Skip to main content
Heliyon logoLink to Heliyon
. 2024 Mar 3;10(6):e27352. doi: 10.1016/j.heliyon.2024.e27352

Comprehensive characterization of the chemical constituents of Lianhua Qingwen capsule by ultra high performance liquid chromatography coupled with Fourier transform ion cyclotron resonance mass spectrometry

Ting Liu 1,, Shu Lin 1
PMCID: PMC10944244  PMID: 38496865

Abstract

Lianhua Qingwen capsule is a famous traditional Chinese medicine (TCM) prescription that is widely used for the treatment of respiratory diseases in China. To facilitate in-depth and global characterization of the chemical constituents of Lianhua Qingwen capsule, a profiling method based on ultra-high performance liquid chromatography coupled with Fourier transform ion cyclotron resonance mass spectrometry (UHPLC-FT-ICR-MS) was applied in both positive and negative ion modes for the comprehensive characterization of the chemical profiles of Lianhua Qingwen capsule. A total of 596 compounds were identified or tentatively characterized, including 137 flavonoids, 46 phenylpropanoids, 43 phenylethanoid glycosides, 145 terpenoids, 83 organic acids and their derivatives, 15 quinones, 39 alkaloids, 32 alcohol glycosides and 56 other compounds. Thus, this results widely extended and enriched the chemical constituents of Lianhua Qingwen capsule, which will provide comprehensive and valuable information for its quality control and further pharmacological study, facilitate understanding the effective substance and pharmacodynamic material basis, thereby providing a solid foundation for further development of the Lianhuaqingwen capsule.

Keywords: Lianhua Qingwen capsule, UHPLC-FT-ICR-MS, Chemical constituents

Highlights

  • An UHPLC-FT-ICR-MS method was applied for the characterization of chemical constituents in Lianhuaqingwen capsule.

  • A total of 596 chemical constituents were characterized.

  • The study enriched the chemical constituents and provided a solid foundation for further development of the Lianhuaqingwen capsule.

1. Introduction

Lianhua Qingwen capsule is based on two traditional Chinese medicine prescriptions (TCMPs) named Maxingshigan decoction (as recorded in ShangHanLun in the Han Dynasty) and Yinqiao powder (as recorded in WenBingTiaoBian in the Qing Dynasty) of Chinese history, respectively [1]. Lianhua Qingwen capsule is composed of 13 herbal medicines [1]: Forsythiae Fructus (Lianqiao), Lonicerae Japonicae Flos (Jinyinhua), Ephedrae Herba Praeparata Cum Melle (Zhimahuang), Armeniacae Semen Amarum Tostum (Chaokuxingren), Gypsum Fibrosum (Shigao), Isatidis Radix (Banlangen), Dryopteridis Crassirhizomatis Rhizoma (Mianmaguanzhong), Houttuyniae Herba (Yuxingcao), Pogostemonis Herba (Guanghuoxiang), Rhei Radix et Rhizoma (Dahuang), Rhodiolae Crenulatae Radix et Rhizoma (Hongjingtian), Menthol (Bohenao), and Glycyrrhizae Radix et Rhizoma (Gancao). Lianhuaqingwen capsule possesses the functions of clearing away heat and detoxifying the lungs, and it can also be applied clinically to treat patients presenting with the symptoms of fever and respiratory diseases. Lianhua Qingwen capsule possesses anti-inflammatory [2] and anti-influenza activities against IBV [2] , H7N9 [3], H1N1 [4], and SARS-CoV-2 [5], which is widely used for the treatment of COVID-19 [[6], [7], [8], [9]]. Owing to its increasing success in the prevention and treatment of respiratory diseases, considerable attention has been paid worldwide to the Lianhua Qingwen capsule.

Traditional Chinese medicine (TCM) plays a non-negligible role in the prevention and treatment of diseases. The TCM formula has received more attention from researchers due to its remarkable therapeutic effectiveness in recent times. The TCM formula is composed of different herbal medicines with complex chemical compositions and presents synergistic effects via multi-components and multi-target mechanism. Therefore, it has become crucial to comprehensively characterize its chemical profile so as to elucidate the effective material basis. According to past reports on the analysis of the Lianhua Qingwen capsule, 61 compounds [10], 104 compounds [11] and 185 compounds [12] were unambiguously or tentatively identified, respectively. As a complicated prescription consisting of 13 herbal medicines, the actual chemical constituents of the Lianhua Qingwen capsule remain to be elucidated, albeit the inherent variety of compounds presents significant challenges in terms of separation and detection techniques for the rapid characterization of the chemical constituents. Thus, a rapid, sensitive, and accurate analytical method is necessary and urgent for the comprehensive chemical composition characterization of the Lianhua Qingwen capsule.

Modern analytical techniques have been applied to investigate the chemical constituents of TCM prescriptions. Ultra-high performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS) stands out from the other techniques in terms of the analysis of chemical components in TCM, due to the advantages of separation time, sensitivity, mass accuracy, resolution, and abundant information. To date, Fourier-transformed ion cyclotron resonance mass spectrometry (FT-ICR-MS) with a high resolution and unsurpassed mass measurement accuracy is a powerful and representative instrument in the mass spectrum fields [[13], [14], [15], [16], [17]]. UHPLC combined with FT-ICR-MS (UHPLC-FT-ICR-MS) is a powerful analytical technique for detecting and tentatively characterizing multi-components owing to its rapid elution, high sensitivity, high mass accuracy, high resolution, and abundance information [[18], [19], [20], [21]].

In the present study, a method based on UHPLC-FT-ICR-MS/MS was applied for the rapid, sensitive, and accurate characterization of various chemical components of the Lianhua Qingwen capsule. A total of 596 compounds were identified or tentatively characterized. Results of this investigation were expected to improve the quality control, promote the pharmacological study and expand the clinical applications of the Lianhua Qingwen capsule.

2. Materials and methods

2.1. Chemicals and reagents

Lianhua Qingwen capsule (Lot No. B2008172) were obtained from Yiling Pharmaceutical Co., Ltd. (Shijiazhuang, China). Reference compounds (purity>98 %) of chlorogenic acid, esculetin, caffeic acid, luteolin, apigenin, liquiritigenin, isoliquiritigenin, liquiritin, isoliquiritin, glycyrrhizic acid and glycyrrhetinic acid were purchased from Chengdu Must Bio-Technology Co., Ltd (Chengdu, China). Acetonitrile and formic acid of HPLC grade were obtained from Fisher Scientific (Fair Lawn, NJ, USA). Purified water was provided from Hangzhou Wahaha Corporation (Hangzhou, China).

2.2. Sample preparation

0.35 g of Lianhua Qingwen capsule was accurately measured, then respectively added into 7 mL water and methanol with ultrasonic treatment for 0.5 h, the water and methanol extract of Lianhua Qingwen capsule was prepared by diluting to a final concentration of 0.05 g/mL, subsequently the water and methanol extract of Lianhua Qingwen capsule were filtered through a 0.22 μm filter membrane for further analysis.

The standard stock solutions were prepared by dissolving chlorogenic acid, esculetin, caffeic acid, luteolin, apigenin, liquiritigenin, isoliquiritigenin, liquiritin, isoliquiritin, glycyrrhizic acid and glycyrrhetinic acid in methanol, respectively. And then the proper amount of stock solution of each reference substance was taken, mixed and finally diluted to an appropriate concentration which was stored at 4 °C for the following analysis.

2.3. Instruments and analytical conditions

Liquid chromatography analysis was carried out on an Agilent 1260 UPLC system (Agilent, USA). An ACQUITY UPLC HSS T3 column (2.1 mm × 100 mm, 1.8 μm, Waters, Ireland) being protected by an ACQUITY UPLC HSS T3 VanGuard Pre-Column (2.1 mm × 5 mm, 1.8 μm, Waters, Ireland) was utilized at 35 °C. The mobile phase system was composed of 0.1% formic acid in water (A) and acetonitrile (B). The gradient condition of the mobile phase was as following: 8% to 20%B (0–2 min); 20% to 50%B (2–20 min); 50% to 98%B (20–26 min); an isocratic elution of B (26–33 min), at a flow rate of 0.30 mL/min. The injection volume was 10 μL.

The UHPLC-FT-ICR-MS/MS detection was carried out on a Bruker Solarix 7.0T FT-ICR mass pectrometer coupled with an ESI interface. The ESI source was operated in positive-ionization and negative-ionization mode. The capillary voltage is set at 4.5 kV, the endplate offset is set at 500 V, dry gas flow is set at 8 L/min, dry gas temperature is set at 200 °C, nebulizer gas pressure is set at 4 bar. The collision gas and nebulizing gas were high-purity argon (Ar) and high-purity nitrogen (N2), respectively. Full-scan analysis was scanned from a mass range of m/z 100–1200. And the collision energy was initially set at 5 eV and then modified to obtain the representative fragment ions. Bruker Compass Hystar (version 4.1, Bruker Daltonics, Germany) and Fourier Transform Mass Spectrometer Control (version 2.1, Bruker Daltonics, Germany) were used for instrument control and data acquisition. Data Analysis Software (version 4.4; Bruker Daltonics, Germany) was used for data analysis.

3. Results and discussion

3.1. Chemical profiling of Lianhua Qingwen capsule

The representative base peak intensity chromatograms in positive and negative modes of Lianhua Qingwen capsule water and methanol extract were shown in Fig. 1, Fig. 2. The difference between water extract and methanol extract is mainly in the contents of compounds. Water and methanol extract of Lianhua Qingwen capsule were both used to get comprehensive information of chemical compounds in Lianhua Qingwen capsule. In total, 596 chemical constituents, including 137 flavonoids, 46 phenylpropanoids, 43 phenylethanoid glycosides, 145 terpenoids, 83 organic acids and their derivatives, 15 quinones, 39 alkaloids, 32 alcohol glycosides and 56 other phytochemicals, were unambiguously identified or tentatively characterized in Lianhua Qingwen capsule by UHPLC-FT-ICR-MS method. Among them, chlorogenic acid, esculetin, caffeic acid, luteolin, apigenin, liquiritigenin, isoliquiritigenin, liquiritin, isoliquiritin, glycyrrhizic acid and glycyrrhetinic acid were unambiguously identified based on data comparing with the reference compounds. Besides, the chemical constituents were tentatively characterized based on retention time, accurate molecular mass and MS2 data [[11], [12], [13],[18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29], [30]]. The retention time, accurate mass weights of the precursor negative and positive ions, predicted molecular formula, mass error and fragment ions are summarized in Table 1. The chemical structures of major constituents are shown in Fig. S1.

Fig. 1.

Fig. 1

UHPLC-FT-ICR-MS base peak intensity chromatograms in positive (A) and negative (B) modes of Lianhua Qingwen capsule water extract.

Fig. 2.

Fig. 2

UHPLC-FT-ICR-MS base peak intensity chromatograms in positive (A) and negative (B) modes of Lianhua Qingwen capsule methanol extract.

Table 1.

Compounds identified in Lianhua Qingwen capsule by UHPLC-FT-ICR MS.

