and structurally diverse diterpenoids from Euphorbia helioscopia. Phytochemistry. 2018;145:93–102. doi: 10.1016/j.phytochem.2017.10.012. [DOI] [PubMed] [Google Scholar]
  • 43.Hu R., Sang J., Li W., Tian Y., Zou M.F., Tang G.H., Yin S. Structurally diverse triterpenoids with cytotoxicity from Euphorbia hypericifolia. Fitoterapia. 2021;151:104888. doi: 10.1016/j.fitote.2021.104888. [DOI] [PubMed] [Google Scholar]
  • 44.Xue L.Y., Chen B.L., Yuan F.Y., Zhu Q.F., Zhang X., Lin Y., Long Q.D., Liao S.G. Six new tigliane diterpenoids with anti-inflammatory activity from Euphorbia kansuensis. Arab. J. Chem. 2022;85:103807. doi: 10.1016/j.arabjc.2022.103807. [DOI] [Google Scholar]
  • 45.Yan X.L., Sang J., Zhang X., Lin Y., Long Q.D., Zhu Q.F., Liao S.G. Euphorboside A, a cytotoxic meroterpenoid glycoside with an unusual humulene-phloroglucinol skeleton from Euphorbia kansuensis. Fitoterapia. 2021;153:104966. doi: 10.1016/j.fitote.2021.104966. [DOI] [PubMed] [Google Scholar]
  • 46.Feng X., Li J., Li H., Chen X., Liu D., Li R. Bioactive C21 steroidal glycosides from Euphorbia kansui promoted HepG2 cell apoptosis via the degradation of ATP1A1 and inhibited macrophage polarization under co-cultivation. Molecules. 2023;28:2830. doi: 10.3390/molecules28062830. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Li J.C., Li S.Y., Tang J.X., Liu D., Feng X.Y., Rao K.R., Zhao X.D., Li H.M., Li R.T. Triterpenoids, steroids and other constituents from Euphorbia kansui and their anti-inflammatory and anti-tumour properties. Phytochemistry. 2022;204:113449. doi: 10.1016/j.phytochem.2022.113449. [DOI] [PubMed] [Google Scholar]
  • 48.Zhang J.S., Weng H.Z., Huang J.L., Tang G.H., Yin S. Anti-inflammatory ingenane diterpenoids from the roots of Euphorbia kansui. Planta Med. 2018;84:1334–1339. doi: 10.1055/a-0646-4306. [DOI] [PubMed] [Google Scholar]
  • 49.Riahi F., Dashti N., Ghanadian M., Aghaei M., Faez F., Jafari S.M., Zargar N. Kopetdaghinanes, pro-apoptotic hemiacetialic cyclomyrsinanes from Euphorbia kopetdaghi. Fitoterapia. 2020;146:104636. doi: 10.1016/j.fitote.2020.104636. [DOI] [PubMed] [Google Scholar]
  • 50.Wongprayoon P., Leelasart S., Jantham J., Pootaeng-on Y., Oekchuae S., Limpachayaporn P., Rayanil K., Charoensuksai P. A triterpenoid friedelan-3β-ol isolated from Euphorbia lactea exhibited cytotoxic activity against HN22 cells by inducing an S-phase cell cycle arrest. J. Appl. Pharm. Sci. 2022;12:031–048. doi: 10.7324/JAPS.2022.121004. [DOI] [Google Scholar]
  • 51.Wang W., Liu Y., Xiong L., Sun D., Wang H., Song Z., Li Y., Li H., Chen L. Synthesis of Lathyrol PROTACs and evaluation of their anti-inflammatory activities. J. Nat. Prod. 2023;86:767–781. doi: 10.1021/acs.jnatprod.2c00912. [DOI] [PubMed] [Google Scholar]
  • 52.Jiang D., Gao X., Tan R., Liu X., Zhu Y., Zhang L. Euphorbia factor L1 suppresses breast cancer liver metastasis via DDR1-mediated immune infiltration. Aging. 2023;15:9217–9229. doi: 10.18632/aging.205030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Shi H., Li S., Geng Y., Fan H., Zhang R., Zhang Y., Pan J., Song G., Ge L., Xie T., et al. Euphorbia factor L3 ameliorates rheumatoid arthritis by suppressing the inflammatory response by targeting Rac family small GTPase 1. Bioengineered. 2022;13:10984–10997. doi: 10.1080/21655979.2022.2066761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Wang Y., Song Z., Guo Y., Xie H., Zhang Z., Sun D., Li H., Chen L. Diterpenoids from the seeds of Euphorbia lathyris and their anti-inflammatory activity. Bioorg. Chem. 2021;112:104944. doi: 10.1016/j.bioorg.2021.104944. [DOI] [PubMed] [Google Scholar]
