Skip to main content
Journal of Zhejiang University (Medical Sciences) logoLink to Journal of Zhejiang University (Medical Sciences)
. 2023 Feb 19;53(1):73–83. [Article in Chinese] doi: 10.3724/zdxbyxb-2023-0522

靶向肿瘤驱动基因的胃癌治疗研究进展

Advances in targeted therapy for gastric cancer based on tumor driver genes

WU Shiying 1,2,1, XU Pinglong 2,3,4,5,✉,, ZHANG Fei 2,3,✉,
Editors: 沈 敏, 刘 丽娜
PMCID: PMC10938109  PMID: 38413217

Abstract

As the understanding of the pathogenic mechanisms of gastric cancer deepens and the identification of gastric cancer driver genes advances, drugs targeting gastric cancer driver genes have been applied in clinical practice. Among them, trastuzumab, as the first targeted drug for gastric cancer, effectively inhibits the proliferation and metastasis of tumor cells by targeting overexpressed human epidermal growth factor receptor 2 (HER2). Trastuzumab has become the standard treatment for HER2-positive gastric cancer patients. Ramucirumab, on the other hand, inhibits tumor angiogenesis by targeting vascular endothelial growth factor receptor 2 (VEGFR2) and has been used as second-line therapy for advanced gastric cancer patients. In addition, bemarituzumab targets overexpressed fibroblast growth factor receptor 2 (FGFR2), while zolbetuximab targets overexpressed claudin 18.2 (CLDN18.2), significantly extending progression-free survival and overall survival in patients with gastric cancer in clinical trials. This article reviews the roles of tumor driver genes in the progression of gastric cancer, and the treatment strategies for gastric cancer primarily based on targeting HER2, VEGF, FGFR2, CLDN18.2 and MET. This provides a reference for clinical application of targeted therapy for gastric cancer.

Keywords: Gastric cancer, Tumor driver genes, Targeted therapy, Clinical trials, Review


2020年,全球新增胃癌确诊病例超100万,死亡病例约80万人,在癌症新发病人数中排名第五,癌症相关死亡人数中排名第四1。值得关注的是,我国胃癌年发病率和病死率明显高于世界平均水平,2022年新增确诊病例约50万,死亡病例约40万2。肿瘤的发生通常伴随某些基因的改变,包括基因突变、扩增和缺失等,进而导致基因编码蛋白的持续性激活或者失活,引起细胞功能异常和恶性增殖。这些异常改变后具有驱动肿瘤生长和扩散的关键基因称为肿瘤驱动基因。而对于肿瘤驱动基因的研究和理解是推动肿瘤检测和治疗的关键方向。靶向治疗是一种针对特定肿瘤驱动基因产物的治疗策略,通过抑制或阻断这些异常信号通路来阻止肿瘤细胞的增殖和生存。相比传统放化疗,靶向治疗具有更高的特异性和更少的不良反应,因此在肿瘤治疗中扮演着越来越重要的角色。

胃癌是一种多因素参与的复杂疾病,在疾病进程中具有显著差异的基因表达谱。胃癌具有明显的时空异质性:在空间异质性上,超30%的胃癌患者原发灶和新形成的转移灶间基因表达谱存在显著差异;在时间异质性上,同一患者在进行靶向治疗前后的基因表达谱存在较大差异3。随着生物信息学的发展和组学技术的应用,胃癌中一些关键驱动基因被逐步揭示。2012年的研究发现,约40%的胃癌患者中存在肿瘤驱动基因的扩增,如受体酪氨酸激酶EGFRHER2HER3FGFR2JAK2MET基因的扩增,KRASNRAS基因的扩增,以及细胞周期介质和VEGF基因的扩增4-5。2014年,作为癌症基因组图谱(The Cancer Genome Atlas)计划的一部分,研究利用六种分子平台对全球不同地区295例胃癌患者的肿瘤标本数据进行无监督聚类分析,鉴定了EBV感染型、微卫星不稳定型、染色体不稳定型和基因组稳定型等四种胃癌亚型6。随后,亚洲癌症研究小组(Asian Cancer Research Group)对来自韩国的300份标本进行分析,也得出了类似结论7。EBV感染型胃癌通常与DNA甲基化的改变、PIK3CA突变、EBV编码的潜伏膜蛋白1的表达相关68。微卫星不稳定型胃癌与错配修复系统基因(MLH1MSH2MSH6PMS2)的缺陷相关9。染色体不稳定型胃癌通常伴随着染色体水平变异、大片段缺失或重复、染色体重排等,其常见的驱动基因有P53KRASHER2 10。基因组稳定型胃癌缺乏染色体不稳定型和微卫星不稳定型胃癌的特征,但与CDH1RHOA等基因突变关系密切6。近年来鉴定了一些新的胃癌驱动基因,比如ARID1ANTRK 11-12。值得注意的是,这些肿瘤驱动分子在一定程度上是可以被靶向调控的。因此,研究人员针对已鉴定的胃癌驱动基因开发了众多靶向疗法。目前,获准胃癌治疗的靶向疗法主要有曲妥珠单抗(治疗HER2阳性患者的一线疗法)和雷莫芦单抗(抗肿瘤血管生成的二线疗法)。本文总结了胃癌中的关键驱动基因及对应的靶向治疗手段,分析了靶向药物的临床试验和疗效,为胃癌治疗药物的开发提供思路。

驱动胃癌发生发展的关键基因、靶向治疗的原理和相关临床试验见附表1

1. 人表皮生长因子受体2

HER2NeuERBB2)是EGFR家族的成员之一,编码一种跨膜糖蛋白。EGFR蛋白家族由EGFR、HER2、HER3和HER4组成。各成员结构相似,包含胞外结构域、跨膜结构域和胞内酪氨酸激酶结构域13。EGFR家族成员一般可以通过结合其相应的配体发生二聚化,随后激活其胞内酪氨酸激酶活性。不同于EGFR家族其他成员,HER2无相应配体,需要与同家族的EGFR或HER3形成异源二聚体来激活14,进而激活Ras/MAPK和PI3K/Akt通路,调控细胞的增殖和凋亡15。值得注意的是,HER2的胞外结构域不存在活性和非活性构象之间的转换,而是始终保持活化构象16。研究表明,HER2是一种关键肿瘤驱动因子,在多种肿瘤类型中通过HER2基因位点的扩增来增加其蛋白水平17。这种蛋白的过度表达导致HER2异二聚体在细胞膜上的聚集和活性增强,进一步促进HER2的高效循环,从而在表皮生长因子的刺激下持续激活下游信号17。此外,HER2能显著抑制肿瘤免疫中的关键信号——核酸免疫识别信号18。据统计,约20%的胃癌患者中存在HER2过表达19。鉴于靶向HER2疗法在HER2阳性乳腺癌中展现的优越效果,在胃癌中探索靶向HER2的治疗方法具有较高的临床价值。