No. RT (min) Identification [M+H]+
[M − H]-
Formula Product ion m/z
Observed Calculated Error (ppm) Observed Calculated Error (ppm)
1 0.90 Arginine 175.11845 175.11895 2.86 C6H14N4O2 (+): 158
2 0.97 Quinic acid 191.05594 191.05611 0.91 C7H12O6 (−): 173, 127
3 1.14 Cytidine 244.09304 244.09280 −1.01 C9H13N3O5 (+): 112
4 1.21 Heterodendrin 262.12879 262.12851 −1.07 C11H19NO6 (+): 216, 178, 157
5 1.36 Uridine 243.06208 243.06226 0.74 C9H12N2O6 (−): 110
6 1.39 Adenosine 268.10448 268.10403 −1.69 C10H13N5O4 (+): 136
7 1.40 Guanosine 284.09945 284.09894 −1.78 282.08422 282.08439 0.63 C10H13N5O5 (+): 152
8 1.46 Cornoside 317.12390 317.12309 −2.55 315.10845 315.10854 0.29 C14H20O8 (−): 153
9 1.48 Succinic acid 117.01922 117.01933 1.00 C4H6O4
10 1.48 Gallic acid-4-O-β-D-glucoside 331.06709 331.06707 −0.05 C13H16O10 (−): 169
11 1.55 Rengyoside B 321.15544 321.15439 −3.26 319.13978 319.13984 0.20 C14H24O8 (−): 157, 139
12 1.61 Rengynic acid-1′-O-β-D-glucoside 335.13456 335.13476 0.59 C14H24O9 (−): 173
13 1.64 Norephedrine-rhamnose-glucose 460.21913 460.21772 −3.05 C21H33NO10 (+): 298
14 1.72 Ephedrine-rhamnose-glucose 474.23490 474.23337 −3.22 C22H35NO10 (+): 312, 166
15 1.78 Gallic acid 169.01406 169.01425 1.11 C7H6O5 (−): 125
16 1.80 Citraconic acid 129.01917 129.01933 1.27 C5H6O4
17 1.89 Caffeoylshikimic acid 337.09074 337.09179 3.13 335.07705 335.07724 0.56 C16H16O8 (−): 179, 135
18 1.90 Vanillic acid 167.03481 167.03498 1.05 C8H8O4 (−): 152, 123
19 1.95 Gallic acid-3-O-β-D-glucoside 331.06699 331.06707 0.23 C13H16O10 (−): 169
20 1.96 Phenylalanine hexose 328.13953 328.13908 −1.39 326.12446 326.12453 0.19 C15H21NO7 (−): 164
21 2.00 Hydroxytyrosol glucoside 317.12384 317.12309 −2.35 315.10841 315.10854 0.41 C14H20O8 (−): 179, 153, 135
22 2.02 Hydroxyphenyl glycol gentiobioside 477.16102 477.16136 0.72 C20H30O13 (−): 315
23 2.07 Deacetylasperulosidic acid 391.12465 391.12349 −2.98 389.10885 389.10894 0.22 C16H22O11 (−):227
24 2.14 6-O-Galloylglucose 331.06695 331.06707 0.36 C13H16O10 (−): 169
25 2.20 Amygdalin amide 476.17776 476.17625 −3.16 520.16691 520.16718 0.52c C20H29NO12 (−): 474, 312
26 2.26 Dihydroxybenzoic acid glucoside 315.07201 315.07216 0.46c C12H16O7 (−): 153, 109
27 2.31 Vanillic acid hexose 331.10343 331.10236 −3.24 329.08769 329.08781 0.36 C14H18O9 (−): 167
28 2.34 Unknown 314.12402 314.12343 −1.88 312.10888 312.10888 0.00 C14H19NO7
29 2.34 Geniposidic acid 373.11395 373.11402 0.20 C16H22O10 (−): 211
30 2.46 Norephedrine-glucose isomer 314.16028 314.15981 −1.47 C15H23NO6 (+): 152, 134
31 2.56 Hydroxytyrosol glucoside isomer 317.12381 317.12309 −2.26 315.10840 315.10854 0.44 C14H20O8 (−): 179, 153, 135
32 2.57 Ephedrine-glucose isomer 328.17536 328.17546 0.33 C16H25NO6 (+): 166, 148
33 2.58 (−)-5-O-(4-O-β-D-glucopyranosylcaffeoyl) quinic acid 517.15662 517.15518 −2.78 515.14023 515.14063 0.77 C22H28O14 (−): 191, 179, 135
34 2.65 Dihydroxybenzoic acid glucoside 315.07194 315.07216 0.67 C13H16O9 (−): 153, 109
35 2.65 Amygdalinic acid isomer 475.14533 475.14571 0.82 C20H28O13 (−): 269
36 2.68 Norephedrine-glucose 314.16020 314.15981 −1.23 C15H23NO6 (+): 152, 134
37 2.73 Hydroxyphenyl glycol gentiobioside 477.16127 477.16136 0.19 C20H30O13 (−): 315
38 2.78 Ephedrine-glucose 328.17512 328.17546 1.04 C16H25NO6 (+): 166, 148
39 2.84 8-Epiloganic acid 399.12672 399.12617 −1.39a 375.12950 375.12967 0.47 C16H24O10 (−): 213
40 2.97 Syringic acid-O-glucoside 359.09846 359.09837 −0.25 C15H20O10 (−): 197
41 3.00 (−)-3-O-(4-O-β-D-glucopyranosylcaffeoyl) quinic acid 517.15555 517.15518 −0.71 515.14061 515.14063 0.03 C22H28O14 (−): 353, 191, 179, 135
42 3.04 Gallocatechin 305.06666 305.06668 0.06 C15H14O7 (−): 137, 125
43 3.15 Ephedrine or pseudoephedrine 166.12289 166.12264 −1.48 C10H15NO (+): 148
44 3.19 Pyrocatechol 153.01918 153.01933 1.01c C6H6O2 (−): 109
45 3.20 Phaseoloidin 329.08776 329.08781 0.13 C14H18O9
46 3.24 Syringic acid-O-glucoside 359.09842 359.09837 −0.15 C15H20O10 (−): 197
47 3.24 Caffeoyl quinic acid butyl ester 409.15078 409.15041 −0.91 C20H26O9 (−): 353, 191, 179, 135
48 3.37 Amygdalinic acid 499.14266 499.14221 −0.91a 475.14551 475.14571 0.43 C20H28O13 (−): 269
49 3.38 Forsythoside E isomer 463.18144 463.18100 −0.94 461.16627 461.16645 0.39 C20H30O12 (−): 315
50 3.46 Neochlorogenic acid 355.10241 355.10236 −0.15 353.08758 353.08781 0.64 C16H18O9 (−): 191, 179, 173, 135
51 3.51 Rebouoside B 449.16546 449.16535 −0.24 447.15069 447.15080 0.25 C19H28O12 (−): 315, 297, 191, 135
52 3.59 Caffeic acid-glucoside 341.08777 341.08781 0.10 C15H18O9 (−): 179, 161, 135
53 3.60 Dihydrosecologanic acid 375.12954 375.12967 0.35 C16H24O10
54 3.60 Campneoside 655.22301 655.22326 0.38 653.20845 653.20871 0.40 C30H38O16 (−): 179
55 3.62 Coniferinoside 549.18227 549.18249 0.41c C22H32O13 (−): 503, 341
56 3.65 Benzyl 3-(hydroxymethyl)-1-piperidinecarboxylate 250.14403 250.14377 −1.03 C14H19NO3
57 3.68 P-Hydroxyphenacyl-β-D-glucopyranoside 315.10778 315.10744 −1.08 313.09285 313.09289 0.13 C14H18O8 (−): 161, 151
58 3.75 Unknown 371.09839 371.09837 −0.06 C16H20O10 (−): 163
59 3.76 Tryptophan 205.09747 205.09715 −1.55 C11H12N2O2 (+):188
60 3.76 P-Coumaric acid-O-glycoside 327.10793 327.10744 −1.49 325.09290 325.09289 −0.03 C15H18O8 (−): 163, 119
61 3.76 (−)-4-O-(4-O-β-D-glucopyranosylcaffeoyl) quinic acid 517.15614 517.15518 −1.86 515.14053 515.14063 0.19 C22H28O14 (−): 191, 179, 135
62 3.90 P-Hydroxyphenacyl-β-D-glucopyranoside 315.10773 315.10744 −0.91 313.09281 313.09289 0.26 C14H18O8 (−): 161, 151
63 4.03 Salidroside 323.11030 323.11012 −0.53a 299.11371 299.11363 −0.27 C14H20O7 (+): 301
64 4.07 Aucubin 345.11894 345.11911 0.49 C15H22O9 (−): 183
65 4.14 Methylephedrine or methylpseudoephedrine 180.13858 180.13829 −1.63 C11H17NO (+): 162
66 4.28 Forsythoside E 463.18165 463.18100 −1.39 461.16594 461.16645 1.11 C20H30O12 (−): 315
67 4.29 Ephedrine-glucose isomer 328.17548 328.17546 −0.03 C16H25NO6 (+): 166, 148
68 4.41 Esculin 341.08698 341.08671 −0.80 339.07203 339.07216 0.36 C15H16O9 (+): 179
69 4.42 P-Coumaric acid-O-glycoside isomer 325.09277 325.09289 0.36 C15H18O8 (−): 163
70 4.45 Crenulatanoside B 519.24300 519.24360 1.17 517.22860 517.22905 0.87 C24H38O12 (+): 271
71 4.46 Crenulatin 249.13365 249.13326 −1.55 293.12399 293.12419 0.69c C11H20O6 (−): 247
72 4.53 Amygdalin amide isomer 474.16161 474.16170 0.19 C20H29NO12
73 4.64 Loganic acid 399.12662 399.12617 −1.14a 375.12957 375.12967 0.27 C16H24O10 (−): 213
74 4.66 Benzyl-4-(hydroxymethyl)piperidin-1-carboxylate 250.14408 250.14377 −1.23 C14H19NO3
75 4.69 Syringinoside 557.18518 557.18408 −1.99a 579.19288 579.19306 0.30c C23H34O14 (−): 533
76 4.74 Dopacetic acid-O-rutinoside 475.14562 475.14571 0.20 C20H28O13
77 4.76 Salicin or isomer 285.09793 285.09798 0.16 C13H18O7
78 4.91 Kingiside 405.13961 405.13914 −1.17 449.12964 449.13006 0.94c C17H24O11 (−): 403, 241
79 4.92 Dihydromelilotoside or isomer 327.10854 327.10854 0.00 C15H20O8 (−): 165
80 4.94 Protocatechualdehyde 137.02429 137.02442 0.95 C7H6O3
81 4.98 Suspensaside C isomer 461.16624 461.16535 −1.92 459.15073 459.15080 0.15 C20H28O12
82 5.01 Isaindigodione isomer 327.13433 327.13393 −1.22 C18H18N2O4 (+): 201
83 5.02 Coniferin 365.12113 365.12069 −1.21a 387.12956 387.12967 0.29c C16H22O8 (−): 341, 179
84 5.05 4-Methoxyphenethyl β-D-glucopyranoside 313.12920 313.12928 0.24 C15H22O7
85 5.16 Darendoside A 431.15564 431.15589 0.56 C19H28O11 (−): 387, 299, 251, 191, 149
86 5.17 Suspensaside C 461.16627 461.16535 −1.99 459.15068 459.15080 0.26 C20H28O12 (−): 205, 163, 151
87 5.27 P-Coumaric acid-O-glycoside isomer 325.09266 325.09289 0.71 C15H18O8 (−): 163
88 5.30 Morroniside 429.13789 429.13673 −2.69a 451.14532 451.14571 0.87c C17H26O11 (−): 405, 243, 225, 179
89 5.31 3-p-Coumaroylquinic acid 339.10802 339.10744 −1.68 337.09270 337.09289 0.56 C16H18O8 (−): 191, 163
90 5.35 Ferruginoside B 479.17609 479.17592 −0.36 477.16092 477.16136 0.94 C20H30O13 (−): 431, 269
91 5.35 Darendoside A isomer 433.16975 433.17044 1.59 431.15558 431.15589 0.70 C19H28O11 (−): 387, 299, 251, 191, 149, 101
92 5.37 Isaindigodione 327.13449 327.13393 −1.71 C18H18N2O4 (+): 201
93 5.38 P-Coumaroyltartaric acid 295.04555 295.04594 1.31 C13H12O8 (−): 163
94 5.38 Di-galloyl-O-glucose 483.07769 483.07803 0.70 C20H20O14
95 5.41 7-Epiloganin 389.14512 389.14532 0.52 C17H26O10 (−): 181, 166
96 5.42 P-Anisic acid 151.03990 151.04007 1.09 C8H8O3
97 5.44 Unknown 354.19096 354.19111 0.43 C18H27NO6 (+): 192, 174
98 5.48 P-coumaroyl-shikimaroylquinic acid 511.14534 511.14571 0.74 C23H28O13 (−): 337
99 5.56 Syringin 390.17627 390.17586 −1.06b 417.13989 417.14024 0.82c C17H24O9 (−): 371, 209
100 5.59 Chlorogenic acidd 355.10244 355.10236 −0.24 353.08750 353.08781 0.87 C16H18O9 (−): 191, 179, 173, 135
101 5.65 Unknown 743.20283 743.20402 1.59 C32H40O20 (−): 191
102 5.68 Unknown 395.21739 395.21766 0.70 C20H30N2O6 (+): 377, 359, 267, 252, 216
103 5.69 Secologanoside 391.12424 391.12349 −1.92 389.10856 389.10894 0.96 C16H22O11 (−): 345, 183
104 5.71 Indican 296.11362 296.11286 −2.55 340.10341 340.10379 1.12c C14H17NO6 (−): 294, 132
105 5.72 Catechin 289.07182 289.07176 −0.20 C15H14O6 (−): 245, 203
106 5.75 Norisoboldine isomer 314.13933 314.13868 −2.05 C18H19NO4
107 5.78 Creoside I 305.15990 305.15948 −1.38 349.15011 349.15041 0.85c C14H24O7 (−): 303
108 5.82 Cryptochlorogenic acid 355.10282 355.10236 −1.30 353.08754 353.08781 0.75 C16H18O9 (−): 191, 179, 173, 135
109 5.82 Secologanic acid 375.12955 375.12857 −2.60 373.11355 373.11402 1.27 C16H22O10 (−): 193, 149
110 5.90 Phthalic acid 165.01917 165.01933 1.01 C8H6O4
111 5.91 5-O-Feruloylquinic acid 367.10296 367.10346 1.36 C17H20O9 (−): 193, 173, 149
112 5.96 Amygdalin 475.19349 475.19224 −2.64b 456.15077 456.15113 0.81 C20H27NO11 (−): 323
113 5.98 Secoxyloganin 405.14006 405.13914 −2.29 449.12935 449.13006 1.59c C17H24O11
114 6.04 Creoside I isomer 305.15946 305.15948 0.06 349.15010 349.15041 0.87c C14H24O7 (−): 303
115 6.04 Licoagroside B 433.13518 433.13405 −2.61 431.11917 431.11950 0.76 C18H24O12 (+): 127
116 6.05 3,4-Dihydroxy cinnamic acid glycerol ester 255.08678 255.08631 −1.83 253.07155 253.07176 0.85 C12H14O6
117 6.09 Rhodioloside D 373.18408 373.18329 −2.12a 395.19190 395.19227 0.95c C16H30O8 (−): 349
118 6.13 Norisoboldine 314.13928 314.13868 −1.89 C18H19NO4 (+): 297, 265, 237
119 6.17 Esculetind 177.01912 177.01933 1.21 C9H6O4 (−): 149, 133
120 6.19 Dihydromelilotoside or isomer 327.10834 327.10854 0.63 C15H20O8 (−): 165
121 6.19 8-Epiloganin 435.15055 435.15080 0.58c C17H26O10 (−): 389
122 6.19 Clemastanin B 685.27192 685.27021 −2.49 729.25947 729.26114 2.29c C32H44O16 (−): 521
123 6.21 Caffeic acidd 179.03477 179.03498 1.17 C9H8O4 (−):135
124 6.21 Coclaurine 286.14416 286.14377 −1.37 C17H20NO3 (+): 107
125 6.24 Quercetin-O-rhamnoside-glucoside 611.16310 611.16066 −3.99 609.14535 609.14611 1.24 C27H30O16 (−): 447, 301
126 6.25 Benzyl β-primeveroside 403.16021 403.15987 −0.83 401.14506 401.14532 0.65 C18H26O10 (−): 269
127 6.25 Dai-tunicamine 431.19187 431.19227 0.92 C20H32O10
128 6.28 Unknown 447.15013 447.15080 1.51 C19H28O12 (−): 285
129 6.35 Creoside II 351.16588 351.16606 0.51c C14H26O7 (−): 305, 179
130 6.36 Luteolin-O-arabinopyranosyl-glucopyranoside 579.13504 579.13554 0.87 C26H28O15
131 6.39 Loganin 435.15045 435.15080 0.79c C17H26O10 (−): 389, 227
132 6.42 L-Stepholidine 328.15500 328.15433 −2.02 C19H22NO4 (+): 297
133 6.42 Kaempferol-3-O-rutinoside isomer 595.16807 595.16575 −3.90 593.15080 593.15119 0.67 C27H30O15
134 6.43 Geniposide 411.12688 411.12617 −1.73a 433.13507 433.13515 0.19c C17H24O10 (−): 225, 207
135 6.44 Lariciresinol-4′-O-β-D-glucoside 521.20278 521.20284 0.10 C26H34O11 (−): 359
136 6.46 Roseoside 387.20223 387.20134 −2.28 431.19199 431.19227 0.66c C19H30O8 (−): 385
137 6.48 1-Phenyl-1-propen-2-amine-xylose 264.12346 264.12303 −1.59 C14H17NO4
138 6.50 Sweroside 359.13412 359.13366 −1.30 403.12418 403.12459 1.01c C16H22O9 (+): 197, 179, 127
139 6.50 (R)-Suspensaside 639.19244 639.19306 0.97 C29H36O16 (−): 459
140 6.52 Purpureaside C 785.25062 785.25097 0.44 C35H46O20 (−): 623
141 6.58 Magnoflorine 342.17084 342.16998 −2.50 C20H24NO4+ (+): 297, 265
142 6.58 Norephedrine-glucose-malonyl 400.16113 400.16021 −2.29 C18H25NO9 (+): 152, 134
143 6.59 4-p-Coumaroylquinic acid 339.10810 339.10744 −1.94 337.09270 337.09289 0.58 C16H18O8 (−): 191, 163
144 6.65 Caffeoylmalic acid 295.04558 295.04594 1.22 C13H12O8 (−): 179, 133
145 6.65 Anthranilic acid-7-O-β-D-glucopyranose ester 300.10827 300.10778 −1.64 298.09300 298.09323 0.76 C13H17NO7 (−): 280, 262, 244, 136
146 6.66 3,4-Dicaffeoyl quinic acid isomer 517.13521 517.13405 −2.24 515.11896 515.11950 1.04 C25H24O12 (−): 353, 191, 179, 135
147 6.69 2-Hydroxy-1,4-phthalic acid 181.01403 181.01425 1.19 C8H6O5 (−): 137
148 6.71 Pinoresinol diglucoside 681.23921 681.24001 1.17 C32H42O16 (−): 519, 357
149 6.76 Echinacoside 785.25007 785.25097 1.14 C35H46O20 (−): 623, 477, 461, 315, 179, 161
150 6.78 Forsythoside C 639.19250 639.19306 0.87 C29H36O16 (−): 161, 135
151 6.78 Prunasin 296.11321 296.11286 −1.17 340.10353 340.10379 0.77c C14H17NO6 (−): 161
152 6.79 Pyrocatechol 153.01913 153.01933 1.33c C6H6O2 (−): 109
153 6.89 Lugrandoside 641.20954 641.20761 −3.01 639.19223 639.19306 1.30 C29H36O16 (−): 179, 161
154 6.92 P-Coumaric acid-O-glycoside isomer 325.09285 325.09289 0.13 C15H18O8 (−): 163
155 6.92 6′-O-galloylsalidroside or isomer 453.13833 453.13914 1.78 451.12420 451.12459 0.85 C21H24O11
156 6.93 7-Deoxyloganin 373.15005 373.15041 0.96 C17H26O9
157 6.93 Schaftoside 565.15698 565.15518 −3.18 563.13990 563.14063 1.30 C26H28O14 (−): 503, 473, 443, 413, 383, 353
158 6.94 Rhododendrol-2-O-β-D-glucopyranoside 327.14468 327.14493 0.76 C16H24O7 (−): 165
159 6.96 3-O-Feruloylquinic acid 369.11856 369.11801 −1.50 367.10316 367.10346 0.80 C17H20O9 (−): 193, 173, 149
160 6.98 Epicatechin gallate 443.09653 443.09727 1.68 C22H18O10 (+): 291, 255
161 6.99 Secologanoside-7-methyl ester 405.13994 405.13914 −1.98 403.12417 403.12459 1.03 C17H24O11 (−): 371, 223, 121
162 7.04 β-Hydroxyacteoside 639.19195 639.19306 1.73 C29H36O16 (−): 477, 315, 179, 161, 135
163 7.05 Unknown 459.09286 459.09329 0.92 C22H20O11 (−): 253