  • 55.Zuo Q., Mu H.Y., Gong Q., Ding X., Wang W., Zhang H.Y., Zhao W.M. Diterpenoids from the seeds of Euphorbia lathyris and their effects on microglial nitric oxide production. Fitoterapia. 2021;150:104834. doi: 10.1016/j.fitote.2021.104834. [DOI] [PubMed] [Google Scholar]
  • 56.Wang W., Wu Y., Li C., Yang Y., Li X., Li H., Chen L. Synthesis of new Lathyrane diterpenoid derivatives from Euphorbia lathyris and evaluation of their anti-inflammatory activities. Chem. Biodivers. 2020;17:e1900531. doi: 10.1002/cbdv.201900531. [DOI] [PubMed] [Google Scholar]
  • 57.Wang J.X., Wang Q., Zhen Y.Q., Zhao S.M., Gao F., Zhou X.L. Cytotoxic Lathyrane-type diterpenes from seeds of Euphorbia lathyris. Chem. Pharm. Bull. 2018;66:674–677. doi: 10.1248/cpb.c17-00946. [DOI] [PubMed] [Google Scholar]
  • 58.Teng Y.N., Wang Y., Hsu P.L., Xin G., Zhang Y., Morris-Natschke S.L., Goto M., Lee K.H. Mechanism of action of cytotoxic compounds from the seeds of Euphorbia lathyris. Phytomedicine. 2018;41:62–66. doi: 10.1016/j.phymed.2018.02.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Wang Q., Zhen Y.Q., Gao F., Huang S., Zhou X. Five new diterpenoids from the seeds of Euphorbia lathyris. Chem. Biodivers. 2018;15:e1800386. doi: 10.1002/cbdv.201800386. [DOI] [PubMed] [Google Scholar]
  • 60.Lee J.W., Jin Q., Jang H., Kim J.G., Lee D., Kim Y., Hong J.T., Lee M.K., Hwang B.Y. Lathyrane-type diterpenoids from the seeds of Euphorbia lathyris L. with inhibitory effects on NO production in RAW 264.7 cells. Chem. Biodivers. 2018;15:e1800144. doi: 10.1002/cbdv.201800144. [DOI] [PubMed] [Google Scholar]
  • 61.Xia R.F., Su J.C., Yu J., Zha H.J., Wu J.L., Fu X.N., Cai Q., Wan L.S. Anti-inflammatory lanostane triterpenoids with rearranged spirobi[indene] scaffold and their biogenetically related analogues from Euphorbia maculata. Phytochemistry. 2023;211:113682. doi: 10.1016/j.phytochem.2023.113682. [DOI] [PubMed] [Google Scholar]
  • 62.Sun Y., Gao L.L., Tang M.Y., Feng B.M., Pei Y.H., Yasukawa K. Triterpenoids from Euphorbia maculata and their anti-inflammatory effects. Molecules. 2018;23:2112. doi: 10.3390/molecules23092112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Azizi K., Hamedi A., Azarpira N., Hamedi A., Shahini M., Pasdaran A. A new cytotoxic sesquiterpene lactone from Euphorbia microsphaera Boiss against human breast cancer (MCF-7) and human fibrosarcoma (HT1080) cells. Toxicon. 2021;202:60–66. doi: 10.1016/j.toxicon.2021.09.011. [DOI] [PubMed] [Google Scholar]
  • 64.Chang S.S., Huang H.T., Wei W.C., Lo I.W., Lin Y.C., Chao C., Liao G.Y., Shen Y.C., Chen J.J., Li T.L., et al. Anti-inflammatory effect of euphane- and tirucallane-type triterpenes isolated from the traditional herb Euphorbia neriifolia L. Front. Chem. 2023;11:1223335. doi: 10.3389/fchem.2023.1223335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Chang S.S., Huang H.T., Lin Y.C., Chao C.H., Liao G.Y., Lin Z.H., Huang H.C., Chun-Ling Kuo J., Liaw C.C., Tai C.J., et al. Neritriterpenols A-G, euphane and tirucallane triterpenes from Euphorbia neriifolia L. and their bioactivity. Phytochemistry. 2022;199:113199. doi: 10.1016/j.phytochem.2022.113199. [DOI] [PubMed] [Google Scholar]
  • 66.Yuan G., Jun-Su Z., Hong-Chun L., Yan Z., Wei-Hang Y., Qun-Fang L., Guan-Wu W., Jin-Xin Z., Jian-Min Y. Phonerilins A–K, cytotoxic ingenane and ingol diterpenoids from Euphorbia neriifolia. Tetrahedron. 2022;123:132955. doi: 10.1016/j.tet.2022.132955. [DOI] [Google Scholar]
  • 67.Li J.C., Feng X.Y., Liu D., Zhang Z.J., Chen X.Q., Li R.T., Li H.M. Diterpenoids from Euphorbia neriifolia and their related anti-HIV and cytotoxic activity. Chem. Biodivers. 2019;16:e1900495. doi: 10.1002/cbdv.201900495. [DOI] [PubMed] [Google Scholar]