针对HER2阳性晚期胃癌患者的靶向治疗方法已经较为成熟。一项2010年开展的Ⅲ期临床试验结果显示,使用HER2特异性抗体曲妥珠单抗对HER2阳性肿瘤患者具有显著的疗效20。在这项试验中,入选患者必须为经FISH检测确认为HER2扩增阳性者。随后,这些患者被随机分为两组:一组接受化疗(包括顺铂和氟嘧啶),另一组接受化疗联合曲妥珠单抗治疗。试验结果表明,使用联合治疗的患者中位总生存期明显改善(分别为13.8和11.1个月),其中肿瘤组织IHC评分为3+或FISH结果阳性且IHC评分为2+的患者效果更显著20。这项研究改革了HER2阳性胃癌的标准治疗方法,引入了曲妥珠单抗与顺铂和氟嘧啶类药物化疗的联合应用。另外,该研究在处理转移性肿瘤中强调HER2阳性细胞检测的必要性,HER2阳性进一步被定义为IHC评分3+或FISH结果阳性且IHC评分2+。

也有研究针对局部晚期可切除的HER2阳性胃癌的靶向疗法进行临床评估。在一项非随机Ⅱ期临床试验中,研究人员检测了联合使用奥沙利铂、卡培他滨和曲妥珠单抗治疗的效果,该试验达到了设定的主要终点:联合用药患者的18个月无病生存率超70%;也达到了其他次要终点目标:如9.6%的完全反应率和51%的病理阴性结节反应,这显示了联合治疗的适度活性21。一项提前结束的随机Ⅱ期临床试验评估了HER2双抗体曲妥珠单抗和帕妥珠单抗联合标准化疗的效果22。结果显示,与标准化疗比较,联合双抗体显著提高了患者病理完全反应率(分别为12%和35%)和阴性结节比例(分别为39%和68%)。尽管药物不良反应增加,但不影响后续的胃癌手术切除以及术后并发症。一项正在进行的Ⅲ期临床试验(NCT02205047)将胃癌患者随机分配接受化疗,化疗联合曲妥珠单抗,或化疗、曲妥珠单抗联合帕妥珠单抗治疗,将明确HER2靶向疗法在围手术期的价值。

针对胃癌的异质性和HER2靶向疗法的耐药性等挑战,研究人员尝试开发新型抗体药物偶联物和更强效的HER2抗体。德喜曲妥珠单抗(trastuzumab deruxtecan)由曲妥珠单抗、四肽连接体和拓扑异构酶I抑制剂组成。这种药物能够破坏靶细胞周围的细胞,甚至是那些HER2阴性细胞,表现出明显的旁观者效应。一项针对曾接受过曲妥珠单抗或其他二线治疗后病情进展患者的Ⅱ期临床试验评估了德喜曲妥珠单抗的疗效23,结果达到了总反应率的主要目标(化疗和联合用药分别为14%和51%)。目前,在二线治疗中,评估德喜曲妥珠单抗或紫杉醇-雷莫芦单抗的临床试验(NCT04704934)正在进行中。马吉妥昔单抗(margetuximab)是一种高亲和力的HER2抗体。一项纳入66例HER2阳性乳腺癌或胃癌患者的Ⅰ期临床试验显示马吉妥昔单抗具有良好的活性,总控制率为62%,其中50%患者的病情保持稳定,而12%患者出现了部分反应24。图卡替尼(tucatinib)是一种新型HER2小分子抑制剂,能结合在HER2的ATP口袋。目前,一项正在进行的Ⅱ~Ⅲ期临床试验(NCT04499924)旨在二线治疗中评估紫杉醇联用雷莫芦单抗的基础上联合图卡替尼、曲妥珠单抗的效果。此外,一项探索使用能同时抑制HER2胞外结构域2和4的双特异性抗体——泽尼达妥单抗(zanidatamab)效果的临床试验也在进行中(NCT05152147)。

2. 血管内皮生长因子

VEGF最初被认为是一种内皮细胞特异性有丝分裂原,在生理和病理环境中都具有诱导血管生成的能力25。随后又发现了多个类似的家族成员,研究人员将最早发现的VEGF称为VEGFA,其他成员分别命名为VEGFB、VEGFC、VEGFD和胎盘生长因子。这些生长因子在表达模式、受体特异性以及生物功能方面都存在一定的差异性26。VEGF通过结合其受体来传递信号,其受体包括VEGFR1(又称FLT1)、VEGFR2(又称FLK1和KDR)和VEGFR3(又称FLT4)27。这些受体主要在内皮细胞和肿瘤细胞中表达,并且其在肿瘤中的表达水平与疾病进程相关。血管生成是一个复杂的过程,涉及多种变化以及微环境成分的协同作用。VEGF在这一过程中发挥着根本性的作用。首先,内皮细胞连接松动,同时产生一氧化氮,促进血管通透性增加和血管扩张28。然后,VEGF诱导包括基质金属蛋白酶在内的多种蛋白酶的表达,从而溶解血管周围的细胞外基质29。最后,VEGF将内皮祖细胞和其他骨髓衍生细胞招募到新血管形成的部位30。同时,VEGF在多种疾病尤其是在癌症中发挥关键作用。肿瘤细胞通常过度表达VEGF,促进内部血管的生长,从而为肿瘤的生存提供足够的营养和氧。因此,治疗癌症和其他疾病的抗血管生成策略的开发主要集中在VEGF及其相关信号通路上。

胃癌组织中的VEGF水平通常较高,促血管生成细胞因子的分泌也较多。然而在临床实践中,抗血管生成疗法的应用效果却存在差异。雷莫芦单抗是一种人源化的VEGFR2单克隆抗体,在二线治疗中,单独使用雷莫芦单抗的疗效明显优于安慰剂31。进一步研究发现,雷莫芦单抗和紫杉醇联合治疗的胃癌患者的总生存期较单独化疗患者延长32。目前,雷莫芦单抗联合紫杉醇已成为新的标准治疗手段。此外,一项联合使用雷莫芦单抗和图沙米单抗(tusamitamab)、拉弗坦辛(ravtansine,一种由抗癌胚抗原相关细胞黏附分子5与细胞毒性药物结合而成的免疫结合剂)的研究将进一步评估靶向VEGF的疗效(NCT05071053)。阿帕替尼(apatinib)是一种靶向VEGFR2的小分子抑制剂,国内一项纳入267例胃癌患者的临床试验结果显示阿帕替尼明显改善了患者的总生存期33