164 7.07 Glucoliquiritin apioside 713.23070 713.22874 −2.75 711.21234 711.21419 2.60 C32H40O18 (−): 255
165 7.09 Liriodendrin 787.26449 787.26662 2.71c C34H46O18 (−): 741
166 7.17 (S)-Suspensaside 639.19262 639.19306 0.68 C29H36O16 (−): 477, 179, 161, 135
167 7.18 Isoschaftoside 565.15689 565.15518 −3.02 563.13976 563.14063 1.55 C26H28O14 (−): 503, 473, 443, 413, 383, 353
168 7.19 2-Phenylethyl-6-O-α-L-arabinofuranosyl-β-D-glucopyranoside 417.17446 417.17552 2.55 461.16598 461.16645 1.03c C19H28O10 (−): 415
169 7.20 Caffeoylshikimic acid 335.07694 335.07724 0.90 C16H16O8 (−): 179, 135
170 7.23 Vogeloside 387.12966 387.12967 0.03 C17H24O10
171 7.24 Plantainoside A 479.15572 479.15479 −1.94 477.13984 477.14024 0.82 C23H26O11 (−): 179, 161, 135
172 7.26 L-Phenylalaninosecologanin 538.22822 538.22829 0.12 536.21316 536.21373 1.08 C26H35NO11 (+): 376, 358
173 7.21 Liquiritigenin-7-O-apiosyl (1–2)-glucoside 551.17709 551.17592 −2.13 C26H30O13 (+): 257
174 7.29 8′-Hydroxypionresinol-4′-O-glucoside 537.19843 537.19665 −3.32 535.18169 535.18210 0.76 C26H32O12 (−): 343
175 7.30 Deoxyvasicinone 187.08634 187.08659 1.31 C11H10N2O (+): 146
176 7.30 2-Phenylethyl-1-β-D-glucoside 285.13355 285.13326 −0.99 329.12397 329.12419 0.66c C14H20O6
177 7.32 Caffeoylshikimic acid 337.09228 337.09179 −1.45 335.07698 335.07724 0.77 C16H16O8 (−): 179, 135
178 7.36 Dimethyl secologanoside 417.13986 417.14024 0.91 C18H26O11 (−): 255
179 7.37 2-O-(α-L-arabinose)-1-O-hexanoyl-β-D-rhamnose 393.17632 393.17662 0.77 C17H30O10 (−): 347, 261, 149
180 7.38 Hydroxyluteolin-O-arabinopyranosyl-glucopyranoside 597.14677 597.14501 −2.95 595.12926 595.13046 2.01 C26H28O16 (−): 301
181 7.42 Sachalinoside B 333.19129 333.19078 −1.53 377.18137 377.18171 0.88c C16H28O7
182 7.40 Secoisolariciresinol 4-O-β-D-glucopyranoside 523.21791 523.21849 1.09 C26H36O11 (−): 361, 346, 165
183 7.42 Isolugrandoside 639.19237 639.19306 1.08 C29H36O16 (−): 477, 315, 179, 161, 135
184 7.45 Darendroside B 475.18112 475.18210 2.06 C21H32O12 (−): 329
185 7.45 Calceolarioside C 611.19912 611.19705 −3.39 609.18145 609.18249 1.71 C28H34O15 (−): 179, 161
186 7.51 Ethyl gallate 197.04536 197.04555 0.96 C9H10O5 (−): 169, 125
187 7.51 Caffeoylshikimic acid 337.09236 337.09179 −1.68 335.07691 335.07724 1.00 C16H16O8 (−): 179, 135
188 7.52 Plantainoside B 479.15511 479.15479 −0.67 477.13973 477.14024 1.07 C23H26O11 (−): 179, 161, 135
189 7.53 4-O-Feruloylquinic acid 369.11849 369.11801 −1.30 367.10344 367.10346 0.04 C17H20O9 (−): 193, 173, 149
190 7.53 Demethyldihydrophillygenin glucuronide 537.19757 537.19665 −1.71 535.18148 535.18210 1.17 C26H32O12 (−): 373
191 7.56 Forsythoside B 779.23975 779.23690 −3.66a 755.23923 755.24040 1.55 C34H44O19 (−): 593, 461, 447, 161
192 7.64 Forsythoside H 625.21341 625.21270 −1.14 623.19692 623.19814 1.96 C29H36O15 (−): 477, 461, 443, 315, 297, 179, 161, 135, 133
193 7.70 Calceolarioside B isomer 479.15508 479.15479 −0.62 477.13956 477.14024 1.41 C23H26O11 (−): 179, 161
194 7.71 5′-Methoxy-8′-hydroxyl-(+)-isolariciresinol-4′-O-β-D-glucopyranoside 567.20728 567.20831 1.82 C27H36O13 (−): 359, 329
195 7.73 Neoliquiritin 419.13446 419.13366 −1.91 417.11946 417.11911 −0.84 C21H22O9 (+): 257
196 7.76 5-Carboxymethyl-7-hydroxy-2-methyl-chromone 235.06002 235.06010 0.33 233.04532 233.04555 0.98 C12H10O5
197 7.76 Isoviolanthin 579.17150 579.17083 −1.16 577.15506 577.15628 2.12 C27H30O14 (−): 457, 439, 413, 395, 383, 365, 353, 337, 325, 311, 297
198 7.79 Norjuziphine 286.14397 286.14377 −0.70 C17H20NO3 (+): 107
199 7.81 Rutin 611.16097 611.16066 −0.50 609.14530 609.14611 1.32 C27H30O16 (+): 465, 303
200 7.84 Calycosin-7-glucoside 447.12918 447.12857 −1.36 C22H22O10 (+): 285
201 7.87 Forsythoside I 625.21340 625.21270 −1.13 623.19775 623.19814 0.63 C29H36O15 (−): 477, 461, 443, 315, 297, 179, 161, 135, 133
202 7.89 4-Hydroxycoumarin 163.03923 163.03897 −1.58 161.02417 161.02442 1.54 C9H6O3
203 7.97 Liquiritin apioside 551.17709 551.17592 −2.13 549.16066 549.16136 1.27 C26H30O13 (+): 257
204 7.99 Isovitexin 433.11335 433.11292 −0.98 431.09759 431.09837 1.81 C21H20O10 (+): 415, 397, 379, 367, 361, 351, 349, 337, 323, 313, 309, 295, 283
205 7.99 Lariciresinol-4-O-glucoside 545.20051 545.19933 −2.17a 521.20241 521.20284 0.82 C26H34O11 (−): 359
206 8.00 Unknown 398.18129 398.18094 −0.87 396.16601 396.16639 0.97 C19H27NO8 (+): 236, 218, 190
207 8.05 Liquiritin 419.13402 419.13366 −0.86 417.11940 417.11911 −0.71 C21H22O9 (+): 257
208 8.07 Isoquercitrin 465.10349 465.10275 −1.59 463.08760 463.08820 1.30 C21H20O12 (+): 303
209 8.07 Liquiritigenin-7,4′-diglucoside 581.18785 581.18648 −2.36 579.17011 579.17193 3.14 C27H32O14 (+): 239
210 8.08 Forsythoside G 769.25389 769.25605 2.81 C35H46O19 (−): 607
211 8.10 Calceolarioside A 479.15525 479.15479 −0.97 477.13974 477.14024 1.04 C23H26O11 (−): 179, 161
212 8.13 Neoamygdalin 456.15079 456.15113 0.75 C20H27NO11 (−): 323
213 8.17 Ferulic acid 193.05044 193.05063 0.99 C10H10O4 (−): 149
214 8.18 1-O-trans-Cinnamoyl-beta-D-glucopyranose 311.11285 311.11253 −1.03 355.10311 355.10346 0.97c C15H18O7 (−): 189, 161, 147
215 8.18 Resveratrol 4′-O-glucoside 389.12361 389.12419 1.49 C20H22O8 (−): 227
216 8.14 Rhein-8-O-β-D-glucoside 445.07800 445.07763 −0.82 C21H18O11 (−): 283, 239
217 8.19 Strychoside A 745.25615 745.25496 −1.60 743.23879 743.24040 2.17 C33H44O19 (−): 511, 479
218 8.20 Acteoside isomer 647.19644 647.19464 −2.78a 623.19694 623.19814 1.93 C29H36O15 (−): 461, 315, 179, 161, 135
219 8.21 Hyperin 465.10365 465.10275 −1.92 463.08777 463.08820 0.94 C21H20O12 (+): 303
220 8.21 Kaempferol-3-O-rhamnose-7-O-glucose 595.16731 595.16575 −2.63 593.14994 593.15119 2.11 C27H30O15 (−): 285
221 8.22 Conicaoside 551.21249 551.21340 1.65 C27H36O12
222 8.26 Rosiridin 333.19129 333.19078 −1.53 377.18125 377.18171 1.20c C16H28O7
223 8.26 Scutellarin 463.08802 463.08710 −1.98 461.07191 461.07255 1.39 C21H18O12 (+): 287
224 8.27 Suspensaside A isomer 623.19945 623.19705 −3.86 621.18146 621.18249 1.67 C29H34O15 (−): 161
225 8.28 Cynaroside 449.10878 449.10784 −2.10 447.09286 447.09329 0.96 C21H20O11 (−): 285
226 8.30 1-Methoxyindole-3-acetamide 205.09741 205.09715 −1.25 C11H12N2O2 (+):188
227 8.34 Creoside IV 397.20694 397.20682 −0.29 395.19202 395.19227 0.63 C17H32O10
228 8.38 Luteolin-7-O-rutinoside 595.16734 595.16575 −2.68 593.15031 593.15119 1.49 C27H30O15 (−): 285
229 8.39 Rosavin 473.16680 473.16645 −0.74c C20H28O10 (−): 427, 293, 233, 191, 149, 131
230 8.41 Calceolarioside B 479.15560 479.15479 −1.69 477.13966 477.14024 1.20 C23H26O11 (+): 325, 163
231 8.43 Rhodioloside E 511.23891 511.23961 1.38c C21H38O11
232 8.51 Isaindigodione isomer 327.13412 327.13393 −0.57 C18H18N2O4 (+): 201
233 8.53 Forsythenside K isomer 609.21958 609.21778 −2.95 607.20230 607.20323 1.53 C29H36O14 (−): 461
234 8.64 Suspensaside A 623.19760 623.19705 −0.89 621.18152 621.18249 1.58 C29H34O15 (−): 161
235 8.66 Forsythoside A 647.19663 647.19464 −3.07a 623.19737 623.19814 1.25 C29H36O15 (−): 461, 315, 297, 179, 161, 135
236 8.72 Nicotiflorin 595.16730 595.16575 −2.61 593.15034 593.15119 1.44 C27H30O15 (+): 287
237 8.73 3,4-Dicaffeoyl quinic acid 517.13515 517.13405 −2.12 515.11892 515.11950 1.13 C25H24O12 (−): 353, 191, 179, 135
238 8.82 Isolariciresinol 361.16492 361.16456 −0.98 405.15504 405.15549 1.12c C20H24O6 (−): 359, 344, 313
239 8.82 Acteoside 625.21423 625.21270 −2.45 623.19642 623.19814 2.77 C29H36O15 (−): 461, 315, 297, 179, 161, 135, 133
240 8.83 Luteolin-5-O-glucoside 449.10877 449.10784 −2.09 447.09290 447.09329 0.86 C21H20O11 (+): 287
241 8.85 Forsythenside K 609.21862 609.21778 −1.38 607.20233 607.20323 1.48 C29H36O14 (−): 461
242 8.91 Licoflavanone isomer 341.13847 341.13835 −0.35 C20H20O5 (+): 291, 263
243 8.93 Pinoresinol-4-O-glucoside 543.18472 543.18368 −1.91a 519.18642 519.18719 1.48 C26H32O11 (−): 357, 342, 151
244 8.95 Rhodioloside A 371.16804 371.16764 −1.08a 347.17090 347.17114 0.69 C16H28O8 (+): 203
245 8.96 Rhodiolgin 465.10353 465.10275 −1.67 463.08778 463.08820 0.91 C21H20O12 (−): 317, 303
246 9.02 n-Hexyl-β-D-glucopyranoside 287.14678 287.14651 −0.96a 309.15531 309.15549 0.59c C12H24O6
247 9.08 Leucosceptoside A 639.23032 639.22835 −3.09 637.21288 637.21379 1.43 C30H38O15 (−): 461, 175
248 9.10 3,5-Dicaffeoyl quinic acid 517.13509 517.13405 −2.01 515.11886 515.11950 1.23 C25H24O12 (−): 353, 191, 179, 135
249 9.14 Acanthoside B 603.20614 603.20481 −2.21a 579.20778 579.20831 0.93 C28H36O13 (−): 417, 402
250 9.26 Rhoifolin 579.17222 579.17083 −2.40 577.15722 577.15628 −1.63 C27H30O14 (+): 271
251 9.30 Quercitrin 449.10818 449.10784 −0.77 447.09270 447.09329 1.30 C21H20O11 (−): 301, 285, 284, 271, 255
252 9.37 Centauroside 759.27302 759.27061 −3.18 757.25408 757.25605 2.61 C34H46O19 (−): 595, 525, 493
253 9.45 Isorhamnetin-3-O-glucoside 479.11912 479.11840 −1.50 477.10325 477.10385 1.26 C22H22O12 (+): 317
254 9.49 Choerospondin 435.12890 435.12857 −0.75 433.11374 433.11402 0.65 C21H22O10 (+): 273
255 9.52 Apigenin-7-O-glucoside 433.11352 433.11292 −1.37 431.09768 431.09837 1.61 C21H20O10 (+): 271
256 9.60 Hesperidin 609.18085 609.18249 2.70 C28H34O15 (−): 301
257 9.64 Acacetin-6,8-di-C-glucoside 609.18290 609.18140 −2.47 607.16628 607.16684 0.93 C28H32O15
258 9.68 4,5-Dicaffeoyl quinic acid 517.13470 517.13405 −1.24 515.11866 515.11950 1.64 C25H24O12 (−): 353, 191, 179, 135
259 9.73 Indole-3-acetonitrile-2-S-β-D-glucopyranoside 351.10150 351.10092 −1.65 349.08603 349.08637 0.96 C16H18N2O5S (−): 187, 160
260 9.81 (7R,8S,7′R,8′S)-5-Methoxyprinsepiol-4-O-β-D-glucose 583.20347 583.20213 −2.29 581.18690 581.18758 1.16 C27H34O14 (−): 419, 371, 223
261 9.82 Azelaic acid 189.11208 189.11214 0.29 187.09736 187.09758 1.18 C9H16O4 (−): 125
262 9.85 Salicylic acid 137.02428 137.02442 1.02 C7H6O3
263 9.88 Pratensein-7-O-glucoside isomer 463.12422 463.12349 −1.58 461.10903 461.10894 −0.21 C22H22O11 (+): 301
264 9.88 (E)-Aldosecologanin 759.27028 759.27061 0.43 757.25436 757.25605 2.24 C34H46O19 (−): 595, 525, 493
265 10.00 Rosin 341.12382 341.12419 1.09c C15H20O6
266 10.02 Kaempferol-3-O-rutinoside isomer 595.16699 595.16575 −2.10 593.15050 593.15119 1.17 C27H30O15 (−): 285
267 10.06 Unknown 506.23943 506.23846 −1.93 C26H35NO9 (+): 344, 326
268 10.08 6-Hydroxymusizin-8-O-β-D-glucopyranoside 395.13394 395.13366 −0.71 393.11872 393.11911 0.99 C19H22O9 (−): 231
269 10.13 Rhododendrol-2-O-β-D-glucopyranoside isomer 329.15996 329.15948 −1.46 327.14463 327.14493 0.90 C16H24O7
270 10.16 P-Coumarin caffeoylquinic acid 501.14029 501.13914 −2.30 499.12405 499.12459 1.08 C25H24O11 (−): 353, 337, 191, 179
271 10.26 Rhapontin 419.13439 419.13476 0.88 C21H24O9
272 10.26 Crenatoside 623.19760 623.19705 −0.89 621.18149 621.18249 1.62 C29H34O15 (−): 161
273 10.30 8-Hydroxypinoresinol 375.14425 375.14383 −1.13 373.12900 373.12928 0.74 C20H22O7 (−): 313
274 10.36 Epi-pinoresinol 359.14922 359.14891 −0.85 357.13402 357.13436 0.96 C20H22O6 (−): 342
275 10.39 8-Hydroxysyringaresinol 435.16555 435.16496 −1.35 433.15040 433.15041 0.01 C22H26O9 (−): 403, 385, 373, 358, 343, 325
276 10.39 Pinoresinol-4-O-glucoside isomer 543.18459 543.18368 −1.67a 519.18658 519.18719 1.16 C26H32O11 (−): 357, 342
277 10.43 Secoisolariciresinol 361.16522 361.16566 1.21 C20H26O6 (−): 346, 165
278 10.43 Sachaloside II 469.20530 469.20442 −1.88a 491.21283 491.21340 1.15c C21H34O10 (−): 445
279 10.48 Luteolin-7-O-α-L-rhamnoside 431.09793 431.09837 1.03 C21H20O10 (−): 285
280 10.49 3,5-O-dicaffeoylquinic acid methyl ester 531.14933 531.14970 0.70 529.13459 529.13515 1.05 C26H26O12 (−): 191, 173
281 10.50 Hydroxymedioresinol 405.15482 405.15439 −1.04 403.13953 403.13984 0.77 C21H24O8 (−): 343
282 10.53 Isoliquiritin apioside 551.17675 551.17592 −1.51 549.16082 549.16136 0.99 C26H30O13 (+): 257
283 10.54 Glycyroside 563.17681 563.17592 −1.58 561.16086 561.16136 0.90 C27H30O13 (+): 269
284 10.55 Chrysoeriol-7-O-neohesperidoside 607.16565 607.16684 1.97 C28H32O15
285 10.57 7-O-ethyl-sweroside 401.14496 401.14532 0.89 C18H26O10 (−): 233, 215, 197, 175
286 10.57 Leucosceptoside A or isomer 639.22838 639.22835 −0.05 637.21287 637.21379 1.46 C30H38O15 (−): 461
287 10.59 Pratensein-7-O-glucoside 463.12435 463.12349 −1.86 461.10846 461.10894 1.04 C22H22O11 (−): 299, 284
288 10.66 Genistin 433.11338 433.11292 −1.06 431.09800 431.09837 0.86 C21H20O10 (−): 269
289 10.66 Oleuropein 539.17665 539.17701 0.68 C25H32O13 (−): 377, 345, 327, 307, 275
290 10.67 Tricin 7-O-glucoside 493.13463 493.13405 −1.17 491.11918 491.11950 0.65 C23H24O12
291 10.73 Indole-3-acetonitrile-4-methoxy-2-S-β-D-glucopyranoside or N-Methoxyindole-3-acetonitrile-2-S-β-D-glucopyranoside 381.11204 381.11148 −1.46 379.09664 379.09693 0.76 C17H20N2O6S (+): 219
292 10.88 Isoliquiritin apioside isomer 551.17690 551.17592 −1.78 549.16083 549.16136 0.97 C26H30O13 (+): 257
293 10.88 Rhodiosin 611.16141 611.16066 −1.23 609.14512 609.14611 1.63 C27H30O16 (−): 301
294 10.91 8-O-Methylretusin-7-O-β-D-glucopyranoside 461.14485 461.14422 −1.36 459.12925 459.12967 0.91 C23H24O10 (+): 299
295 10.96 Lariciresinol 361.16492 361.16456 −0.98 405.15509 405.15549 1.00c C20H24O6 (−): 329.13917
296 10.96 Unknown 459.09293 459.09329 0.78 C22H20O11 (−): 253
297 11.03 4,5-O-dicaffeoylquinic acid methyl ester 529.13432 529.13515 1.57 C26H26O12 (−): 179, 173
298 11.04 Isoliquiritin 419.13408 419.13366 −1.01 417.11866 417.11911 1.08 C21H22O9 (+): 257
299 11.04 Pratensein-7-O-glucoside isomer 461.10848 461.10894 1.00 C22H22O11 (−): 299, 284
300 11.05 Flavoyadorinin B 475.12417 475.12459 0.88 C23H24O11 (−): 283
301 11.06 Ononin 431.13390 431.13366 −0.55 429.11941 429.11911 −0.71 C22H22O9 (+): 269
302 11.18 Lonijapospiroside A 560.17670 560.17735 1.15 C27H31NO12 (−): 296
303 11.22 Arctiin isomer 557.20019 557.19933 −1.53a 579.20762 579.20831 1.20c C27H34O11 (−): 371
304 11.25 3-(2′-Hydroxyphenyl)-4-(3H)-quinazolinone 239.08175 239.08150 −1.03 C14H10N2O2
305 11.28 N-p-Coumaroyltyramine 284.12839 284.12812 −0.95 C17H17NO3 (+): 147
306 11.29 7,4′-Dihydroxyflavone 255.06527 255.06519 −0.35 253.05057 253.05063 0.25 C15H10O4 (+): 137
307 11.43 Rhodiolatuntoside 449.10804 449.10784 −0.45 447.09289 447.09329 0.88 C21H20O11 (−): 151
308 11.44 Neoisoliquiritin 419.13413 419.13366 −1.12 417.11881 417.11911 0.71 C21H22O9 (+): 257