  • 68.Ferreira R.J., Kincses A., Gajdács M., Spengler G., Dos Santos D.J.V.A., Molnár J., Ferreira M.U. Terpenoids from Euphorbia pedroi as multidrug-resistance reversers. J. Nat. Prod. 2018;81:2032–2040. doi: 10.1021/acs.jnatprod.8b00326. [DOI] [PubMed] [Google Scholar]
  • 69.Chen Y.Y., Zeng X.T., Xu D.Q., Yue S.J., Fu R.J., Yang X., Liu Z.X., Tang Y.P. Pimarane, abietane, and labdane diterpenoids from Euphorbia pekinensis Rupr. and their anti-tumor activities. Phytochemistry. 2022;197:113113. doi: 10.1016/j.phytochem.2022.113113. [DOI] [PubMed] [Google Scholar]
  • 70.Li Y.Y., Yang Y., Sun M., Lu Q.Y., Pu X.X., Ran X., Li D.M., Wan J.J., Huang J.Y., Guan S.P., et al. Jatrophane polyesters from the leaves of Euphorbia peplus with anti-inflammatory activity. Phytochem. Lett. 2022;49:114–119. doi: 10.1016/j.phytol.2022.03.017. [DOI] [Google Scholar]
  • 71.Aljohani A.S.M., Alhumaydhi F.A., Rauf A., Hamad E.M., Rashid U. In Vivo anti-inflammatory, analgesic, sedative, muscle relaxant activities and molecular docking analysis of phytochemicals from Euphorbia pulcherrima. Evid-Based Complement. Altern. Med. 2022;2022:7495867. doi: 10.1155/2022/7495867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.Li M.M., Qi Y.R., Feng Y.P., Liu W., Yuan T. Euphatexols C - G, five new triterpenoids from the latex of Euphorbia resinifera. J. Asian Nat. Prod. Res. 2022;24:311–320. doi: 10.1080/10286020.2021.1935894. [DOI] [PubMed] [Google Scholar]
  • 73.Fantoukh O.I., Al-Hamoud G.A., Nasr F.A., Almarfadi O.M., Hawwal M.F., Ali Z., Alobaid W.A., Binawad A., Alrashidi M., Alasmari F., et al. Revisiting the flora of Saudi Arabia: Phytochemical and biological investigation of the endangered plant species Euphorbia saudiarabica. Metabolites. 2023;13:556. doi: 10.3390/metabo13040556. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.Salha M.A., Khaled M., Samir A.M., Abdulrahman I.A., Kamel H.S. Bioactive compounds from Euphorbia schimperiana with cytotoxic and antibacterial activities. S. Afr. J. Bot. 2021;141:357–366. doi: 10.1016/j.sajb.2021.05.021. [DOI] [Google Scholar]
  • 75.Yang H., Mamatjan A., Tang D., Aisa H.A. Jatrophane diterpenoids as multidrug resistance modulators from Euphorbia sororia. Bioorg. Chem. 2021;112:104989. doi: 10.1016/j.bioorg.2021.104989. [DOI] [PubMed] [Google Scholar]
  • 76.Zhu H., Ren X., Huang Y., Su T., Yang L. Chemical constituents of Euphorbia stracheyi Boiss (Euphorbiaceae) Metabolites. 2023;13:852. doi: 10.3390/metabo13070852. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77.Liu J.L., Yu M., Liao H.B., Liu T., Tan Y.H., Liang D., Zhang G.J. Sesquiterpenes and diterpenes from Euphorbia thymifolia. Fitoterapia. 2019;139:104408. doi: 10.1016/j.fitote.2019.104408. [DOI] [PubMed] [Google Scholar]
  • 78.Duong T.H., Beniddir M.A., Genta-Jouve G., Nguyen H.H., Nguyen D.P., Nguyen T.A., Mac D.H., Boustie J., Nguyen K.P., Chavasiri W., et al. Further terpenoids from Euphorbia tirucalli. Fitoterapia. 2019;135:44–51. doi: 10.1016/j.fitote.2019.04.001. Erratum in Fitoterapia 2021, 149, 104825. [DOI] [PubMed] [Google Scholar]
  • 79.Silva V.A.O., Rosa M.N., Miranda-Gonçalves V., Costa A.M., Tansini A., Evangelista A.F., Martinho O., Carloni A.C., Jones C., Lima J.P., et al. Euphol, a tetracyclic triterpene, from Euphorbia tirucalli induces autophagy and sensitizes temozolomide cytotoxicity on glioblastoma cells. Investig. New Drug. 2019;37:223–237. doi: 10.1007/s10637-018-0620-y. [DOI] [PubMed] [Google Scholar]