尽管抑制血管生成在肿瘤二线及以上的治疗中表现出一定的效果,但在一线治疗中效果不理想。在未经筛选的胃癌患者的一线化疗中,雷莫芦单抗34和贝伐单抗35均未显示出足够的治疗活性。在一项针对180例随机分配的患者开展的Ⅱ期临床试验中评估了化疗与化疗联合雷莫芦单抗对局部晚期胃癌患者的治疗效果,初步结果显示接受联合雷莫芦单抗治疗患者经手术切除的肿瘤复发率下降,尤其是在较大肿瘤患者的治疗中效果更为显著36。因此,未来应尝试在特定胃癌患者群体中开展抑制血管生成的治疗研究。

3. 成纤维细胞生长因子受体2

FGFR家族包含FGFR1~4四个受体酪氨酸激酶37。FGFR1~4具有相似的结构,主要由胞外配体结构域、跨膜结构域和胞内酪氨酸激酶结构域组成。FGFR家族成员定位于细胞膜上,与其配体结合后发生二聚化导致构象转变,从而激活胞内激酶结构域,进而招募FGFR底物2、生长因子受体结合蛋白2和SOS信号分子,促进下游RAS和MAPK通路的激活38。此外,FGFR也能激活PI3K/Akt和STAT3信号通路37。FGFR在器官发育和疾病进程中发挥作用,调控细胞的增殖、迁移和存活,促进血管生成和伤口愈合等生理过程。有统计数据显示,胃癌患者中FGFR2基因扩增的发生率为2%~9%,具体取决于患者群体的临床特征和检测扩增的方法439。在一项基于6667份晚期胃癌患者肿瘤组织标本的基因组图谱研究中,269份存在FGFR2基因变异(占总标本的4%)。这些基因变异中,最常见的类型是基因扩增(71.7%),其次是基因突变(13.4%)、易位(8.6%)以及同时发生多种改变(6.3%)40。胃癌中FGFR2基因变异通常会导致FGFR2蛋白的过度表达和FGFR2信号的组成性激活,进而促进肿瘤细胞的增殖。临床研究表明,胃癌中FGFR2的过表达通常伴随着更强的肿瘤侵袭性,如更高分级的肿瘤分期、淋巴结和远端转移,导致患者较差的预后41。因此,在FGFR2过表达的胃癌患者中靶向调控FGFR2具有重要的临床意义。

贝马利珠单抗(bemarituzumab)是一种人源化的FGFR2b单克隆抗体,具有抑制FGFR2b与配体结合的能力,并介导抗体依赖的细胞毒性效应42。一项Ⅱ期临床试验比较了标准化疗与化疗联合贝马利珠单抗的疗效,结果显示联合用药显著改善FGFR2b高表达胃癌患者的无进展生存期和总生存期,其中化疗组和联合贝马利珠单抗组的总生存期分别为11.1和25.4个月;贝马利珠单抗治疗的效果与FGFR2b阳性染色程度之间存在明显的正相关43。德拉赞替尼(derazantinib)是一种可口服的FGFR1、FGFR2和FGFR3酪氨酸激酶抑制剂。目前,一项正在进行的Ⅰ~Ⅱ期临床试验针对HER2阴性且FGFR2基因变异(FGFR2基因易位、FGFR2基因扩增或FGFR1FGFR2FGFR3基因突变)胃癌患者,评估德拉赞替尼单药治疗或联用紫杉醇、雷莫芦单抗或阿替珠单抗(atezolizumab)的治疗效果(NCT04604132)。

4. 紧密连接蛋白18.2

CLDN是细胞间紧密连接的主要组成部分之一,在多层上皮细胞中发挥关键的作用,维持细胞层次结构的完整性,调节细胞之间物质的通过。其家族包含27个跨膜蛋白44,根据序列的不同,可分为经典型和非经典型。经典型包括CLDN1~10、CLDN14、CLDN15、CLDN17和CLDN19,非经典型包括CLDN11~13、CLDN16、CLDN18和CLDN20~2445。CLDN的相对分子量为20 000~34 000,由细胞质的氨基端区域、两个胞外环状结构、四个跨膜结构域和细胞质的羧基端尾部组成46。CLDN18蛋白具有CLDN18.1和CLDN18.2两个剪接变体47。其中,CLDN18.1特异性表达在正常和癌变的肺组织中,CLDN18.2在正常胃组织以及胃癌、胰腺癌、食管癌和肺癌组织中表达。在正常生理状态下,胃黏膜细胞中的CLDN18.2被包裹在紧密连接相关的超分子复合物中,其表位几乎不能被抗体识别48。然而,当正常组织癌变后会丧失细胞极性,CLDN18.2的表位会暴露出来,从而被抗体结合。同时,CLDN18.2在胃癌转移过程中发挥重要作用47。CLDN18.2可作为肿瘤治疗性抗体的靶点49

佐妥昔单抗(zolbetuximab)是针对CLDN18.2开发的一种重组IgG1抗体。在一项CLDN18.2阳性胃癌患者的随机Ⅱ期临床试验中,佐妥昔单抗联合化疗可显著延长患者的无进展生存期和总生存期,且与CLDN18.2的表达水平呈显著正相关50。目前,评估一线化疗中添加佐妥昔单抗对CLDN18.2高表达患者治疗效果的两项Ⅲ期临床试验正在进行中51-52。此外,一些靶向CLDN18.2的新型药物也正在研发和测试中。例如,一项针对曾接受过治疗的消化系统癌症患者的Ⅰ期临床试验中期分析报告显示,使用靶向CLDN18.2的嵌合抗原受体T细胞CT041对患者病情具有积极作用53。此外,一种能将肿瘤细胞和CD3+ T细胞相连接的双特异性T细胞衔接抗体也在开发中(NCT04260191)。综上所述,靶向CLDN18.2的相关临床试验仍处于早期探索阶段,其治疗效果值得期待。

5. 间质上皮细胞转化因子

MET也称肝细胞生长因子受体,是一种受体酪氨酸激酶,在胚胎发育、组织再生、机体稳态和伤口愈合等过程中发挥重要作用54。MET由一个胞外α亚基(相对分子量为50 000)和一个单次跨膜β亚基(相对分子量为145 000)组成。MET的经典激活方式是与其配体肝细胞生长因子结合,进而发生MET自磷酸化并激活下游信号。此外,MET也可以不依赖于肝细胞生长因子的方式激活,即所谓的非经典激活。例如,在肝细胞癌中,脱-γ-羧基凝血酶原可通过MET-JAK1-STAT3信号转导引起MET的自身磷酸化,从而诱导细胞增殖55。早期基于11个胃细胞系的研究发现,大多数弥漫型胃癌的7号染色体上存在MET基因扩增,这与胃癌较差的预后相关56。一项纳入154例胃癌患者的研究发现,约有18%癌症组织MET染色阳性,并且晚期胃癌中MET的表达更为普遍57。信使RNA测序结果显示,30%患者MET外显子的替代剪接事件会导致MET的过表达6。一项对包含2258例胃癌患者的16项研究进行综合分析的论文中,研究人员发现MET过表达与胃癌患者较差的存活率相关58。因此,MET是潜在的胃癌驱动因素,值得进一步开发靶向MET的胃癌治疗方法。