309 11.58 3,4-O-dicaffeoylquinic acid methyl ester 531.15067 531.14970 −1.82 529.13454 529.13515 1.15 C26H26O12 (−): 191, 179, 173
310 11.60 Unknown 553.19237 553.19157 −1.46 551.17597 551.17701 1.90 C26H32O13 (+): 391, 373, 347
311 11.63 Licorice glycoside D1/D2 697.21387 697.21270 −1.68 695.19746 695.19814 0.99 C35H36O15 (−): 549, 531, 417, 399, 255
312 11.70 1-O-Galloy1-2-O-cinnamoylglucose 461.10849 461.10894 0.97 C22H22O11 (−): 313, 169
313 11.70 Crenuloside 595.16654 595.16575 −1.34 593.15061 593.15119 0.98 C27H30O15 (+): 287
314 11.75 Licorice glycoside C1/C2 727.22455 727.22326 −1.77 725.20724 725.20871 2.03 C36H38O16 (−): 255
315 11.82 Licochalcone B 287.09170 287.09140 −1.04 285.07669 285.07685 0.55 C16H14O5 (−): 270, 177, 150
316 11.83 N-transferuloyltyramine 314.13899 314.13868 −0.99 312.12388 312.12413 0.82 C18H19NO4 (+): 177
317 11.83 Dryocrassin ABBA 821.30122 821.30151 0.36 819.28569 819.28696 1.55 C43H48O16 (−): 611, 403
318 11.85 Daidzein 255.06551 255.06519 −1.27 253.05027 253.05063 1.43 C15H10O4 (+): 227, 199
319 11.89 Phillyrin 557.20015 557.19933 −1.47a 579.20726 579.20831 1.83c C27H34O11 (+): 395, 373, 355, 337, 305
320 11.90 Unknown 745.32360 745.32319 −0.55 C43H44N4O8 (+): 322, 219, 201, 189
321 11.91 4′-O-methyl glabridin isomer 355.15397 355.15400 0.09 C21H22O5 (+): 337, 322, 306, 305, 290, 285, 284, 254
322 12.01 Herbacetin 303.05025 303.04993 −1.06 301.03510 301.03538 0.92 C15H10O7 (−): 283
323 12.14 Liquiritigenin 257.08100 257.08084 −0.65 255.06610 255.06628 0.72 C15H12O4 (+): 239, 211, 147, 137
324 12.15 Lonijapospiroside A isomer 562.19303 562.19190 −2.01 560.17675 560.17735 1.08 C27H31NO12 (−): 296
325 12.20 Chrysoeriol 7-O-glucoside 463.12431 463.12349 −1.78 461.10867 461.10894 0.57 C22H22O11 (−): 256
326 12.25 Arctiin 557.20005 557.19933 −1.28a 579.20736 579.20831 1.64c C27H34O11 (+): 395, 355, 337, 323, 305, 295, 277, 273, 263, 245, 237, 219
327 12.26 Rhamnetin 317.06599 317.06558 −1.30 315.05155 315.05103 −1.66 C16H12O7 (−): 300
328 12.38 Eriodictyol 289.07088 289.07066 −0.75 287.05590 287.05611 0.73 C15H12O6 (+): 153
329 12.38 Linarin 593.18730 593.18648 −1.39 C28H32O14 (+): 447, 285
330 12.50 Chrysoeriol 301.07091 301.07066 −0.82 299.05600 299.05611 0.36 C16H12O6 (−): 284
331 12.50 Sebacic acid 203.12807 203.12779 −1.40 201.11295 201.11323 1.41 C10H18O4
332 12.55 1,6-Di-O-galloyl-2-O-cinnamoyl-β-D-glucose 613.11880 613.11989 1.78 C29H26O15 (−): 461, 169
333 12.55 Licorice saponin O4 1115.52753 1115.52798 0.40 C54H84O24
334 12.65 L-phenylalaninosecologanin B 506.20241 506.20207 −0.67 504.18704 504.18752 0.96 C25H31NO10 (−): 342, 324, 314, 272
335 12.70 1-O-Galloy1-6-O-cinnamoylglucose 461.10906 461.10894 −0.27 C22H22O11 (−): 313, 169
336 12.71 Matairesinoside 519.18734 519.18719 −0.30 C26H32O11 (−): 357
337 12.75 Erythro-dihydroguaiacylglycerol-O-4′-dehydrodisinapyl ether 585.23417 585.23414 −0.05 C31H38O11
338 12.82 Luteolind 287.05523 287.05501 −0.74 285.04038 285.04046 0.29 C15H10O6 (−): 268, 267, 243, 241, 239, 223, 217, 215, 213, 211, 201, 199, 197, 195, 185, 183, 175, 171, 151, 149, 133
339 12.84 Kaempferin 433.11331 433.11292 −0.88 431.09817 431.09837 0.45 C21H20O10 (+): 287
340 12.87 Sachalinoside A or isomer 485.20051 485.20174 2.53 483.18711 483.18719 0.17 C23H32O11
341 12.89 Quercetin 303.05017 303.04993 −0.80 301.03529 301.03538 0.30 C15H10O7 (−): 151
342 12.90 Kenposide A 447.22336 447.22357 0.48 C21H36O10
343 12.94 Calycosin 285.07596 285.07575 −0.72 283.06112 283.06120 0.28 C16H12O5 (+): 270
344 13.07 Rhamnoliquiritin 565.19252 565.19157 −1.68 563.17653 563.17701 0.86 C27H32O13
345 13.08 Rhodiooctanoside 425.23899 425.23812 −2.04 423.22330 423.22357 0.65 C19H36O10 (−): 291,
346 13.10 Torachrysone 8-O-glucoside 409.14968 409.14931 −0.91 407.13463 407.13476 0.32 C20H24O9 (−): 245
347 13.14 Rhodioloside C 493.22872 493.22905 0.67 C22H38O12 (−): 447
348 13.14 Licorice glycoside E 694.21415 694.21303 −1.61 692.19904 692.19848 −0.81 C35H35NO14 (−): 549, 531, 399, 255
349 13.16 Chrysophanol-1-O-glucoside 439.10043 439.09995 −1.09a 415.10322 415.10346 0.58 C21H20O9 (−): 253, 225
350 13.22 Emodin-glucoside 433.11268 433.11292 0.56 431.09808 431.09837 0.68 C21H20O10 (−): 269
351 13.33 Ethyl caffeate 209.08104 209.08084 −0.96 207.06611 207.06628 0.85 C11H12O4 (−): 179, 161, 135
352 13.34 Kaempferol-7-O-α-L-rhamnoside 433.11357 433.11292 −1.49 431.09799 431.09837 0.88 C21H20O10 (−): 285
353 13.37 Myrciacitrin I 479.15535 479.15479 −1.17 477.14006 477.14024 0.36 C23H26O11 (−): 269
354 13.40 Unknown 590.26036 590.25959 −1.32 588.24591 588.24503 −1.49 C30H39NO11 (+): 428, 282
355 13.41 Rhodioloside B 493.22864 493.22905 0.83 C22H38O12 (−): 311
356 13.45 Uralsaponin C isomer 825.42822 825.42671 −1.82 823.41124 823.41216 1.11 C42H64O16 (+): 455
357 13.53 Pinoresinol 359.14933 359.14891 −1.15 357.13430 357.13436 0.17 C20H22O6 (−): 342, 151, 136
358 13.55 Licoflavanone isomer 341.13856 341.13835 −0.63 C20H20O5 (+): 263
359 13.58 Chrysophanol-8-O-glucoside 439.10037 439.09995 −0.96a 415.10336 415.10346 0.23 C21H20O9 (−): 253, 225
360 13.66 Wogonoside 461.10819 461.10784 −0.76 459.09377 459.09329 −1.06 C22H20O11 (+): 285
361 13.81 Di-O-galloyl-O-cinnamoyl-β-D-glucose 613.11922 613.11989 1.09 C29H26O15 (−): 461, 169
362 13.81 Licorice glycoside B 697.21341 697.21270 −1.02 695.19785 695.19814 0.43 C35H36O15 (−): 549, 531, 417, 399, 255
363 13.83 Licorice glycoside A 727.22367 727.22326 −0.56 725.20767 725.20871 1.43 C36H38O16 (−): 255
364 13.88 Neohesperidin dihydrochalcone 611.19743 611.19814 1.16 C28H36O15 (−): 565
365 13.88 24-Hydroxy-licoricesaponin A3 1001.45919 1001.45880 −0.39 999.44190 999.44425 2.34 C48H72O22 (+): 825, 649, 631, 487, 469, 451
366 13.91 Laccaic acid D 315.05015 315.04993 −0.72 313.03522 313.03538 0.49 C16H10O7 (−): 269, 241, 225
367 13.99 Erythro-guaiacylglycerol-O-4′-dehydrodisinapyl ether 585.23441 585.23304 −2.34 583.21807 583.21849 0.71 C31H36O11 (−): 535
368 14.14 Di-O-galloyl-O-cinnamoyl-β-D-glucose 613.11929 613.11989 0.98 C29H26O15 (−): 461 443, 169
369 14.14 Syringlyglycerol-β-syringaresinol ether 643.23901 643.23961 0.93 C33H40O13 (−): 595, 417, 387
370 14.37 24-Hydroxy-licoricesaponin A3 isomer 1001.45939 1001.45880 −0.58 999.44143 999.44425 2.82 C48H72O22 (−): 351
371 14.41 Unknown 685.24873 685.24908 0.52 729.23869 729.24001 1.81c C35H40O14 (−): 371, 149
372 14.50 Uralsaponin F 897.41308 897.41146 −1.81 895.39620 895.39690 0.79 C44H64O19 (+): 545, 527
373 14.59 Emodin-O-(6-carboxyacetyl)-β-D-glucopyranoside 519.11381 519.11332 −0.94 517.09827 517.09876 0.96 C24H22O13 (−): 269
374 14.60 Uralsaponin T 955.49216 955.48971 −2.57 953.47433 953.47515 0.86 C48H74O19 (−): 351
375 14.67 22-Hydroxyl licorice saponin G2 855.40216 855.40089 −1.48 853.38505 853.38634 1.51 C42H62O18 (+): 679, 661, 643, 503, 485, 467
376 14.75 Erythro-guaiacylglycerol-O-4′-dehydrodisinapyl ether isomer 583.21820 583.21849 0.48 C31H36O11 (−): 535
377 14.83 4,5-Dioxodehydroasimilobine 294.07638 294.07608 −1.02 292.06147 292.06153 0.21 C17H11NO4
378 14.87 Naringenin 273.07596 273.07575 −0.76 271.06109 271.06120 0.39 C15H12O5 (−): 177, 165, 151, 119, 107
379 15.02 Amorfrutin 2 307.19061 307.19039 −0.72 305.17575 305.17583 0.28 C18H26O4 (−): 261, 243, 191
380 15.05 Prunetrin 445.11408 445.11402 −0.13 C22H22O10 (−): 283
381 15.06 Echinatin 271.09663 271.09649 −0.55 C16H14O4 (+): 229, 177
382 15.08 Glyzaglabrin 299.05512 299.05501 −0.35 297.04049 297.04046 −0.11 C16H10O6
383 15.08 Uralsaponin F isomer 897.41292 897.41146 −1.63 895.39611 895.39690 0.88 C44H64O19 (−): 351
384 15.09 Apigenind 271.06023 271.06010 −0.47 269.04547 269.04555 0.29 C15H10O5 (−): 237, 225, 201, 175, 151, 149
385 15.18 Matairesinol 359.14899 359.14891 −0.21 357.13426 357.13436 0.27 C20H22O6 (+): 323, 305, 291
386 15.23 Licorice saponin A3 985.46490 985.46389 −1.03 983.44717 983.44933 2.20 C48H72O21 (−): 821
387 15.32 Herbacetin-8-methyl ether 317.06585 317.06558 −0.87 315.05108 315.05103 −0.17 C16H12O7
388 15.37 Uralsaponin D 851.37053 851.36959 −1.10 849.35583 849.35504 −0.93 C42H58O18 (+): 499
389 15.39 Matairesinol isomer 359.14901 359.14891 −0.26 357.13429 357.13436 0.21 C20H22O6 (−): 342
390 15.45 Emodin-glucoside 433.11357 433.11292 −1.49 431.09831 431.09837 0.15 C21H20O10 (−): 269
391 15.47 Genistein 271.06031 271.06010 −0.79 269.04562 269.04555 −0.27 C15H10O5 (+): 243
392 15.56 Kaempferol 287.05511 287.05501 −0.33 285.04045 285.04046 0.02 C15H10O6 (+): 269, 258, 241, 231, 213, 185, 165, 153
393 15.61 Quercetin 3,4’-dimethyl ether or isomer 331.08144 331.08123 −0.63 329.06678 329.06668 −0.32 C17H14O7
394 15.63 Emodin methyl ether-8-O-glucoside 469.11082 469.11052 −0.65a 445.11405 445.11402 −0.06 C22H22O10 (−): 283
395 15.66 Physcion isomer 285.07592 285.07575 −0.60 283.06119 283.06120 0.03 C16H12O5 (−): 240
396 15.66 9,12-Dihydroxy-13-oxooctadec-14-enoic acid 351.21417 351.21419 0.08a 327.21741 327.21770 0.89 C18H32O5 (−): 229, 211, 183, 171
397 15.69 Unknown 543.19786 543.19732 −1.00 C27H31N2O10 (+): 381, 363, 335, 311
398 15.75 Kaempferide 301.07102 301.07066 −1.19 299.05633 299.05611 −0.73 C16H12O6 (−): 284, 255, 240, 228
399 15.78 22-Hydroxyl licorice saponin G2 isomer 855.40178 855.40089 −1.03 853.38571 853.38634 0.73 C42H62O18 (−): 351
400 15.87 Amorfrutin 2 isomer 307.19056 307.19039 −0.55 305.17585 305.17583 −0.05 C18H26O4 (−): 261, 243, 191
401 15.87 Uralsaponin R isomer 971.48609 971.48462 −1.52 969.46932 969.47007 0.77 C48H74O20 (+): 439
402 15.94 9,12-Dihydroxy-13-oxooctadec-14-enoic acid isomer 351.21414 351.21419 0.15a 327.21745 327.21770 0.77 C18H32O5 (−): 229, 211, 183, 171
403 16.06 22β-Acetoxylglycyrrhizin 881.41716 881.41654 −0.71 879.40042 879.40199 1.78 C44H64O18 (−): 351
404 16.13 Isorhamnetin 317.06551 317.06558 0.22 315.05089 315.05103 0.44 C16H12O7 (−): 300, 283, 271, 255, 243, 227, 151
405 16.17 24-Hydroxy-licorice-saponin E2 837.39098 837.39033 −0.78 835.37446 835.37577 1.58 C42H60O17 (+): 485, 469, 467
406 16.18 Uralsaponin X 1027.47405 1027.47445 0.39 1025.45807 1025.45990 1.78 C50H74O22
407 16.21 Licorice saponin A3 isomer 985.46418 985.46389 −0.30 983.44730 983.44933 2.06 C48H72O21 (+): 647,453
408 16.35 Uralsaponin R 971.48605 971.48462 −1.47 969.46925 969.47007 0.85 C48H74O20 (+): 439
409 16.37 Yunganoside K2 839.40595 839.40598 0.03 837.39094 837.39142 0.58 C42H62O17 (−): 661, 485, 351
410 16.38 Glabric acid isomer 487.34218 487.34180 −0.78 C30H46O5 (+): 469, 451
411 16.40 Glabrolide 469.33124 469.33124 0.00 C30H44O4 (+): 451
412 16.42 Baicalein 271.06018 271.06010 −0.31 269.04562 269.04555 −0.27 C15H10O5 (+): 253
413 16.49 Dihydrolicorice saponin A3 isomer 987.48093 987.47954 −1.41 985.46372 985.46498 1.28 C48H74O21 (−): 823, 351
414 16.57 Aristolactam AⅡ/F1 266.08121 266.08117 −0.14 264.06661 264.06662 0.01 C16H11NO3
415 16.68 Licorice saponin B2 isomer 809.43232 809.43180 −0.65 807.41673 807.41724 0.64 C42H64O15
416 16.72 Uralsaponin R isomer 971.48469 971.48462 −0.07 969.46953 969.47007 0.55 C48H74O20 (+): 439
417 16.82 Unknown 349.20099 349.20095 −0.11 347.18606 347.18640 0.97 C20H28O5 (−): 303, 285, 259, 243
418 16.94 Licorice saponin A3 isomer 985.46436 985.46389 −0.48 983.44753 983.44933 1.83 C48H72O21 (+): 647, 453
419 16.98 Glabrolide isomer 469.33145 469.33124 −0.45 C30H44O4 (+): 451
420 16.98 Licorice saponin G2 isomer 839.40663 839.40598 −0.78 837.39080 837.39142 0.74 C42H62O17 (+): 487
421 17.03 22β-Acetoxyl Uralsaponin C 867.43747 867.43728 −0.22 865.42218 865.42272 0.63 C44H66O17 (+): 691
422 17.03 Uralsaponin R isomer 971.48596 971.48462 −1.37 969.46968 969.47007 0.40 C48H74O20 (+): 439
423 17.12 Uralsaponin Q 941.47497 941.47406 −0.97 939.45817 939.45950 1.41 C47H72O19 (+): 647, 471
424 17.14 9,12-Dihydroxy-13-oxooctadecanoic acid 353.22983 353.22984 0.04a 329.23309 329.23335 0.77 C18H34O5 (−): 311, 229, 211
425 17.17 Uralsaponin T isomer 955.49150 955.48971 −1.88 953.47509 953.47515 0.07 C48H74O19 (−): 351
426 17.22 Aristolactam AⅡ/F1 266.08131 266.08117 −0.53 264.06657 264.06662 0.17 C16H11NO3
427 17.46 Isoliquiritigenin 257.08088 257.08084 −0.17 255.06616 255.06628 0.47 C15H12O4 (+): 239, 211, 147, 137
428 17.55 Glyzaglabrin isomer 299.05503 299.05501 −0.07 297.04020 297.04046 0.87 C16H10O6
429 17.62 Bourneioside B 957.50662 957.50645 −0.17 C48H78O19 (−): 911, 791, 645, 603
430 17.71 22β-Acetoxyl Licorice saponin J2 883.43315 883.43219 −1.09 881.41509 881.41764 2.89 C44H66O18 (+): 707
431 17.82 Licorice saponin E2 821.39590 821.39541 −0.59 819.37984 819.38086 1.24 C42H60O16 (+): 645, 469, 451
432 17.84 Formononetin 269.08085 269.08084 −0.07 267.06619 267.06628 0.34 C16H12O4 (+): 254, 253, 237, 226, 225, 213, 197
433 17.92 Glabrolide isomer 469.33161 469.33124 −0.80 C30H44O4 (+): 451
434 17.93 Glabric acid 487.34215 487.34180 −0.73 C30H46O5 (+):469, 451
435 17.96 Licorice saponin G2 839.40696 839.40598 −1.17 837.39081 837.39142 0.73 C42H62O17 (+): 487, 469
436 17.97 Norcepharadione B 308.09206 308.09173 −1.06 C18H13NO4
437 18.04 Phillygenin 373.16478 373.16456 −0.58 371.15018 371.15001 −0.46 C21H24O6 (+): 355, 337, 306, 305, 284, 269
438 18.04 Licorice saponin B2 isomer 807.41600 807.41724 1.55 C42H64O15
439 18.05 Glycyuralin E 371.14932 371.14891 −1.09 C21H22O6
440 18.05 Uralsaponin O 821.39785 821.39541 −2.97 819.37964 819.38086 1.49 C42H60O16 (+): 645, 469, 451
441 18.06 4′-O-methyl glabridin 355.15395 355.15400 0.15 C21H22O5
442 18.12 10,16-Dihydroxy-palmitic acid 289.23760 289.23734 −0.91 287.22276 287.22278 0.07 C16H32O4 (−): 269, 241
443 18.23 Clinodiside A or Bourneioside B 957.50479 957.50645 1.74 C48H78O19 (−): 911
444 18.24 Yunganoside J1/L1 isomer 969.46673 969.46897 2.32 967.45147 967.45442 3.05 C48H72O20 (−): 803, 645, 497
445 18.30 Amentoflavone 539.09838 539.09727 −2.05 537.08306 537.08272 −0.63 C30H18O10 (−): 375
446 18.35 Uralsaponin T isomer 955.48929 955.48971 0.44 953.47373 953.47515 1.49 C48H74O19 (−): 351
447 18.38 22β-Acetoxyl-glycyrrhaldehyde 887.40429 887.40357 −0.81a 863.40441 863.40707 3.09 C44H64O17 (+): 865, 689
448 18.49 Yunganoside J1/L1 969.46957 969.46897 −0.62 967.45405 967.45442 0.38 C48H72O20 (−): 803, 645, 497
449 18.56 Glycyrrhizic acid isomer 823.41153 823.41106 −0.57 821.39558 821.39651 1.13 C42H62O16 (+): 647, 471