  • 80.Silva V.A.O., Rosa M.N., Tansini A., Oliveira R.J.S., Martinho O., Lima J., Pianowski L.F., Reis R.M. In vitro screening of cytotoxic activity of euphol from Euphorbia tirucalli on a large panel of human cancer-derived cell lines. Exp. Ther. Med. 2018;16:557–566. doi: 10.3892/etm.2018.6244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81.Cruz L.S., de Oliveira T.L., Kanunfre C.C., Paludo K.S., Minozzo B.R., Prestes A.P., Wang M., Fernandes D., Santos F.A.D., Manda V.K., et al. Pharmacokinetics and cytotoxic study of euphol from Euphorbia umbellata (Bruyns) Pax latex. Phytomedicine. 2018;47:105–112. doi: 10.1016/j.phymed.2018.04.055. [DOI] [PubMed] [Google Scholar]
  • 82.Wang Y., Sun D., Jiang Q., Xiong L., Zhang N., Pan Y., Li H., Chen L. Diterpenoids with anti-inflammatory activity from Euphorbia wallichii. Phytochemistry. 2023;205:113486. doi: 10.1016/j.phytochem.2022.113486. [DOI] [PubMed] [Google Scholar]
  • 83.Wang Y., Jiang Q., Sun D., Zhang N., Lin Y., Li H., Chen L. Ent-kauranes and ent-atisanes from Euphorbia wallichii and their anti-inflammatory activity. Phytochemistry. 2023;210:113643. doi: 10.1016/j.phytochem.2023.113643. [DOI] [PubMed] [Google Scholar]
  • 84.WHO. [(accessed on 9 October 2023)]. Available online: https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases.
  • 85.Benjamaa R., Moujanni A., Kaushik N., Choi E.H., Essamadi A.K., Kaushik N.K. Euphorbia species latex: A comprehensive review on phytochemistry and biological activities. Front. Plant Sci. 2022;13:1008881. doi: 10.3389/fpls.2022.1008881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86.Vasas A., Hohmann J. Euphorbia Diterpenes: Isolation, Structure, Biological Activity, and Synthesis (2008–2012) Chem. Rev. 2014;114:8579–8612. doi: 10.1021/cr400541j. [DOI] [PubMed] [Google Scholar]
  • 87.Appendino G. Ingenane Diterpenoids. Prog. Chem. Org. Nat. Prod. 2016;102:1–90. doi: 10.1007/978-3-319-33172-0_1. [DOI] [PubMed] [Google Scholar]
  • 88.Zhang Y., Fan R.Z., Sang J., Tian Y.J., Chen J.Q., Tang G.H., Yin S. Ingol diterpenoids as P-glycoprotein-dependent multidrug resistance (MDR) reversal agents from Euphorbia marginata. Bioorg. Chem. 2020;95:103546. doi: 10.1016/j.bioorg.2019.103546. [DOI] [PubMed] [Google Scholar]
  • 89.Zhang F., Ma C., Che Q., Zhu T., Zhang G., Li D. Extending the Structural Diversity of Labdane Diterpenoids from Marine-Derived Fungus Talaromyces sp. HDN151403 Using Heterologous Expression. Mar. Drugs. 2023;21:628. doi: 10.3390/md21120628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 90.Yoshinaga K., Yokoshima S. Convergent synthesis of the [5-7-6-3] tetracyclic core of premyrsinane diterpenes. Org. Biomol. Chem. 2023;4:724–727. doi: 10.1039/D2OB02210A. [DOI] [PubMed] [Google Scholar]
  • 91.Vela F., Ezzanad A., Hunter A.C., Macías-Sánchez A.J., Hernández-Galán R. Pharmacological Potential of Lathyrane-Type Diterpenoids from Phytochemical Sources. Pharmaceuticals. 2022;15:780. doi: 10.3390/ph15070780. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 92.Iwata M., Inoue T., Asai Y., Hori K., Fujiwara M., Matsuo S., Tsuchida W., Suzuki S. The protective role of localized nitric oxide production during inflammation may be mediated by the heme oxygenase-1/carbon monoxide pathway. Biochem. Biophys. Rep. 2020;23:100790. doi: 10.1016/j.bbrep.2020.100790. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 93.Greten F.R., Grivennikov S.I. Inflammation and cancer: Triggers, mechanisms, and consequences. Immunity. 2019;51:27–41. doi: 10.1016/j.immuni.2019.06.025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 94.Lin M., Tang S., Zhang C., Chen H., Huang W., Liu Y., Zhang J. Euphorbia factor L2 induces apoptosis in A549 cells through the mitochondrial pathway. Acta Pharm. Sin. B. 2017;7:59–64. doi: 10.1016/j.apsb.2016.06.008. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

Not applicable.


Articles from Molecules are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)

RESOURCES