近年来,研究者针对MET和肝细胞生长因子分别开发了单克隆抗体——奥那妥组单抗(onartuzumab)和利妥木单抗(rilotumumab)。两项大型随机Ⅲ期临床试验结果表明,这两种单抗均不能改善患者的总生存期59-60。其中一项试验是在化疗的基础上联用奥那妥组单抗,虽然肿瘤细胞IHC染色超过50%且评分为2+或3+的MET高表达患者存活率有所提高,但其客观缓解率并无改善。目前,靶向MET的策略具有一定的挑战性,还需要开发安全高效的新药物,并进行充分的临床研究。

6. 富含AT的相互作用结构域蛋白1A

ARID1A又称BAF250a,是染色质重塑复合物(SWI/SNF)的一个重要亚基。染色质重塑复合物能调控DNA聚合酶、转录因子和DNA损伤修复等蛋白对基因的可及性61。ARID1A的相对分子量为240 000,主要定位于细胞核中。ARID1A的氨基端包含一个ARID结构域,可与富含AT的DNA序列结合,并引导染色质重塑复合物到达这些DNA位置。ARID1A的羧基端包含三个富含亮氨酸的LXXLL序列,形成一个糖皮质激素受体结合结构域。ARID1A通过结合糖皮质激素受体等核转录因子启动并促进转录活动。此外,ARID1A的氨基端含有一个LXXLL序列,羧基端含有一个HIC1结合域。ARID1A可直接定位到靶基因,通过与其他蛋白的互作调节细胞中的基因转录,直接控制癌症相关基因的表达,或通过调节组蛋白修饰酶的招募或活性间接控制癌症相关基因的表达62。正常情况下ARID1A很少发生突变,突变率在胃上皮肠化生标本中不到2%63,但在胃癌标本中高达8%~27%664-67。值得注意的是,ARID1A突变通常会导致ARID1A蛋白表达的缺失,并且ARID1A突变在不同胃癌亚型中存在差异。一项对109例胃癌患者进行的全外显子组测序分析研究发现,微卫星不稳定组、微卫星稳定且EBV阳性组和微卫星稳定且EBV阴性组的ARID1A突变率分别为78%(18/23)、47%(7/15)和10%(7/71)64。后续几项研究结果与其一致,即ARID1A突变主要发生在EBV感染和微卫星不稳定的胃癌亚型中768。并且,目前认为ARID1A突变具有促进胃癌发生的作用。

当ARID1A失去正常功能时,DNA损伤修复不能有效进行,癌细胞会对靶向修复途径的治疗药物更加敏感,如多腺苷二磷酸核糖聚合酶抑制剂。因此,靶向ARID1A的疗法通常是采用合成致死的策略,即在ARID1A缺失或突变患者中使用DNA损伤响应、免疫检查点等抑制剂。目前,尚未在胃癌患者中开展靶向ARID1A的临床试验。一项临床前研究揭示了ARID1A缺失导致mTOR信号激活的机制,并提出了使用mTOR抑制剂来靶向治疗ARID1A缺陷的新疗法67。同时,EZH2抑制剂能够以剂量依赖的方式降低ARID1A缺陷胃癌细胞的活力,表明其在这一患者群体中具有潜在的靶向治疗效果69。基于部分临床前研究的实验结果,靶向ARID1A的胃癌治疗策略值得在临床试验中进一步探究。

7. KRAS和神经营养因子受体酪氨酸激酶

RAS基因在所有癌症中的突变率高达21%,RAS有三种异构体,即KRAS、HRASNRAS 670-71,错义突变最常见于KRAS(85%),而NRAS(12%)和HRAS(3%)则较少72。三种异构体均编码相对分子量为21 000的鸟嘌呤核苷酸结合蛋白,在GTP和GDP结合状态之间循环。这种二元切换受鸟嘌呤核苷酸交换因子和GTP酶激活蛋白的调控。在无上游刺激的情况下,RAS蛋白因其固有的GTP酶活性而保持GDP结合状态,无法参与下游信号转导。当上游受体激活时,鸟嘌呤核苷酸交换因子会促进GDP转变为GTP。GTP结合的RAS在开关Ⅰ和Ⅱ区域发生构象变化,从而招募各种下游效应分子,激活RAF-MEK-ERK、PI3K-Akt-mTOR和其他非经典下游信号。神经纤维瘤蛋白1等GTP酶激活蛋白可刺激GTP水解,使RAS恢复到非活性状态73。KRAS核苷酸结合位点周围的第12、13和61位密码子容易发生突变,其中G12的突变频率最高。这些突变通常会导致下游信号通路的过度激活,从而导致癌症的一系列生物学行为74。尽管靶向KRAS的治疗方法已经研究了数十年,但直接抑制KRAS的药物疗效均不理想。目前靶向KRAS的治疗策略主要是采用靶向KRAS下游信号通路的策略,如靶向MEK、PI3K-AKT和mTOR等关键蛋白,这些疗法由于种类较多且目前在胃癌患者中的治疗效果有限,本文不做过多介绍。

NTRK基因家族包括NTRK1NTRK2NTRK3基因,分别编码TRKA、TRKB和TRKC三种蛋白,这些蛋白通常在神经细胞中表达。三种TRK蛋白的结构具有高度的同源性,均由胞外结构域、跨膜结构域和胞内结构域构成75NTRK基因融合即NTRK基因家族成员与另一个不相关的基因融合在一起,产生的TRK融合蛋白将处于持续激活状态,引发持续的下游信号级联反应,驱动肿瘤的生长和扩散76NTRK融合最初发现于结肠直肠癌和甲状腺乳头状癌,后来在成人和儿童患者的多种肿瘤类型中均发现了NTRK融合77。虽然NTRK融合在多种类型肿瘤中比例较高,但在胃癌中较少出现,2020年报道第一例ATP1B-NTRK1融合胃癌病例12。2023年,国内进行的一项研究在491例胃癌患者中发现2例NTRK融合患者,分别是TPM3-NTRK1NTRK2-SMCHD1 78。关于NTRK融合在胃癌中的研究目前还在处于起步阶段,需要更多资料积累。