450 18.64 Licorice saponin G2 isomer 839.40623 839.40598 −0.30 837.39103 837.39142 0.47 C42H62O17 (+): 487
451 18.64 Licorice saponin A3 isomer 985.46469 985.46389 −0.81 983.44646 983.44933 2.92 C48H72O21 (−): 821
452 18.72 9,12-Dihydroxy-13-oxooctadecanoic acid isomer 353.22977 353.22984 0.22a 329.23323 329.23335 0.35 C18H34O5 (−): 311, 229, 211
453 18.78 Uralsaponin T isomer 955.49075 955.48971 −1.09 953.47336 953.47515 1.88 C48H74O19 (−): 351
454 18.87 Retusin 357.09779 357.09798 0.51 C19H18O7
455 18.88 Aloe emodin 271.06015 271.06010 −0.20 269.04540 269.04555 0.54 C15H10O5 (−): 240, 223, 211
456 18.89 Licorice saponin J2 isomer 825.42742 825.42671 −0.86 823.41107 823.41216 1.33 C42H64O16 (+): 455
457 19.00 9,12-Dihydroxy-13-oxooctadecanoic acid isomer 353.22975 353.22984 0.27a 329.23333 329.23335 0.06 C18H34O5 (−): 311, 229, 211
458 19.02 Irisolidone 313.07162 313.07176 0.46 C17H14O6
459 19.06 Dihydrolicorice saponin A3 isomer 987.48014 987.47954 −0.61 985.46561 985.46498 −0.63 C48H74O21 (+): 629, 471, 453
460 19.11 Norcepharadione B isomer 308.09176 308.09173 −0.09 C18H13NO4
461 19.17 Uralsaponin N 839.40620 839.40598 −0.26 837.39101 837.39142 0.49 C42H62O17 (+): 487
462 19.35 Glycyrrhetic acid 3-O-glucuronide 647.37926 647.37897 −0.43 C36H54O10 (+): 453, 435, 407
463 19.49 Glycyrrhizic acidd 823.41127 823.41106 −0.25 821.39607 821.39651 0.53 C42H62O16 (+): 647, 471, 453
464 19.57 22β-Acetoxyl-glycyrrhaldehyde isomer 887.40351 887.40357 0.07a 863.40508 863.40707 2.31 C44H64O17 (+): 865, 689
465 19.61 Cepharadione B 322.10739 322.10738 −0.03 C19H15NO4 (+): 292
466 19.61 Uralsaponin T isomer 955.48943 955.48971 0.29 953.47476 953.47515 0.41 C48H74O19 (−): 351
467 19.65 Licorice saponin B2 isomer 809.43122 809.43180 0.71 807.41529 807.41724 2.42 C42H64O15 (+): 453
468 19.67 Quercetin 3,4’-dimethyl ether or isomer 331.08124 331.08123 −0.02 329.06671 329.06668 −0.09 C17H14O7 (−): 314, 299
469 19.68 9,12-Dihydroxy-13-oxooctadecanoic acid isomer 353.22979 353.22984 0.15a 329.23325 329.23335 0.29 C18H34O5 (−): 311, 229, 211
470 19.72 Glycyrrhetinic acid rhamnosyl diglucuronide or isomer 973.50145 973.50027 −1.21 C48H76O20 (+): 471, 453
471 19.78 Yunganoside J1/L1 isomer 969.46972 969.46897 −0.77 967.45159 967.45442 2.93 C48H72O20 (−): 803, 645, 497
472 19.82 Dihydrolicorice saponin A3 isomer 987.48065 987.47954 −1.13 985.46146 985.46498 3.58 C48H74O21 (+): 629, 471, 453
473 19.91 Rhein 285.03941 285.03936 −0.17 283.02465 283.02481 0.55 C15H8O6 (−): 255, 239, 211, 183
474 19.92 Antrapurol 239.03490 239.03498 0.34 C14H8O4 (−): 211
475 19.95 Licorice saponin B2 isomer 809.43191 809.43180 −0.14 807.41581 807.41724 1.78 C42H64O15 (−): 631, 351
476 19.97 Glycyrrhetinic acid monoglucuronide or isomer 647.37929 647.37897 −0.48 C36H54O10 (+): 453, 435, 407
477 20.06 Unknown 607.18122 607.18210 1.46 C32H32O12 (−): 443
478 20.14 Echinatin isomer 271.09652 271.09649 −0.13 C16H14O4 (+): 239
479 20.18 Uralsaponin O isomer 821.39595 821.39541 −0.66 819.37883 819.38086 2.47 C42H60O16 (+): 469
480 20.23 Licorice saponin G2 isomer 839.40665 839.40598 −0.80 837.39002 837.39142 1.67 C42H62O17 (+): 487
481 20.34 Licorice saponin B2 809.43231 809.43180 −0.64 807.41544 807.41724 2.23 C42H64O15 (−): 631, 455, 351
482 20.34 Licorice saponin J2 isomer 825.42845 825.42671 −2.11 823.41058 823.41216 1.92 C42H64O16 (+): 487, 469
483 20.37 Uralsaponin R isomer 971.48545 971.48462 −0.86 969.46829 969.47007 1.84 C48H74O20 (−): 497
484 20.41 Yunganoside J1/L1 969.47038 969.46897 −1.45 967.45266 967.45442 1.82 C48H72O20 (−): 803, 645, 497
485 20.42 Wogonin 285.07579 285.07575 −0.14 283.06112 283.06120 0.28 C16H12O5 (+): 270
486 20.42 Yunganoside A1 957.50618 957.50536 −0.86 955.48997 955.49080 0.87 C48H76O19 (+): 811
487 20.46 Uralsaponin T isomer 955.49226 955.48971 −2.67 953.47267 953.47515 2.60 C48H74O19 (−): 351
488 20.63 9,12-Dihydroxy-13-oxooctadecanoic acid isomer 353.22973 353.22984 0.32a 329.23317 329.23335 0.55 C18H34O5 (−): 311, 229, 211
489 20.72 Glycyrrhetinic acid monoglucuronide or isomer 647.37932 647.37897 −0.53 C36H54O10 (+): 453, 435, 407
490 20.74 Chrysin 255.06551 255.06519 −1.27 253.05084 253.05063 −0.81 C15H10O4 (−): 209
491 20.77 Licorice saponin H2 823.41114 823.41106 −0.10 821.39529 821.39651 1.48 C42H62O16 (+): 647, 471
492 20.85 Uralsaponin T isomer 953.47421 953.47515 0.99 C48H74O19 (−): 351
493 20.98 Yunganoside B1 957.50595 957.50536 −0.62 955.48940 955.49080 1.47 C48H76O19 (+): 811
494 21.21 Licorice saponin B2 isomer 809.43122 809.43180 0.71 807.41612 807.41724 1.39 C42H64O15 (−): 351
495 21.29 Cepharanone B 280.09680 280.09682 0.05 C17H13NO3 (+): 265
496 21.30 Licroice saponin K2 823.41144 823.41106 −0.45 821.39556 821.39651 1.16 C42H62O16 (+): 647, 471
497 21.44 Uralsaponin Q isomer 941.47414 941.47406 −0.09 939.45792 939.45950 1.69 C47H72O19 (+): 647, 471
498 21.45 Oroxylin A 285.07578 285.07575 −0.12 283.06102 283.06120 0.62 C16H12O5 (+): 270
499 21.49 Clinodiside A 957.50566 957.50645 0.83 C48H78O19 (−): 911, 749, 471
500 21.51 3-O-rhamnopyranosyl-(2→1)-arabinopyranosyl-28-O-glucopyranosyl hederagenin 913.51412 913.51553 1.54 911.49761 911.50097 3.69 C47H76O17 (−): 749, 603, 471
501 21.54 Licorice saponin B2 isomer 807.41490 807.41724 2.91 C42H64O15 (−): 351
502 21.71 Licorice saponin J2 825.42726 825.42671 −0.66 823.41044 823.41216 2.09 C42H64O16 (+): 455, 437
503 21.77 Glycyrrhetinic acid monoglucuronide or isomer 647.37922 647.37897 −0.37 C36H54O10 (+): 453, 435, 407
504 21.77 Araboglycyrrhizin 779.42277 779.42123 −1.97 777.40466 777.40668 2.60 C41H62O14 (+): 453
505 21.81 Sophoraisoflavone A 353.10190 353.10196 0.19 351.08794 351.08741 −1.51 C20H16O6 (+): 311
506 21.85 Licoflavonol 355.11802 355.11761 −1.14 353.10281 353.10306 0.70 C20H18O6 (−): 297
507 21.88 Diosmetin 299.05591 299.05611 0.67 C16H12O6 (−): 284, 256
508 21.89 Uralsaponin B 823.41119 823.41106 −0.16 821.39391 821.39651 3.17 C42H62O16 (+): 647, 471
509 21.99 Uralsaponin T isomer 953.47362 953.47515 1.61 C48H74O19 (−): 351
510 22.13 Dimethoxyluteolin 315.08630 315.08631 0.04 313.07152 313.07176 0.77 C17H14O6 (+): 300
511 22.39 Glycyrrhisoflavone 355.11757 355.11761 0.12 353.10276 353.10306 0.85 C20H18O6 (−): 297
512 22.45 Uralsaponin T isomer 955.48924 955.48971 0.48 953.47302 953.47515 2.23 C48H74O19 (−): 351
513 22.49 Cepharadione B isomer 322.10738 322.10738 0.00 C19H15NO4
514 22.50 Uralsaponin C 825.42680 825.42671 −0.11 823.41054 823.41216 1.97 C42H64O16 (+): 455, 437
515 22.53 Glicophenone 359.14901 359.14891 −0.26 357.13414 357.13436 0.63 C20H22O6
516 22.61 Licorice saponin C2 829.39863 829.39809 −0.65a 805.39991 805.40159 2.09 C42H62O15 (−): 351
517 22.64 Glycycoumarin 369.13218 369.13326 2.93 367.11839 367.11871 0.89 C21H20O6 (+): 313, 285
518 22.66 Carnosic acid isomer 333.20665 333.20604 −1.83 331.19192 331.19148 −1.32 C20H28O4 (−): 287, 271
519 22.73 Licofuranone 357.13365 357.13326 −1.09 355.11903 355.11871 −0.90 C20H20O6 (−): 229, 193
520 22.92 Saikosaponin B2/D 779.45667 779.45872 2.62 C42H68O13
521 22.92 Uralsaponin W 807.41648 807.41615 −0.41 805.39962 805.40159 2.46 C42H62O15 (−): 351
522 22.98 5,3′-Dimethoxyluteolin 315.08622 315.08631 0.29 313.07146 313.07176 0.97 C17H14O6 (−): 298, 283, 255
523 23.08 Glyasperin C 357.16961 357.16965 0.13 355.15478 355.15510 0.88 C21H24O5
524 23.09 Semilicoisoflavone B 353.10185 353.10196 0.33 351.08708 351.08741 0.93 C20H16O6 (+): 311
525 23.10 Licorice saponin B2 isomer 807.41423 807.41724 3.73 C42H64O15 (−): 351
526 23.14 Licoflavanone 341.13841 341.13835 −0.18 339.12347 339.12380 0.98 C20H20O5 (−): 293, 229, 167
527 23.24 Arjunolic acid 489.35780 489.35745 −0.71 487.34247 487.34290 0.87 C30H48O5 (−): 409
528 23.28 Uralenin 355.11742 355.11761 0.55 353.10281 353.10306 0.72 C20H18O6
529 23.32 9-Hydroxy-12-oxo-10-octadecenoic acid 313.23724 313.23734 0.31 311.22251 311.22278 0.87 C18H32O4 (−): 293, 275
530 23.32 Licorice saponin B2 isomer 809.43218 809.43180 −0.48 807.41475 807.41724 3.09 C42H64O15 (−): 351
531 23.34 Glabrene 321.11278 321.11323 1.41 C20H18O4
532 23.42 Yunganoside C1 957.50565 957.50536 −0.31 955.48971 955.49080 1.14 C48H76O19 (+): 811
533 23.43 Uralsaponin R isomer 971.48496 971.48462 −0.35 969.46870 969.47007 1.41 C48H74O20 (−): 497
534 23.49 Glycyrrhizic acid isomer 823.41117 823.41106 −0.13 821.39408 821.39651 2.96 C42H62O16 (+): 647, 471
535 23.60 Pachypodol 345.09691 345.09688 −0.08 343.08208 343.08233 0.71 C18H16O7 (−): 328, 313, 285, 270, 257, 242
536 23.77 Gancaonin L 355.11757 355.11761 0.13 353.10273 353.10306 0.93 C20H18O6 (+): 299, 287
537 23.88 Hederagenin-3-O-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranoside 795.45219 795.45363 1.81c C41H66O12 (−): 749
538 23.89 Carnosic acid 333.20618 333.20604 −0.42 331.19121 331.19148 0.82 C20H28O4 (−): 287, 271
539 23.93 Licochalcone D 355.15398 355.15400 0.06 353.13919 353.13945 0.72 C21H22O5 (−): 338
540 23.99 8-O-Methylretusin 299.09190 299.09140 −1.66 C17H14O5
541 24.17 Licorice saponin J2 isomer 825.42689 825.42671 −0.21 823.41084 823.41216 1.60 C42H64O16 (+): 455, 437
542 24.27 (2R,3R)-3,4′,7-Trihydroxy-3′-prenylflavane 341.13882 341.13835 −1.37 339.12441 339.12380 −1.81 C20H20O5
543 24.30 Unknown 363.21646 363.21660 0.40 361.20146 361.20205 1.62 C21H30O5 (−): 317, 285
544 24.35 Curdione 237.18481 237.18491 0.41 C15H24O2 (+): 219, 135
545 24.35 Unknown 495.34449 495.34420 −0.59 C28H42N6O2 (+):259
546 24.50 Licoisoflavone A 355.11750 355.11761 0.34 353.10271 353.10306 1.00 C20H18O6 (−): 309, 285, 267, 243
547 24.63 Glycyrin 405.13090 405.13086 −0.10a 381.13413 381.13436 0.60 C22H22O6 (−): 366, 351
548 24.68 Aurantiamide acetate 445.21207 445.21218 0.26 443.19719 443.19763 0.99 C27H28N2O4 (+): 224, 194
549 24.79 Morachalcone A 341.13887 341.13835 −1.53 339.12457 339.12380 −2.26 C20H20O5
550 24.79 Licorice saponin C2 isomer 829.39856 829.39809 −0.56a 805.40103 805.40159 0.70 C42H62O15 (−): 351
551 24.81 Licochalcone A 339.15934 339.15909 −0.75 337.14423 337.14453 0.90 C21H22O4 (+): 297, 283, 271, 245, 229, 219
552 24.82 Glycyrrhetinic acid monoglucuronide or isomer 647.37921 647.37897 −0.36 645.36308 645.36442 2.08 C36H54O10 (+): 453, 435, 407
553 24.87 Licoflavone A 321.11396 321.11323 −2.28 C20H18O4
554 24.89 Uralsaponin T 953.47459 953.47515 0.60 C48H74O19 (−): 351
555 25.07 Octadecanedioic acid or isomer 337.23488 337.23493 0.14a 313.23807 313.23843 1.15 C18H34O4 (−): 295, 277
556 25.08 Emodin 271.06011 271.06010 −0.03 269.04543 269.04555 0.44 C15H10O5 (−): 241, 225, 210
557 25.26 Licorice saponin B2 isomer 807.41556 807.41724 2.08 C42H64O15
558 25.27 Neoglycyrol 367.11745 367.11761 0.45 365.10281 365.10306 0.70 C21H18O6 (+): 339, 311, 296, 283
559 25.34 Octadecanedioic acid or isomer 337.23492 337.23493 0.02a 313.23823 313.23843 0.66 C18H34O4 (−): 295
560 25.58 Psoralidin or isomer 337.10695 337.10705 0.30 335.09234 335.09250 0.46 C20H16O5 (−): 320, 307, 291, 213
561 25.69 Glabridin 325.14310 325.14344 1.03 323.12963 323.12888 −2.30 C20H20O4 (−): 305, 279, 253, 213, 201, 187, 175, 147, 135
562 26.00 Kaurenoic acid 303.23181 303.23186 0.17 C20H30O2 (+): 257
563 26.07 Hydroxyglycyrrhetic acid 487.34173 487.34180 0.14 485.32685 485.32725 0.82 C30H46O5
564 26.32 Licoisoflavone B 353.10197 353.10196 −0.03 351.08720 351.08741 0.61 C20H16O6 (+): 311
565 26.40 Pogostone 225.11206 225.11214 0.32 223.09741 223.09758 0.79 C12H16O4 (−): 139
566 26.62 Gingerglycolipid B 723.38016 723.38086 0.96c C33H58O14 (−): 677
567 26.87 Glabrone 337.10749 337.10705 −1.31 335.09239 335.09250 0.32 C20H16O5 (−): 320, 307, 291
568 26.95 Hispaglabridin A 393.20685 393.20604 −2.08 391.19232 391.19148 −2.13 C25H28O4
569 27.08 Glyasperin D 371.18533 371.18530 −0.07 369.17051 369.17075 0.64 C22H26O5 (+): 303
570 27.20 Manglupenone or isomer 437.34145 437.34141 −0.11 C30H44O2 (+): 391
571 27.39 Gancaonin E 425.19602 425.19587 −0.36 423.18112 423.18131 0.46 C25H28O6 (−): 229, 193
572 27.41 Chrysophanol 255.06528 255.06519 −0.39 253.05052 253.05063 0.46 C15H10O4 (−): 225, 210, 197, 182, 181
573 27.46 Hederagenin 473.36332 473.36254 −1.66 471.34753 471.34798 0.96 C30H48O4 (+): 409, 391
574 27.62 3-Hydroxyglabrol 409.20072 409.20095 0.56 407.18743 407.18640 −2.55 C25H28O5 (−): 219
575 27.64 9S-Hyroxy-10E,12E-octadecadienoic acid 297.24268 297.24242 −0.87 295.22816 295.22787 −1.00 C18H32O3 (−): 277, 227, 195, 183, 155, 139
576 27.78 Gancaonin E isomer 425.19688 425.19587 −2.39 423.18199 423.18131 −1.60 C25H28O6 (−): 229, 193
577 27.79 Angustone A 423.18105 423.18022 −1.97 421.16658 421.16566 −2.18 C25H26O6 (−): 309
578 27.93 Isoangustone A 423.18111 423.18022 −2.13 421.16644 421.16566 −1.84 C25H26O6 (−): 309
579 27.93 Glycyrrhetinic acid isomer 471.34746 471.34689 −1.22 469.33234 469.33233 −0.01 C30H46O4 (+): 425, 407
580 28.17 Corosolic acid 473.36226 473.36254 0.58 471.34761 471.34798 0.79 C30H48O4 (+): 437, 409, 313, 205
581 28.40 Glyasperin A 423.18121 423.18022 −2.35 421.16610 421.16566 −1.04 C25H26O6 (−): 379
582 28.40 Physcion 285.07586 285.07575 −0.40 283.06098 283.06120 0.75 C16H12O5 (−): 269, 268, 240
583 28.49 Lupenone isomer 425.37876 425.37779 −2.27 C30H48O
584 28.55 Glyinflanin C 407.18612 407.18530 −2.01 405.17115 405.17075 −0.99 C25H26O5 (−): 201
585 28.72 Unknown 495.33188 495.33163 −0.50 493.31625 493.31708 1.67 C28H46O7 (+): 477, 459, 441, 431, 413, 399
586 28.79 Glycyrrhetinic acidd 471.34712 471.34689 −0.49 469.33310 469.33233 −1.64 C30H46O4 (+): 453, 435, 425, 407, 389
587 28.86 Lupenone 425.37879 425.37779 −2.33 C30H48O
588 28.96 Unknown 495.33199 495.33163 −0.73 493.31616 493.31708 1.85 C28H46O7 (−): 475
589 29.82 Flavaspidic acid AB 417.15542 417.15549 0.16 C22H26O8 (−): 221, 209, 207, 195
590 29.98 γ-Linolenic acid 279.23235 279.23186 −1.75 277.21689 277.21730 1.48 C18H30O2 (−): 233
591 30.23 Ursolic acid 455.35247 455.35307 1.32 C30H48O3 (−): 407
592 30.45 Betulinic acid 457.36796 457.36762 −0.74 455.35241 455.35307 1.45 C30H48O3 (−): 407, 391
593 30.71 Linoleic acid 279.23247 279.23295 1.73 C18H32O2 (−): 261
594 30.93 Oleanolic acid 457.36747 457.36762 0.33 455.35223 455.35307 1.84 C30H48O3 (−): 407, 391
595 31.42 Hexadecanoic acid 255.23269 255.23295 1.05 C16H32O2 (−): 237
596 31.62 Oleic acid 281.24818 281.24860 1.52 C18H34O2