8. 结语

化疗、放疗和免疫治疗都是胃癌治疗中的重要手段,在部分胃癌患者中,靶向胃癌驱动基因的治疗已被证实为更安全和有效的治疗方式。HER2阳性胃癌患者的靶向治疗手段较为成熟,其中曲妥珠单抗已经用于一线疗法,而靶向VEGF的雷莫芦单抗则已用于二线治疗。相较于化疗、放疗和免疫治疗,靶向治疗能够更精确地作用于肿瘤细胞的特异性靶标,从而实现更高的杀伤效率和更小的毒副作用。此外,靶向治疗药物具有更强的特异性,可以减少耐药性的发生。不同于免疫治疗,靶向治疗对肿瘤的免疫原性和患者自身免疫系统的依赖性较低,具有更广泛的适用性。尽管如此,靶向疗法也面临着诸多挑战和局限:①胃癌的高度异质性导致关键胃癌驱动基因的鉴定较为困难,进而限制了可选靶标基因数;②某些靶向肿瘤驱动基因的治疗策略在临床试验中未能达到预期效果,如靶向MET疗法在临床试验中表现不理想,增加了新靶向疗法的开发难度;③已有靶向胃癌治疗手段相对匮乏,并且有些疗法如靶向HER2疗法面临着临床耐药性问题,靶向VEGF的雷莫芦单抗在胃癌一线疗法中无明显效果。

未来,联合应用多种治疗手段将成为胃癌治疗的重要趋势。联合应用靶向治疗、化疗、免疫治疗和放疗可以在胃癌治疗中发挥协同效应,提高整体疗效。化疗和放疗可以帮助缩小肿瘤体积,使靶向治疗更容易接触到癌细胞,有助于提高靶向治疗的有效性。放疗结合免疫治疗可以同时实现局部控制和全身免疫响应。联合应用可以同时作用于多个治疗靶点,通过不同的作用机制相互协调,增强整体治疗效果,并降低耐药性。不同患者对不同治疗方法的反应可能存在差异,联合应用可以提高整体治疗反应率,增加患者获益的可能性。随着生物分子学和大规模测序技术的不断发展,会更深入地揭示胃癌发生发展的时空转录组学特征。这将有助于发现新的特异性治疗靶标,为胃癌的精准治疗提供有力支持。同时,考虑到肿瘤存在明显的空间和时间上的异质性,临床上需要整体把握每例胃癌患者的疾病进展和分子特征变化,制订个体化的精准治疗策略。通过综合运用手术、化疗、靶向治疗及免疫治疗等多种手段,胃癌患者的生存情况和生活质量有望显著改善,从而为这一致命疾病的治疗带来新的希望。

Supplementary information

本文附表见电子版。

Acknowledgments

研究得到国家自然科学基金(32001667, 31725017, 31830052)、国家重点研发计划(2021YFA1301401)、浙江省自然科学基金(LY22C200012, LQ22C070001, LQ22H19 0003)支持

Acknowledgments

This work was supported by the National Natural Science Foundation of China (32001667, 31725017, 31830052), National Key R&D Program of China (2021YFA1301401), and Natural Science Foundation of Zhejiang Province (LY22C200012, LQ22C070001, LQ22H 190003)

[缩略语]

表皮生长因子受体(epidermal growth factor receptor,EGFR);人表皮生长因子受体(human epidermal growth factor receptor,HER);成纤维细胞生长因子受体(fibroblast growth factor receptor,FGFR);间充质细胞上皮转换因子(mesenchymal epithelial transition factor,MET);EB病毒(Epstein-Barr virus,EBV);富含AT的相互作用结构域蛋白(AT-rich interactive domain,ARID);神经营养因子受体酪氨酸激酶(neurotrophic receptor tyrosine kinase,NTRK);丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK);磷酸肌醇3-激酶(phosphoinositide 3-kinase,PI3K);荧光原位杂交(fluorescence in situ hybridization,FISH);免疫组织化学(immunohisto-chemistry,IHC);血管内皮生长因子(vascular endothelial growth factor,VEGF);VEGF受体(VEGF receptor,VEGFR);信号传导及转录激活因子(signal transducers and activators of transcription,STAT);紧密连接蛋白(claudin,CLDN);哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR);鸟苷三磷酸(guanosine triphosphate,GTP);鸟苷二磷酸(guanosine diphosphate,GDP);原肌球蛋白受体激酶(tropomyosin receptor kinase,TRK)

利益冲突声明

所有作者均声明不存在利益冲突

Conflict of Interests

The authors declare that there is no conflict of interests

参考文献(References)

  • 1.SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. 10.3322/caac.21660 [DOI] [PubMed] [Google Scholar]
  • 2.XIA C F, DONG X S, LI H, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants[J]. Chin Med J (Engl), 2022, 135(5): 584-590. 10.1097/cm9.0000000000002108 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.ALSINA M, ARRAZUBI V, DIEZ M, et al. Current developments in gastric cancer: from molecular pro-filing to treatment strategy[J]. Nat Rev Gastroenterol Hepatol, 2023, 20(3): 155-170. 10.1038/s41575-022-00703-w [DOI] [PubMed] [Google Scholar]
  • 4.DENG N, GOH L K, WANG H, et al. A compre-hensive survey of genomic alterations in gastric cancer reveals systematic patterns of molecular exclusivity and co-occurrence among distinct therapeutic targets[J]. Gut, 2012, 61(5): 673-684. 10.1136/gutjnl-2011-301839 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.DULAK A M, SCHUMACHER S E, VAN LIESHOUT J, et al. Gastrointestinal adenocarcinomas of the esophagus, stomach, and colon exhibit distinct patterns of genome instability and oncogenesis[J]. Cancer Res, 2012, 72(17): 4383-4393. 10.1158/0008-5472.can-11-3893 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.BASS A J, THORSSON V, SHMULEVICH I, et al. Comprehensive molecular characterization of gastric adenocarcinoma[J]. Nature, 2014, 513(7517): 202-209. 10.1038/nature13480 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.CRISTESCU R, LEE J, NEBOZHYN M, et al. Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes[J]. Nat Med, 2015, 21(5): 449-456. 10.1038/nm.3850 [DOI] [PubMed] [Google Scholar]
  • 8.HUANG X, ZHANG M, ZHANG Z. The role of LMP1 in Epstein-Barr virus-associated gastric cancer[J]. Curr Cancer Drug Targets, 2024, 24(2): 127-141. 10.2174/1568009623666230512153741 [DOI] [PubMed] [Google Scholar]
  • 9.SMYTH E C, NILSSON M, GRABSCH H I, et al. Gastric cancer[J]. Lancet, 2020, 396(10251): 635-648. 10.1016/s0140-6736(20)31288-5 [DOI] [PubMed] [Google Scholar]
  • 10.NEMTSOVA M V, KUZNETSOVA E B, BURE I V. Chromosomal instability in gastric cancer: role in tumor development, progression, and therapy[J]. Int J Mol Sci, 2023, 24(23): 16961. 10.3390/ijms242316961 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.ZAFRA M P, DOW L E. Revealing ARID1A function in gastric cancer from the bottom up[J]. Cancer Discov, 2021, 11(6): 1327-1329. 10.1158/2159-8290.cd-21-0271 [DOI] [PubMed] [Google Scholar]
  • 12.SHINOZAKI-USHIKU A, ISHIKAWA S, KOMURA D, et al. The first case of gastric carcinoma with NTRK rearrangement: identification of a novel ATP1B-NTRK1 fusion[J]. Gastric Cancer, 2020, 23(5): 944-947. 10.1007/s10120-020-01061-9 [DOI] [PubMed] [Google Scholar]
  • 13.TEBBUTT N, PEDERSEN M W, JOHNS T G. Targeting the ERBB family in cancer: couples therapy[J]. Nat Rev Cancer, 2013, 13(9): 663-673. 10.1038/nrc3559 [DOI] [PubMed] [Google Scholar]
  • 14.GARRETT T P, MCKERN N M, LOU M, et al. The crystal structure of a truncated ErbB2 ectodomain reveals an active conformation, poised to interact with other ErbB receptors[J]. Mol Cell, 2003, 11(2): 495-505. 10.1016/s1097-2765(03)00048-0 [DOI] [PubMed] [Google Scholar]
  • 15.HOXHAJ G, MANNING B D. The PI3K-AKT network at the interface of oncogenic signalling and cancer metabolism[J]. Nat Rev Cancer, 2020, 20(2): 74-88. 10.1038/s41568-019-0216-7 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.CHO H S, MASON K, RAMYAR K X, et al. Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab[J]. Nature, 2003, 421(6924): 756-760. 10.1038/nature01392 [DOI] [PubMed] [Google Scholar]
  • 17.GERSON J N, SKARIAH S, DENLINGER C S, et al. Perspectives of HER2-targeting in gastric and eso-phageal cancer[J]. Expert Opin Investig Drugs, 2017, 26(5): 531-540. 10.1080/13543784.2017.1315406 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.WU S, ZHANG Q, ZHANG F, et al. HER2 recruits AKT1 to disrupt STING signalling and suppress antiviral defence and antitumour immunity[J]. Nat Cell Biol, 2019, 21(8): 1027-1040. 10.1038/s41556-019-0352-z [DOI] [PubMed] [Google Scholar]
  • 19.OH D Y, BANG Y J. HER2-targeted therapies—a role beyond breast cancer [J]. Nat Rev Clin Oncol, 2020, 17(1): 33-48. 10.1038/s41571-019-0268-3 [DOI] [PubMed] [Google Scholar]
  • 20.BANG Y J, VAN CUTSEM E, FEYEREISLOVA A, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial[J]. Lancet, 2010, 376(9742): 687-697. 10.1016/s0140-6736(10)61121-x [DOI] [PubMed] [Google Scholar]
  • 21.RIVERA F, IZQUIERDO-MANUEL M, GARCÍA-ALFONSO P, et al. Perioperative trastuzumab, capeci-tabine and oxaliplatin in patients with HER2-positive resectable gastric or gastro-oesophageal junction adeno-carcinoma: NEOHX phase Ⅱ trial[J]. Eur J Cancer, 2021, 145: 158-167. 10.1016/j.ejca.2020.12.005 [DOI] [PubMed] [Google Scholar]
  • 22.AL-BATRAN S E, HAAG G M, ETTRICH T J, et al. Final results and subgroup analysis of the PETRARCA randomized phase Ⅱ AIO trial: perioperative tras-tuzumab and pertuzumab in combination with FLOT versus FLOT alone for HER2 positive resectable esophagogastric adenocarcinoma[J]. Ann Oncol, 2020, 31: S899. 10.1016/j.annonc.2020.08.1927 [DOI] [Google Scholar]
  • 23.SHITARA K, BANG Y J, IWASA S, et al. Trastuzumab deruxtecan in previously treated HER2-positive gastric cancer[J]. N Engl J Med, 2020, 382(25): 2419-2430. 10.1056/nejmoa2004413 [DOI] [PubMed] [Google Scholar]
  • 24.BANG Y J, GIACCONE G, IM S A, et al. First-in-human phase 1 study of margetuximab (MGAH22), an Fc-modified chimeric monoclonal antibody, in patients with HER2-positive advanced solid tumors[J]. Ann Oncol, 2017, 28(4): 855-861. 10.1093/annonc/mdx002 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.LEUNG D W, CACHIANES G, KUANG W J, et al. Vascular endothelial growth factor is a secreted angiogenic mitogen[J]. Science, 1989, 246(4935): 1306-1309. 10.1126/science.2479986 [DOI] [PubMed] [Google Scholar]
  • 26.KOCH S, CLAESSON-WELSH L. Signal transduction by vascular endothelial growth factor receptors[J]. Cold Spring Harb Perspect Med, 2012, 2(7): a006502. 10.1101/cshperspect.a006502 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.APTE R S, CHEN D S, FERRARA N. VEGF in signaling and disease: beyond discovery and develop-ment[J]. Cell, 2019, 176(6): 1248-1264. 10.1016/j.cell.2019.01.021 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.DONG F, HA X Q. Effect of endothelial progenitor cells in neovascularization and their application in tumor therapy[J]. Chin Med J (Engl), 2010, 123(17): 2454-2460. [PubMed] [Google Scholar]