—: not detected.

a

[M+Na]+.

b

[M + NH4]+.

c

[M + HCOO]-.

d

Compared with a reference standard.

3.1.1. Flavonoids

Flavonoids, for example, isoliquiritigenin possesses effectiveness of anti-inflammatory [31]. Flavonoids in Lianhua Qingwen capsule mainly include flavones, isoflavones, flavonols, flavanones, chalcones, and isoflavans.

The identifications of rutin and kaempferol were taking as the examples of flavonols for illustration. Compound 199 with a retention time of 7.81 min generated the precursor ion of [M+H]+ at m/z 611.16097, indicating the molecular formula of C27H30O16. The characteristic fragments m/z 465.10267 and m/z 303.04947 corresponding to fragment ions [M + H-Rha (Rhamnosyl group, C6H10O4)]+ and [M + H-Rha-Glc (Glucosyl group, C6H10O5)]+ were observed. were observed. It was putatively characterized as rutin. Compound 392 with a retention time of 15.56 min generated the precursor ion of [M+H]+ at m/z 287.05511 in positive ion mode, indicating the molecular formula of C15H10O6. The characteristic fragments at m/z 269.04370, m/z 258.05152, m/z 241.04887, m/z 231.06472, m/z 213.05426 m/z 185.05875, m/z 165.01764, and m/z 153.01757 corresponded to [M + H–H2O]+, [M + H–CHO]+, [M + H–H2O–CO]+, [M + H–2CO]+, [M + H–2CO–H2O]+, [M + H–3CO–H2O]+, [M + H–C7H6O2]+, and [M + H–C8H6O2]+. It was putatively characterized as kaempferol.

The identifications of isoviolanthin and luteolin were taking as the examples of flavones for illustration. Compound 197 with a retention time of 7.76 min generated the precursor ion of [M − H]- at m/z 577.15506, indicating the molecular formula of C27H30O14. The fragments at m/z 457.11433 [M-H-120]-, m/z 439.10370 [M-H-120-18]-, m/z 413.08700, [M-H-164]- m/z 395.07664 [M-H-164-18]-, m/z 383.07676 [M-H-194]-, m/z 365.06635 [M-H-194-18]-, m/z 353.06635 [M-H-224]-, m/z 337.07184 [M-H-194-18-28]-, m/z 325.07209 [M-H-224-28]-, m/z 311.05522 [M-H-266]- and m/z 297.07643 [M-H-224-56]- corresponded to [M-H-C4H8O4]-, [M-H–C4H8O4–H2O]-, [M-H-C6H12O5]-, [M-H–C6H12O5–H2O]-, [M-H-C7H14O6]-, [M-H–C7H14O6–H2O]-, [M-H-C8H16O7]-, [M-H–C7H14O6–H2O–CO]-, [M-H–C8H16O7–CO]-, [M-H-C10H18O8]-, and [M-H–C8H16O7–2CO]-. It was putatively characterized as isoviolanthin. Compound 338 with a retention time of 12.82 min generated the precursor ion of [M − H]- at m/z 285.04038, indicating the molecular formula of C15H10O6. The fragments at m/z 268.03756, m/z 267.02963, m/z 243.02957, m/z 241.05043, m/z 239.03480, m/z 223.03996, m/z 217.05046, m/z 215.03451, m/z 213.05547, m/z 211.03995, m/z 201.01930, m/z 199.03991, m/z 197.06068, m/z 195.04506, m/z 185.06059, m/z 183.04495, m/z 175.03994, m/z 171.04510, m/z 151.00357, m/z 149.02429 and m/z 133.02935 corresponded to [M-H-OH]-, [M-H-H2O]-, [M-H-C2H2O]-, [M-H-CO2]-, [M-H-CH2O2]-, [M-H-CH2O3]-, [M-H-C3O2]-, [M-H-C3H2O2]-, [M-H-C2O3]-, [M-H-C2H2O3]-, [M-H-C4H4O2]-, [M-H-C3H2O3]-, [M-H-C2O4]-, [M-H-C2H2O4]-, [M-H-C3O4]-, [M-H-C3H2O4]-, [M-H-C5H2O3]-, [M-H-C4H2O4]-, [M-H-C8H6O2]-, [M-H-C7H4O3]-, and [M-H-C7H4O4]-. It was identified as luteolin.

The identifications of ononin and formononetin were taking as the examples of isoflavones for illustration. Compound 301 with a retention time of 11.06 min generated the precursor ion of [M+H]+ at m/z 431.13390, indicating the molecular formula of C22H22O9. The fragment ion at m/z 269.08043 [M + H-glucose]+ was observed. It was putatively characterized as ononin. Compound 432 with a retention time of 17.84 min generated the precursor ion of [M+H]+ at m/z 269.08085 in positive ion mode, indicating the formation of C16H12O4. The characteristic fragments at m/z 254.05685, m/z 253.04903, m/z 237.05400, m/z 226.06187, m/z 225.05375, m/z 213.09037, and m/z 197.05929 corresponded to [M + H–CH3]+, [M + H–CH4]+, [M + H–CH4O]+, [M + H–C2H3O]+, [M + H–C2H4O]+, [M + H–2CO]+, and [M + H–C3H4O2]+. It was putatively characterized as formononetin.

The identifications of liquiritigenin, licorice glycoside B and naringenin were taking as the examples of flavanones, and isoliquiritigenin, licorice glycoside D1/D2, echinatin, and licochalcone A were taking as the examples of chalcones for illustration. Chalcones possess an open and unsaturated 3-C chain rather than a heterocycle C. Chalcones with C-2′-OH such as isoliquiritigenin, licorice glycoside D1/D2, and the corresponding flavanone such as liquiritigenin, licorice glycoside B were isomers, have quite similar MS/MS fragment ions, and it is arduous to distinguish one from the other by means of MS/MS data. But retention time will also provide a reference for identifying compounds.

Compound 427 (tR = 17.46 min) showed deprotonated ion [M+H]+ at m/z 257.08088, corresponding to a molecular formula of C15H12O4. In the MS2 spectrum, the characteristic fragments at m/z 239.06994, m/z 211.07504, m/z 147.04390 and m/z 137.02309 corresponded to [M + H–H2O]+, [M + H–CO–H2O]+, [M + H–C6H6O2]+ and [M + H–C8H8O]+. The product ion at m/z 137.02309 was generated through RDA cleavage. It was identified as isoliquiritigenin. Compound 323 (tR = 12.14 min) showed deprotonated ion [M+H]+ at m/z 257.08100, with similar fragment behaviors to that of isoliquiritigenin. It was identified as liquiritigenin. Compound 311 (tR = 11.63 min) showed deprotonated ion [M − H]- at m/z 695.19746, corresponding to a molecular formula of C35H36O15. In the MS2 spectrum, the characteristic fragments at m/z 549.16094, m/z 531.15018, m/z 417.11811, m/z 399.10799 and m/z 255.06610 corresponded to [M-H-C9H6O2]-, [M-H–C9H6O2–H2O]-, [M-H–C9H6O2–Api (Apiosyl group, C5H8O4)]-, [M-H–C9H6O2–Api-H2O]-, and [M-H–C9H6O2–Api-Glc]-. It was temporarily deduced as licorice glycoside D1/D2. And the MS/MS spectrum is shown in Fig. 3. Compound 362 (tR = 13.81 min) showed deprotonated ion [M − H]- at m/z 695.19785, with similar fragment behaviors to that of licorice glycoside D1/D2. It was temporarily deduced as licorice glycoside B.

Fig. 3.

Fig. 3

The MS/MS spectrum of licorice glycoside D1/D2.