  • 29.POTENTE M, GERHARDT H, CARMELIET P. Basic and therapeutic aspects of angiogenesis[J]. Cell, 2011, 146(6): 873-887. 10.1016/j.cell.2011.08.039 [DOI] [PubMed] [Google Scholar]
  • 30.GRUNEWALD M, AVRAHAM I, DOR Y, et al. VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells[J]. Cell, 2006, 124(1): 175-189. 10.1016/j.cell.2005.10.036 [DOI] [PubMed] [Google Scholar]
  • 31.FUCHS C S, TOMASEK J, YONG C J, et al. Ramuci-rumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): an international, randomised, multicentre, placebo-controlled, phase 3 trial[J]. Lancet, 2014, 383(9911): 31-39. 10.1016/s0140-6736(13)61719-5 [DOI] [PubMed] [Google Scholar]
  • 32.WILKE H, MURO K, VAN CUTSEM E, et al. Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): a double-blind, randomised phase 3 trial[J]. Lancet Oncol, 2014, 15(11): 1224-1235. 10.1016/s1470-2045(14)70420-6 [DOI] [PubMed] [Google Scholar]
  • 33.LI J, QIN S, XU J, et al. Randomized, double-blind, placebo-controlled phase Ⅲ trial of apatinib in patients with chemotherapy-refractory advanced or meta-static adenocarcinoma of the stomach or gastroeso-phageal junction[J]. J Clin Oncol, 2016, 34(13): 1448-1454. 10.1200/jco.2015.63.5995 [DOI] [PubMed] [Google Scholar]
  • 34.FUCHS C S, SHITARA K, DI BARTOLOMEO M, et al. Ramucirumab with cisplatin and fluoropyrimidine as first-line therapy in patients with metastatic gastric or junctional adenocarcinoma (RAINFALL): a double-blind, randomised, placebo-controlled, phase 3 trial[J]. Lancet Oncol, 2019, 20(3): 420-435. [DOI] [PubMed] [Google Scholar]
  • 35.OHTSU A, SHAH M A, VAN CUTSEM E, et al. Bevacizumab in combination with chemotherapy as first-line therapy in advanced gastric cancer: a rando-mized, double-blind, placebo-controlled phase Ⅲ study[J]. J Clin Oncol, 2011, 29(30): 3968-3976. 10.1200/jco.2011.36.2236 [DOI] [PubMed] [Google Scholar]
  • 36.AL-BATRAN S E, HOFHEINZ R D, SCHMALEN-BERG H, et al. Perioperative FLOT plus ramucirumab versus FLOT alone for resectable esophagogastric adenocarcinoma—updated results and subgroup analyses of the randomized phase Ⅱ/Ⅲ trial RAMSES/FLOT7 of the German AIO and Italian GOIM[J]. Ann Oncol, 2020, 31: S901. 10.1016/j.annonc.2020.08.1930 [DOI] [Google Scholar]
  • 37.TURNER N, GROSE R. Fibroblast growth factor signalling: from development to cancer[J]. Nat Rev Cancer, 2010, 10(2): 116-129. 10.1038/nrc2780 [DOI] [PubMed] [Google Scholar]
  • 38.LEMMON M A, SCHLESSINGER J. Cell signaling by receptor tyrosine kinases[J]. Cell, 2010, 141(7): 1117-1134. 10.1016/j.cell.2010.06.011 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.KUNII K, DAVIS L, GORENSTEIN J, et al. FGFR2-amplified gastric cancer cell lines require FGFR2 and Erbb3 signaling for growth and survival[J]. Cancer Res, 2008, 68(7): 2340-2348. 10.1158/0008-5472.can-07-5229 [DOI] [PubMed] [Google Scholar]
  • 40.KLEMPNER S J, MADISON R, PUJARA V, et al. FGFR2-altered gastroesophageal adenocarcinomas are an uncommon clinicopathologic entity with a distinct genomic landscape[J]. Oncologist, 2019, 24(11): 1462-1468. 10.1634/theoncologist.2019-0121 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.GORDON A, JOHNSTON E, LAU D K, et al. Targeting FGFR2 positive gastroesophageal cancer: current and clinical developments[J]. Onco Targets Ther, 2022, 15: 1183-1196. 10.2147/ott.s282718 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.CATENACCI D, RASCO D, LEE J, et al. Phase I Escalation and expansion study of bemarituzumab (FPA144) in patients with advanced solid tumors and FGFR2b-selected gastroesophageal adenocarcinoma[J]. J Clin Oncol, 2020, 38(21): 2418-2426. 10.1200/jco.19.01834 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.CATENACCI D V T, KANG Y K, SAEED A, et al. FIGHT: A randomized, double-blind, placebo-controlled, phase Ⅱ study of bemarituzumab (bema) combined with modified FOLFOX6 in 1L FGFR2b+advanced gastric/gastroesophageal junction adenocarcinoma (GC)[J]. J Clin Oncol, 2021, 39(15): 4010. 10.1200/jco.2021.39.15_suppl.4010 [DOI] [Google Scholar]
  • 44.KRAUSE G, WINKLER L, MUELLER S L, et al. Structure and function of claudins[J]. Biochim Biophys Acta, 2008, 1778(3): 631-645. 10.1016/j.bbamem.2007.10.018 [DOI] [PubMed] [Google Scholar]
  • 45.LAL-NAG M, MORIN P J. The claudins[J]. Genome Biol, 2009, 10(8): 235. 10.1186/gb-2009-10-8-235 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.TABARIÈS S, SIEGEL P M. The role of claudins in cancer metastasis[J]. Oncogene, 2017, 36(9): 1176-1190. 10.1038/onc.2016.289 [DOI] [PubMed] [Google Scholar]
  • 47.SAHIN U, KOSLOWSKI M, DHAENE K, et al. Claudin-18 splice variant 2 is a pan-cancer target suitable for therapeutic antibody development[J]. Clin Cancer Res, 2008, 14(23): 7624-7634. 10.1158/1078-0432.ccr-08-1547 [DOI] [PubMed] [Google Scholar]
  • 48.TÜRECI O, KOSLOWSKI M, HELFTENBEIN G, et al. Claudin-18 gene structure, regulation, and expression is evolutionary conserved in mammals[J]. Gene, 2011, 481(2): 83-92. 10.1016/j.gene.2011.04.007 [DOI] [PubMed] [Google Scholar]
  • 49.KLAMP T, SCHUMACHER J, HUBER G, et al. Highly specific auto-antibodies against claudin-18 isoform 2 induced by a chimeric HBcAg virus-like particle vaccine kill tumor cells and inhibit the growth of lung metastases[J]. Cancer Res, 2011, 71(2): 516-527. 10.1158/0008-5472.can-10-2292 [DOI] [PubMed] [Google Scholar]
  • 50.SAHIN U, TÜRECI Ö, MANIKHAS G, et al. FAST: a randomised phase Ⅱ study of zolbetuximab (IMAB362) plus EOX versus EOX alone for first-line treatment of advanced CLDN18.2-positive gastric and gastro-oeso-phageal adenocarcinoma[J]. Ann Oncol, 2021, 32(5): 609-619. 10.1016/j.annonc.2021.02.005 [DOI] [PubMed] [Google Scholar]
  • 51.SHAH M A, SHITARA K, AJANI J A, et al. Zolbe-tuximab plus CAPOX in CLDN18.2-positive gastric or gastroesophageal junction adenocarcinoma: the randomized, phase 3 GLOW trial[J]. Nat Med, 2023, 29(8): 2133-2141. 10.1038/s41591-023-02465-7 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.SHITARA K, LORDICK F, BANG Y J, et al. Zolbe-tuximab plus mFOLFOX6 in patients with CLDN18.2-positive, HER2-negative, untreated, locally advanced unresectable or metastatic gastric or gastro-oesophageal junction adenocarcinoma (SPOTLIGHT): a multicentre, randomised, double-blind, phase 3 trial[J]. Lancet, 2023, 401(10389): 1655-1668. 10.1016/s0140-6736(23)00620-7 [DOI] [PubMed] [Google Scholar]