Compound 378 with a retention time of 14.87 min generated the precursor ion of [M − H]- at m/z 271.06109, indicating the molecular formula of C15H12O5. The characteristic fragments at m/z 177.01922, m/z 165.01934, m/z 151.00363, m/z 119.05013, and m/z 107.01387 corresponded to [M-H-C6H6O]-, [M-H-C7H6O]-, [M-H-C8H8O]-, [M-H-C7H4O4]-, and [M-H-C9H8O3]-. The precursor ion underwent RDA cleavage, resulted in two complementary product ions at m/z 151.00363 and m/z 119.05013. It was putatively characterized as naringenin.

The precursor ion [M+H]+ of compound 381 at m/z 271.09663 was observed at 15.06 min. The molecular formula was C16H14O4, as predicted by the precursor ion. In the MS/MS spectrum, the fragment ions were at m/z 229.08556 and m/z 177.05436 corresponded to [M + H–C2H2O]+ and [M + H–C6H6O]+. The compound was putatively characterized as echinatin. The precursor ion [M+H]+ of compound 551 at m/z 339.15934 was observed at 24.81 min. The molecular formula was C21H22O4, as predicted by the precursor ion. In the MS2 spectrum, the fragment ions were at m/z 297.14808, m/z 283.09523, m/z 271.09615, m/z 245.11679, m/z 229.08549, and m/z 219.10075 corresponded to [M + H–C2H2O]+, [M + H–C4H8]+, [M + H–C5H8]+, [M + H–C6H6O]+, [M + H–C7H10O2]+, and [M + H–C8H8O]+, respectively. The compound was putatively characterized as licochalcone A. Chalcones like echinatin and licochalcone A undergo Nazarov cyclization with loss of a ketene (C2H2O, 42 Da).

The identification of glabridin was taking as the example of isoflavans for illustration. Compound 561 with a retention time of 25.69 min exhibited the precursor ion of [M − H]- at m/z 323.12963, corresponding to a molecular formula of C20H20O4. In the MS2 spectrum, the fragments at m/z 305.11823, m/z 281.11824, m/z 279.13909, m/z 253.12331, m/z 213.09199, m/z 201.09201, m/z 187.07632, m/z 175.07638, m/z 147.0451, and m/z 135.04509 corresponded to [M-H-H2O]-, [M-H-C2H2O]-, [M-H-CO2]-, [M-H-C3H2O2]-, [M-H-C6H6O2]-, [M-H-C7H6O2]-, [M-H-C8H8O2]-, [M-H-C9H8O2]-, [M-H-C11H12O2]-, and [M-H-C12H12O2]-. It was putatively characterized as glabridin.

3.1.2. Phenylpropanoids

Phenylpropanoids, for example, pinoresinol shows anti-inflammatory activity [32]. Compound 357 with a retention time of 13.53 min exhibited the precursor ion of [M − H]- at m/z 357.13430, corresponding to a molecular formula of C20H22O6. In the MS2 spectrum, peaks at m/z 342.11064, m/z 151.03982, and m/z 136.01635 corresponded to [M-H-CH3]-, [M-H-C12H14O3]-, and [M-H–CH3–C12H14O3]-, respectively. Thus it could be temporarily deduced as pinoresinol. Compound 148 with a retention time of 6.71 min exhibited the precursor ion of [M − H]- at m/z 681.23921, corresponding to a molecular formula of C32H42O16. In the MS2 spectrum, peaks at m/z 519.18676 and m/z 357.13420 corresponded to [M-H-Glc]- and [M-H-2Glc]-. Thus it was putatively characterized as pinoresinol diglucoside.

Compound 437 with a retention time of 18.04 min exhibited the precursor ion of [M+H]+ at m/z 373.16478, corresponding to a molecular formula of C21H24O6. In the MS2 spectrum, peaks at m/z 355.15517, m/z 337.14392, m/z 305.11683, m/z 284.10392, and m/z 269.08038 corresponded to [M + H–H2O]+, [M + H–2H2O]+, [M + H–CH8O3]+, [M + H–C4H9O2]+, and [M + H–C5H12O2]+, respectively. The fragment ion m/z 306.12496 was also observed. Thus it could be temporarily deduced as phillygenin. Compound 517 with a retention time of 22.64 min exhibited the precursor ion of [M+H]+ at m/z 369.13218, corresponding to a molecular formula of C21H20O6. In the MS2 spectrum, peaks at m/z 313.06983 and m/z 285.07497, corresponded to [M + H–C4H8]+ and [M + H–C4H8–CO]+, respectively. Thus it could be temporarily deduced as glycycoumarin. And the MS/MS spectrum is shown in Fig. 4. Compound 558 with a retention time of 25.27 min exhibited the precursor ion of [M+H]+ at m/z 367.11745, corresponding to a molecular formula of C21H18O6. In the MS2 spectrum, peaks at m/z 339.12218, m/z 311.05439, m/z 296.03083, and m/z 283.05943, corresponded to [M + H–CO]+, [M + H–C4H8]+, [M + H–C4H8–CH3]+, and [M + H–C4H8–CO]+, respectively. Thus it could be temporarily deduced as neoglycyrol.

Fig. 4.

Fig. 4

The MS/MS spectrum of glycycoumarin.

3.1.3. Phenylethanoid glycosides

Phenylethanoid glycosides, for example, forsythoside B shows protective effect against lipopolysaccharide-induced acute lung injury [33]. The chemical structures of forsythoside A, forsythoside H, forsythoside I and acteoside all consist of four chemical moieties: caffeoyl, hydroxytyrosol, Rha and Glc. Compound 201 with a retention time of 7.87 min exhibited the precursor ion of [M − H]- at m/z 623.19775, corresponding to a molecular formula of C29H36O15. In the MS2 spectrum, peaks at m/z 477.13982, m/z 461.16604, m/z 443.15545, m/z 315.10830, m/z 297.09774, m/z 179.03475, m/z 161.02417, m/z 135.04491, m/z 133.02926 corresponded to [M-H-C6H10O4]-, [M-H-C9H6O3]-, [M-H–C9H6O3–H2O]-, [M-H–C6H10O4–C9H6O3]-, [M-H–C9H6O3–H2O–C6H10O4]-, [M-H–C6H10O4–C6H10O5–C8H8O2]-, [M-H–C6H10O4–C6H10O5–C8H8O2–H2O]-, [M-H–C6H10O4–C6H10O5–C8H8O2–CO2]-, and [M-H–C6H10O4–C6H10O5–C8H8O2–CH2O2]-, respectively. Fragment ions m/z 477.13982 and m/z 315.10830 corresponded to successive losses of Rha and caffeoyl groups. Fragment ions m/z 461.16604, m/z 443.15545, and m/z 297.09774 corresponded to successive losses of caffeoyl, H2O, and Rha groups. Fragment ion m/z 179.03475 corresponded to losses of Rha, Glc, and hydroxytyrosol groups, also can be [M − H]- of caffeic acid, then the eliminations of H2O, CO2 and CH2O2 from the fragment ion m/z 179.03475, respectively, resulting in producting the fragment ions m/z 161.02417, m/z 135.04491, and m/z 133.02926, respectively. The compound was confirmed as forsythoside I. Compound 192 (tR = 7.64 min), compound 235 (tR = 8.66 min) and compound 239 (tR = 8.82 min) showed deprotonated ions [M − H]- at m/z 623.19692, m/z 623.19737 and m/z 623.19642, with similar fragment behaviors to that of forsythoside I. They were putatively characterized as forsythoside H, forsythoside A, and acteoside, respectively. The chemical structures of forsythoside B consist of five chemical moieties: caffeoyl, hydroxytyrosol, Api, Rha and Glc. Compound 191 with a retention time of 7.56 min exhibited the precursor ion of [M − H]- at m/z 755.23923, corresponding to a molecular formula of C34H44O19. In the MS2 spectrum, peaks at m/z 593.20777, m/z 461.16525, m/z 447.14973, and m/z 161.02423 corresponded to [M-H-C9H6O3]-, [M-H–C9H6O3–C5H8O4]-, [M-H–C9H6O3–C6H10O4]-, and [M-H–C6H10O4–C5H8O4–C6H10O5–C8H8O2–H2O]-, respectively. Fragment ions m/z 593.20777 corresponded to loss of caffeoyl group, then the ion further fragmented into two ions at m/z 461.16525 and m/z 447.14973, owing to losses of Api and Rha groups, respectively. Fragment ion m/z 161.02423 corresponded to successive losses of caffeoyl, Api, Rha, Glc, hydroxytyrosol and H2O. The compound could be temporarily deduced as forsythoside B. And the MS/MS spectrum is shown in Fig. 5.

Fig. 5.

Fig. 5

The MS/MS spectrum of forsythoside B.

3.1.4. Terpenoids

Terpenoids, for example, glycyrrhizic acid could ameliorate acute lung injury [34]. Compound 463 with a retention time of 19.49 min exhibited the precursor ion of [M+H]+ at m/z 823.41127, indicating the molecular formula of C42H62O16. In positive mode, the consequently losses of one and two glucuronic acid produced the fragment ions at m/z 647.37690 and m/z 471.34606. Fragment ion at m/z 453.33547 was corresponded with the losses of diglucuronic acid and H2O. Fragment ion in negative mode at m/z 351.05688 was corresponded with the diglucuronic acid. It was identified as glycyrrhizic acid. Compound 586 with a retention time of 28.79 min exhibited the precursor ion of [M+H]+ at m/z 471.34712, indicating the molecular formula of C30H46O4. Peaks at m/z 453.33496, m/z 435.32485, m/z 425.34051, m/z 407.32982, and m/z 389.31953 can be attributed to [M + H–H2O]+, [M + H–2H2O]+, [M + H–H2O–CO]+, [M + H–2H2O–CO]+, and [M + H–3H2O–CO]+, respectively. It was identified as glycyrrhetinic acid.

Compound 138 with a retention time of 6.50 min exhibited the precursor ion of [M+H]+ at m/z 359.13412, corresponding to a molecular formula of C16H22O9. In the MS2 spectrum, the characteristic fragment ions were at m/z 197.08054, m/z 179.06999, and m/z 127.03880 corresponded to [M + H-Glc]+, [M + H-Glc-H2O]+, and [M + H-Glc-C4H6O]+, respectively. The product ion at m/z 127.03880 is generated from the precursor ion through RDA cleavage. The compound was putatively characterized as sweroside. Compound 289 with a retention time of 10.66 min exhibited the precursor ion of [M − H]- at m/z 539.17665, corresponding to a molecular formula of C25H32O13. In the MS2 spectrum, peaks at m/z 377.12411, m/z 345.09810, m/z 327.08791, m/z 307.08229, and m/z 275.09239 corresponded to [M-H-Glc]-, [M-H-Glc-CH3OH]-, [M-H-Glc–CH3OH–H2O]-, [M-H-Glc-C4H6O]-, and [M-H-Glc-C4H6O3]-, respectively. Thus it was tentatively characterized as oleuropein. Compound 334 with a retention time of 12.65 min exhibited the precursor ion of [M − H]- at m/z 504.18704, corresponding to a molecular formula of C25H31NO10. In the MS2 spectrum, peaks at m/z 342.13431, m/z 324.12389, m/z 314.13969, and m/z 272.09264 corresponded to [M-H-Glc]-, [M-H-Glc-H2O]-, [M-H-Glc-CO]-, and [M-H-Glc-C4H6O]-, respectively. Thus it was confirmed as L-phenylalaninosecologanin B. And the MS/MS spectrum is shown in Fig. 6.

Fig. 6.

Fig. 6

The MS/MS spectrum of L-phenylalaninosecologanin B.

3.1.5. Organic acids and their derivatives

A total of 79 organic acids and their derivatives were identified in this study. Organic acid compounds, for example, azelaic acid possesses anti-infective and anti-inflammatory activities [35]. Compound 15 with a retention time of 1.78 min exhibited the precursor ion of [M − H]- at m/z 169.01406, corresponding to a molecular formula of C7H6O5. In the MS2 spectrum, the characteristic fragments at m/z 125.02437 corresponded to [M-H-CO2]-. It was putatively characterized as gallic acid. Compound 186 with a retention time of 7.51 min exhibited the precursor ion of [M − H]- at m/z 197.04536, corresponding to a molecular formula of C9H10O5. In the MS2 spectrum, the characteristic fragments at m/z 169.01417 and m/z 125.02437 corresponded to [M-H-C2H4]- and [M-H-CO2]-. It was tentatively characterized as ethyl gallate. Compound 18 with a retention time of 1.90 min exhibited the precursor ion of [M − H]- at m/z 167.03481, corresponding to a molecular formula of C8H8O4. In the MS2 spectrum, the characteristic fragments at m/z 152.01129 and m/z 123.04502 corresponded to [M-H-CH3]- and [M-H-CO2]-. It was putatively characterized as vanillic acid. Compound 261 with a retention time of 9.82 min exhibited the precursor ion of [M − H]- at m/z 187.09736, corresponding to a molecular formula of C9H16O4. In the MS2 spectrum, the characteristic fragments at m/z 125.09712 corresponded to [M-H–CO2–H2O]-. It was putatively characterized as azelaic acid. Compound 351 with a retention time of 13.33 min exhibited the precursor ion of [M − H]- at m/z 207.06611, corresponding to a molecular formula of C11H12O4. In the MS2 spectrum, the characteristic fragments at m/z 179.03486, m/z 161.02430, and m/z 135.04505 corresponded to [M-H-C2H4]-, [M-H–C2H4–H2O]-, and [M-H–C2H4–CO2]-. It was putatively characterized as ethyl caffeate. And the MS/MS spectrum is shown in Fig. 7.

Fig. 7.

Fig. 7

The MS/MS spectrum of ethyl caffeate.

3.1.6. Quinones

Quinones, for example, emodin could alleviate pulmonary inflammation in rats with LPS-induced acute lung injury [36]. Compound 455 (tR = 18.88 min), and compound 556 (tR = 25.08 min) were isomers, which showed deprotonated ion [M − H]- at m/z 269.04540, and m/z 269.04543. The molecular formula was speculated to be C15H10O5. In the MS2 spectrum, the characteristic fragment ions of compound 455 produced were at m/z 240.04263, m/z 223.03987, and m/z 211.03980, respectively, corresponding to fragment ions [M-H-CHO]-, [M-H–CO–H2O]-, and [M-H-2CHO]-, respectively. The characteristic fragment ions of compound 556 produced were at m/z 241.05072, m/z 225.05569, and m/z 210.03224 respectively, corresponding to fragment ions [M-H-CO]-, [M-H-CO2]-, and [M-H–CO2–CH3]-, respectively. Compound 455 and compound 556 were tentatively characterized as aloe-emodin and emodin, respectively. And the MS/MS spectrum of compound 556 is shown in Fig. 8.

Fig. 8.

Fig. 8

The MS/MS spectrum of emodin.

Compound 473 and peak 582 with a retention time of 19.91 min and 28.40 min yielded the precursor ion of [M − H]- at m/z 283.02465 and m/z 283.06098, respectively, corresponding to a molecular formula of C15H8O6 and C16H12O5. In the MS2 spectrum, compound 473 showed characteristic fragment ions at m/z 255.02976, m/z 239.03481, m/z 211.03994, and m/z 183.04508 corresponded to [M-H-CO]-, [M-H-CO2]-, [M-H–CO2–CO]-, and [M-H–CO2–2CO]-, respectively. Compound 582 showed characteristic fragment ions at m/z 269.04532, m/z 268.03751, and m/z 240.04258 corresponded to [M-H-CH2]-, [M-H-CH3]-, and [M-H–CH3–CO]-, respectively. Thus they could be temporarily deduced as rhein and physcion, respectively.

Compound 572 with a retention time of 27.41 min exhibited the precursor ion of [M − H]- at m/z 253.05052, corresponding to a molecular formula of C15H10O4. Peaks at m/z 225.05551, m/z 210.03201, m/z 197.06060, m/z 182.03707, and m/z 181.06569 can be attributed to [M-H-CO]-, [M-H–CO–CH3]-, [M-H-2CO]-, [M-H-2CO–CH3]-, and [M-H–CO–CO2]-, respectively. It was confirmed as chrysophanol.

3.1.7. Alkaloids

Alkaloids, for example, norisoboldine could attenuate sepsis-induced acute lung injury [37]. Compound 43 was found at 3.15 min and exhibited an [M+H]+ ion at m/z 166.12289 with a molecular formula of C10H15NO. Peak at m/z 148.11149 corresponded to [M-H-H2O]+. It was tentatively confirmed as ephedrine or pseudoephedrine. Compound 65 was found at 4.14 min and exhibited an [M+H]+ ion at m/z 180.13858 with a molecular formula of C11H17NO. Peak at m/z 162.12735 corresponded to [M-H-H2O]+. It was tentatively confirmed as methylephedrine or methylpseudoephedrine. Compound 118 was found at 6.13 min and exhibited an [M+H]+ ion at m/z 314.13928 with a molecular formula of C18H19NO4. Peaks at m/z 297.11136, m/z 265.08524, and m/z 237.09039 corresponded to [M + H–NH3]+, [M + H–NH3–CH3OH]+, and [M + H–NH3–CH3OH–CO]+, respectively. It was identified as norisoboldine. And the MS/MS spectrum is shown in Fig. 9. Compound 465 was found at 19.61 min and exhibited an [M+H]+ ion at m/z 322.10739 with a molecular formula of C19H15NO4. Peak at m/z 292.05967 corresponded to [M + H–2CH3]+. It was tentatively characterized as cepharadione B. Compound 548 was found at 24.68 min and exhibited an [M+H]+ ion at m/z 445.21207 with a molecular formula of C27H28N2O4. Peaks at m/z 224.10647 and m/z 194.11695 corresponded to [M + H–C12H14NO3]+ and [M + H–C16H12NO2]+. It was tentatively characterized as aurantiamide acetate.