  • 53.QI C, GONG J, LI J, et al. Claudin18.2-specific CAR T cells in gastrointestinal cancers: phase 1 trial interim results[J]. Nat Med, 2022, 28(6): 1189-1198. 10.1038/s41591-022-01800-8 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.GUO R, LUO J, CHANG J, et al. MET-dependent solid tumours—molecular diagnosis and targeted therapy[J]. Nat Rev Clin Oncol, 2020, 17(9): 569-587. 10.1038/s41571-020-0377-z [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.SUZUKI M, SHIRAHA H, FUJIKAWA T, et al. Des-gamma-carboxy prothrombin is a potential autologous growth factor for hepatocellular carcinoma[J]. J Biol Chem, 2005, 280(8): 6409-6415. 10.1074/jbc.m406714200 [DOI] [PubMed] [Google Scholar]
  • 56.COOPER C S, PARK M, BLAIR D G, et al. Molecular cloning of a new transforming gene from a chemically transformed human cell line[J]. Nature, 1984, 311(5981): 29-33. 10.1038/311029a0 [DOI] [PubMed] [Google Scholar]
  • 57.KUNIYASU H, YASUI W, KITADAI Y, et al. Frequent amplification of the c-met gene in scirrhous type stomach cancer[J]. Biochem Biophys Res Commun, 1992, 189(1): 227-232. 10.1016/0006-291x(92)91548-5 [DOI] [PubMed] [Google Scholar]
  • 58.PENG Z, ZHU Y, WANG Q, et al. Prognostic significance of MET amplification and expression in gastric cancer: a systematic review with meta-analysis[J/OL]. PLoS One, 2014, 9(1): e84502. 10.1371/journal.pone.0084502 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.CATENACCI D, TEBBUTT N C, DAVIDENKO I, et al. Rilotumumab plus epirubicin, cisplatin, and capecitabine as first-line therapy in advanced MET-positive gastric or gastro-oesophageal junction cancer (RILOMET-1): a randomised, double-blind, placebo-controlled, phase 3 trial[J]. Lancet Oncol, 2017, 18(11): 1467-1482. 10.1016/s1470-2045(17)30566-1 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.SHAH M A, BANG Y J, LORDICK F, et al. Effect of fluorouracil, leucovorin, and oxaliplatin with or without onartuzumab in HER2-negative, MET-positive gastro-esophageal adenocarcinoma: the METGastric randomized clinical trial[J]. JAMA Oncol, 2017, 3(5): 620-627. 10.1001/jamaoncol.2016.5580 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.WANG R, CHEN M, YE X, et al. Role and potential clinical utility of ARID1A in gastrointestinal malignancy[J]. Mutat Res Rev Mutat Res, 2021, 787: 108360. 10.1016/j.mrrev.2020.108360 [DOI] [PubMed] [Google Scholar]
  • 62.FONTANA B, GALLERANI G, SALAMON I, et al. ARID1A in cancer: friend or foe?[J]. Front Oncol, 2023, 13: 1136248. 10.3389/fonc.2023.1136248 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.HUANG K K, RAMNARAYANAN K, ZHU F, et al. Genomic and epigenomic profiling of high-risk intestinal metaplasia reveals molecular determinants of progression to gastric cancer[J]. Cancer Cell, 2018, 33(1): 137-150.e5. 10.1016/j.ccell.2017.11.018 [DOI] [PubMed] [Google Scholar]
  • 64.WANG K, KAN J, YUEN S T, et al. Exome sequencing identifies frequent mutation of ARID1A in molecular subtypes of gastric cancer[J]. Nat Genet, 2011, 43(12): 1219-1223. 10.1038/ng.982 [DOI] [PubMed] [Google Scholar]
  • 65.ROKUTAN H, HOSODA F, HAMA N, et al. Compre-hensive mutation profiling of mucinous gastric carcinoma[J]. J Pathol, 2016, 240(2): 137-148. 10.1002/path.4761 [DOI] [PubMed] [Google Scholar]
  • 66.ZANG Z J, CUTCUTACHE I, POON S L, et al. Exome sequencing of gastric adenocarcinoma identifies recurrent somatic mutations in cell adhesion and chromatin remodeling genes[J]. Nat Genet, 2012, 44(5): 570-574. 10.1038/ng.2246 [DOI] [PubMed] [Google Scholar]
  • 67.DONG X, SONG S, LI Y, et al. Loss of ARID1A activates mTOR signaling and SOX9 in gastric adeno-carcinoma-rationale for targeting ARID1A deficiency[J]. Gut, 2022, 71(3): 467-478. 10.1136/gutjnl-2020-322660 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.ABE H, MAEDA D, HINO R, et al. ARID1A expression loss in gastric cancer: pathway-dependent roles with and without Epstein-Barr virus infection and micro-satellite instability[J]. Comparative Study Virchows Arch, 2012, 461(4): 367-377. 10.1007/s00428-012-1303-2 [DOI] [PubMed] [Google Scholar]
  • 69.YAMADA L, SAITO M, THAR MIN A K, et al. Selective sensitivity of EZH2 inhibitors based on synthetic lethality in ARID1A-deficient gastric cancer[J]. Gastric Cancer, 2021, 24(1): 60-71. 10.1007/s10120-020-01094-0 [DOI] [PubMed] [Google Scholar]
  • 70.AKBANI R, AKDEMIR K C, AKSOY B A, et al. Genomic classification of cutaneous melanoma[J]. Cell, 2015, 161(7): 1681-1696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.COLLISSON E A, CAMPBELL J D, BROOKS A N, et al. Comprehensive molecular profiling of lung adenocarcinoma [J]. Nature, 2014, 511(7511): 543-550. 10.1038/nature13385 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.SIMANSHU D K, NISSLEY D V, MCCORMICK F. RAS proteins and their regulators in human disease[J]. Cell, 2017, 170(1): 17-33. 10.1016/j.cell.2017.06.009 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.CHERFILS J, ZEGHOUF M. Regulation of small GTPases by GEFs, GAPs, and GDIs[J]. Physiol Rev, 2013, 93(1): 269-309. 10.1152/physrev.00003.2012 [DOI] [PubMed] [Google Scholar]
  • 74.COX A D, FESIK S W, KIMMELMAN A C, et al. Drugging the undruggable RAS: mission possible?[J]. Nat Rev Drug Discov, 2014, 13(11): 828-851. 10.1038/nrd4389 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75.COCCO E, SCALTRITI M, DRILON A. NTRK fusion-positive cancers and TRK inhibitor therapy[J]. Nat Rev Clin Oncol, 2018, 15(12): 731-747. 10.1038/s41571-018-0113-0 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 76.VAISHNAVI A, LE AT, DOEBELE R C. TRKing down an old oncogene in a new era of targeted therapy[J]. Cancer Discov, 2015, 5(1): 25-34. 10.1158/2159-8290.cd-14-0765 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77.DRILON A, LAETSCH T W, KUMMAR S, et al. Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children[J]. N Engl J Med, 2018, 378(8): 731-739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78.PU X, FU Y, SUN Q, et al. NTRK gene alterations were enriched in hepatoid or enteroblastic differentiation type of gastric cancer[J]. J Clin Pathol, 2023. DOI: 10.1136/jcp-2023-208865. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

本文附表见电子版。


Articles from Journal of Zhejiang University (Medical Sciences) are provided here courtesy of Zhejiang University Press

RESOURCES