Fig. 9.

Fig. 9

The MS/MS spectrum of norisoboldine.

3.1.8. Alcohol glycosides

Alcohol glycosides, for example, rosavin could show protective effects on bleomycin-induced pulmonary fibrosis [38]. Compound 229 was found at 8.39 min and exhibited an [M + COOH]- ion at m/z 473.16680 with an elemental composition of C20H28O10. Peaks at m/z 427.16049, m/z 293.08757, m/z 233.06640, m/z 191.05601, m/z 149.04540, and m/z 131.03490, corresponded to [M − H]-, [M-H-C9H10O]-, [M-H-C11H14O3]-, [M-H-C13H16O4]-, [M-H-C15H18O5]-, and [M-H-C15H20O6]- fragments, respectively. Compound 229 was confirmed as rosavin. And the MS/MS spectrum is shown in Fig. 10. Compound 347 was found at 13.14 min and exhibited an [M − H]- ion at m/z 493.22872 with an elemental composition of C22H38O12. Peak at m/z 447.22333 corresponded to [M-H-CH2O2]-. Compound 347 was confirmed as rhodioloside C.

Fig. 10.

Fig. 10

The MS/MS spectrum of rosavin.

3.1.9. Others

For example, amygdalin has anti-inflammatory and immunomodulatory properties [39]. The precursor ion [M − H]- of compound 112 at m/z 456.15077 was observed at 5.96 min, the molecular formula was C20H27NO11 as predicted by the precursor ion. The characteristic fragment ion found in the MS/MS spectra was at m/z 323.09813 corresponded to [M-H-C8H7NO]-. The compound was tentatively characterized as amygdalin. The precursor ion [M − H]- of compound 317 at m/z 819.28569 was observed at 11.83 min, the molecular formula was C43H48O16 as predicted by the precursor ion. The characteristic fragment ion found in the MS/MS spectra was at m/z 611.21282 and m/z 403.13946, corresponded to [M-H-C11H12O4]- and [M-H-2C11H12O4]-. The compound was tentatively characterized as dryocrassin ABBA. And the MS/MS spectrum is shown in Fig. 11. The precursor ion [M − H]- of compound 565 at m/z 223.09741 was observed at 26.40 min, the molecular formula was C12H16O4 as predicted by the precursor ion. The characteristic fragment ion found in the MS/MS spectra was at m/z 139.07642 corresponded to [M-H-C4H4O2]-. The compound was tentatively characterized as pogostone.

Fig. 11.

Fig. 11

The MS/MS spectrum of dryocrassin ABBA.

This study applied UHPLC-FT-ICR-MS/MS method to identify the chemical components in Lianhua Qingwen capsule, indirectly indicating that UHPLC-FT-ICR-MS/MS method can be efficient, accurate, and sensitive analysis of Lianhua Qingwen capsule chemical profile. According to the above analysis results, 596 compounds in Lianhua Qingwen capsule were identified, mostly have anti-inflammatory, antioxidant, antiviral, antibacterial, and other biological activities, and many studies have reported that they are closely related to the treatment of lung diseases, which correspond with the therapeutic indications.

4. Conclusion

In this study, a rapid, sensitive and accurate UHPLC-FT-ICR-MS/MS method was applied for the global profiling of the Lianhua Qingwen capsule, wherein 596 components were appropriately separated and characterized due to the accurate mass fragments and retention time. The profiles of the constituents in the Lianhua Qingwen capsule provided comprehensive chemical information, thereby providing a theoretical foundation for consecutive research on the effective components, its quality control, pharmacology research, and the promotion of future development of the Lianhua Qingwen capsule.

Funding

This study was supported by the National Natural Science Foundation of China (82003935), Natural Science Foundation of Liaoning Province (2023-MS-326), Basic Scientific Research Project of Education Department of Liaoning Province (LJKQZ20222409), and Startup Foundation for Doctors of Shenyang Medical College (20195077).

Data availability statement

The data are contained within the article and supplementary materials.

CRediT authorship contribution statement

Ting Liu: Writing – review & editing, Writing – original draft, Visualization, Supervision, Project administration, Investigation, Funding acquisition, Formal analysis, Conceptualization. Shu Lin: Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Footnotes

Appendix A

Supplementary data to this article can be found online at https://doi.org/10.1016/j.heliyon.2024.e27352.

Appendix A. Supplementary data

The following is/are the supplementary data to this article.

Multimedia component 1
mmc1.pdf (2.1MB, pdf)

References

  • 1.Wang C.H., Zhong Y., Zhang Y., Liu J.P., Wang Y.F., Jia W.N., Wang G.C., Li Z., Zhu Y., Gao X.M. A network analysis of the Chinese medicine Lianhua-Qingwen formula to identify its main effective components. Mol. Omics. 2016;12(2):606–613. doi: 10.1039/c5mb00448a. [DOI] [PubMed] [Google Scholar]
  • 2.Yang C., Wang Y., He J., Yan W., Jiang H., Chen Q., Li L., Yang Z. Lianhua-Qingwen displays antiviral and anti-Inflammatory activity and synergistic effects with Oseltamivir against influenza B virus infection in the mouse model. Evid. Based Complement Alternat. Med. 2020;2020 doi: 10.1155/2020/3196375. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  • 3.Ding Y.W., Zeng L.J., Li R.F., Chen Q.Y., Zhou B.X., Chen Q.L., Cheng P.L., Yutao W., Zheng J.P., Yang Z.F., Zhang F.X. The Chinese prescription lianhuaqingwen capsule exerts anti-influenza activity through the inhibition of viral propagation and impacts immune function. BMC Compl. Alternative Med. 2017;17(1):130. doi: 10.1186/s12906-017-1585-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Duan Z.P., Jia Z.H., Zhang J., Liu S., Chen Y., Liang L.C., Zhang C.Q., Zhang Z., Sun Y., Zhang S.Q., Wang Y.Y., Wu Y.L. Natural herbal medicine Lianhuaqingwen capsule anti-influenza A (H1N1) trial: a randomized, double blind, positive controlled clinical trial. Chin. Med. J. 2011;124:2925–2933. [PubMed] [Google Scholar]
  • 5.Li R.F., Hou Y.L., Huang J.C., Pan W.Q., Ma Q.H., Shi Y.X., Li C.F., Zhao J., Jia Z.H., Jiang H.M., Zheng K., Huang S.X., Dai J., Li X.B., Hou X.T., Wang L., Zhong N.S., Yang Z.F. Lianhuaqingwen exerts anti-viral and anti-inflammatory activity against novel coronavirus (SARS-CoV-2) Pharmacol. Res. 2020;156 doi: 10.1016/j.phrs.2020.104761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Liang C.Y., Hui N., Liu Y., Qiao G.P., Li J., Tian L., Ju X.K., Jia M.Y., Liu H., Cao W.Q., Yu P., Li H., Ren X.D. Insights into forsythia honeysuckle (Lianhuaqingwen) capsules: a Chinese herbal medicine repurposed for COVID-19 pandemic. Phytomed. Plus. 2021;1(2) doi: 10.1016/j.phyplu.2021.100027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Gong X.W., Yuan B.Y., Yuan Y.D., Li F.J. Efficacy and safety of lianhuaqingwen capsules for the prevention of coronavirus disease 2019: a Prospective open-Label controlled trial. Evid. Based Complement. Alternat. Med. 2021 doi: 10.1155/2021/7962630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Shen P., Li J., Tu S.H., Wu Y.R., Peng Y.T., Chen G., Chen C. Positive effects of Lianhuaqingwen granules in COVID-19 patients: a retrospective study of 248 cases. J. Ethnopharmacol. 2021;278 doi: 10.1016/j.jep.2021.114220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Liu M., Gao Y., Yuan Y., Yang K.L., Shi S.Z., Tian J.H., Zhang J.H. Efficacy and safety of herbal medicine (Lianhuaqingwen) for treating COVID-19: a systematic review and meta-analysis. Integr. Med. Res. 2021;10(1) doi: 10.1016/j.imr.2020.100644. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Jia W.N., Wang C.H., Wang Y.F., Pan G.X., Jiang M.M., Li Z., Zhu Y. Qualitative and quantitative analysis of the major constituents in Chinese medical preparation lianhua-qingwen capsule by UPLC-DAD-QTOF-MS. Sci. World J. 2015;2015:731–765. doi: 10.1155/2015/731765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Fu S., Cheng R.R., Deng Z.X., Liu T.G. Qualitative analysis of chemical components in Lianhua Qingwen capsule by HPLC-Q Exactive-Orbitrap-MS coupled with GC-MS. J Pharm Anal. 2021;11(6):709–716. doi: 10.1016/j.jpha.2021.01.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Chen X.F., Wu Y.L., Chen C., Gu Y.Q., Zhu C.Y., Wang S.P., Chen J.Y., Zhang L., Lv L., Zhang G.Q., Yuan Y.F., Chai Y.F., Zhu M.S., Wu C.S. Identifying potential anti-COVID-19 pharmacological components of traditional Chinese medicine Lianhuaqingwen capsule based on human exposure and ACE2 biochromatography screening. Acta Pharm. Sin. B. 2021;11(1):222–236. doi: 10.1016/j.apsb.2020.10.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Smith D.F., Kiss A., Leach F.E., III, Robinson E.W., Paša-Tolić L., Heeren R.M. High mass accuracy and high mass resolving power FT-ICR secondary ion mass spectrometry for biological tissue imaging. Anal. Bioanal. Chem. 2013;405:6069–6076. doi: 10.1007/s00216-013-7048-1. [DOI] [PubMed] [Google Scholar]
  • 14.Nikolaev E.N., Kostyukevich Y.I., Vladimirov G.N. Fourier transform ion cyclotron resonance (FT ICR) mass spectrometry: Theory and simulations. Mass Spectrom. Rev. 2016;35(2):219–258. doi: 10.1002/mas.21422. [DOI] [PubMed] [Google Scholar]
  • 15.Frahm J.L., Howard B.E., Heber S., Muddiman D.C. Accessible proteomics space and its implications for peak capacity for zero-, one- and two-dimensional separations coupled with FT-ICR and TOF mass spectrometry. J. Mass Spectrom. 2006;41(3):281–288. doi: 10.1002/jms.1024. [DOI] [PubMed] [Google Scholar]
  • 16.Kim D., Kim S., Son S., Jung M.J., Kim S. Application of online liquid chromatography 7 T FT-ICR mass spectrometer Equipped with Quadrupolar detection for analysis of Natural organic Matter. Anal. Chem. 2019;91(12):7690–7697. doi: 10.1021/acs.analchem.9b00689. [DOI] [PubMed] [Google Scholar]
  • 17.Kruppa G., Schnier P.D., Tabei K., Van Orden S., Siegel M.M. Multiple ion isolation applications in FT-ICR MS: exact-mass MSn internal calibration and purification/interrogation of protein-drug complexes. Anal. Chem. 2002;74(15):3877–3886. doi: 10.1021/ac020048q. [DOI] [PubMed] [Google Scholar]
  • 18.Liu T., Cui Y., Tian X.M., Li S.H., Han F., Ji B., Zhao Y.L., Yu Z.G. Detection of chemical constituents in Gegenqinlian decoction by ultra-high performance liquid chromatography coupled with Fourier transform ion cyclotron resonance mass spectrometry. Anal. Methods. 2017;9(40):5890–5902. [Google Scholar]
  • 19.Han F., Li Y.T., Ma L., Liu T.F., Wu Y.W., Xu R., Song A.H., Yin R. A rapid and sensitive UHPLC-FT-ICR MS/MS method for identification of chemical constituents in Rhodiola crenulata extract, rat plasma and rat brain after oral administration. Talanta. 2016;160:183–193. doi: 10.1016/j.talanta.2016.07.014. [DOI] [PubMed] [Google Scholar]
  • 20.Guan Z.B., Wang M., Cai Y., Yang H.M., Zhao M., Zhao C.J. Rapid characterization of the chemical constituents of Sijunzi decoction by UHPLC coupled with Fourier transform ion cyclotron resonance mass spectrometry. J. Chromatogr., B: Anal. Technol. Biomed. Life Sci. 2018;1086:11–22. doi: 10.1016/j.jchromb.2018.04.009. [DOI] [PubMed] [Google Scholar]
  • 21.Cui Y., Yang H.H., Jing J.X., Liu T., Wang R.J., Di F.Y., Han F., Zhao Y.L., Yu Z.G. Rapid characterization of chemical constituents of Gansuibanxia decoction by UHPLC-FT-ICR-MS analysis. J. Pharm. Biomed. Anal. 2020;179 doi: 10.1016/j.jpba.2019.113029. [DOI] [PubMed] [Google Scholar]
  • 22.Liu J.N., Zhao M., Zhang S., Liu J.N., Zhao C.J., Wang M. Rapid characterization of the chemical constituents of Wangbi Capsule by UPLC coupled with Fourier transform ion cyclotron resonance mass spectrometry. Microchem. J. 2022;180 [Google Scholar]
  • 23.Wang C.C., Cai Z.C., Shi J.J., Chen S.Y., Tan M.X., Chen J.L., Chen L.H., Zou L.S., Chen C.H., Liu Z.X., Liu X.H. Comparative metabolite profiling of wild and cultivated licorice based on ultra-fast liquid chromatography coupled with triple quadrupole-time of flight tandem mass spectrometry. Chem. Pharm. Bull (Tokyo) 2019;67(10):1104–1115. doi: 10.1248/cpb.c19-00423. [DOI] [PubMed] [Google Scholar]
  • 24.Li R.Y., Zhu Y.R., Ma M.Y., Lei M., Zhao Y.C., Liu T., Yu M., Zhao Y.L., Yu Z.G. Characterization of chemical constituents in Shuanghuanglian oral dosage forms by ultra-high performance liquid chromatography coupled with time-of-flight mass spectrometry. J. Separ. Sci. 2022;45(5):1020–1030. doi: 10.1002/jssc.202100860. [DOI] [PubMed] [Google Scholar]
  • 25.Chen L., Yao C.L., Li J.Y., Wang J., Yao S., Shen S.J., Yang L., Zhang J.Q., Wei W.L., Bi Q.R., Guo D.A. Systematic characterization of chemical constituents in Mahuang decoction by UHPLC tandem linear ion trap-Orbitrap mass spectrometry coupled with feature-based molecular networking. J. Separ. Sci. 2021;44(14):2717–2727. doi: 10.1002/jssc.202100121. [DOI] [PubMed] [Google Scholar]
  • 26.Jiang X.J., Lin Y.H., Wu Y.L., Yuan C.X., Lang X.L., Chen J.Y., Zhu C.Y., Yang X.Y., Huang Y., Wang H., Wu C.S. Identification of potential anti-pneumonia pharmacological components of Glycyrrhizae Radix et Rhizoma after the treatment with Gan an He Ji oral liquid. J. Pharm. Anal. 2022;12(6):839–851. doi: 10.1016/j.jpha.2022.07.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Xu S.Y., Xu X.F., Yuan S.X., Liu H., Liu M.N., Zhang Y., Zhang H., Gao Y., Lin R.C., Li X.R. Identification and analysis of amygdalin, neoamygdalin and amygdalin amide in different processed bitter almonds by HPLC-ESI-MS/MS and HPLC-DAD. Molecules. 2017;22(9):1425. doi: 10.3390/molecules22091425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Tao W.W., Duan J.A., Guo J.M., Li J.P., Tang Y.P., Liu P., Yang N.Y. Simultaneous determination of triterpenoid saponins in dog plasma by a validated UPLC-MS/MS and its application to a pharmacokinetic study after administration of total saponin of licorice. J. Pharm. Biomed. Anal. 2013;75:248–255. doi: 10.1016/j.jpba.2012.11.035. [DOI] [PubMed] [Google Scholar]
  • 29.Ding Y.M., Liu Z., Li F.Q. Application of a sensitive and accurate LC-MS/MS method for determination of dryocrassin ABBA in rat plasma for a bioavailability study. Biomed. Chromatogr. 2014;28(9):1205–1211. doi: 10.1002/bmc.3147. [DOI] [PubMed] [Google Scholar]
  • 30.Li Y.C., Su Z.R., Lin S.H., Li C.W., Zhao Y., Gao X., Lai Y.Q., Wu X.L., Wu H.Z., Cai Z.W. Characterisation of the metabolism of pogostone in vitro and in vivo using liquid chromatography with mass spectrometry. Phytochem. Anal. 2014;25(2):97–105. doi: 10.1002/pca.2471. [DOI] [PubMed] [Google Scholar]
  • 31.Wang L., Wang X.H., Kong L.N., Wang S.Y., Huang K., Wu J.J., Wang C.Y., Sun H.J., Liu K.X., Meng Q. Isoliquiritigenin alleviates LPS/D-GalN-induced acute liver failure by activating the PGC-1α/Nrf2 pathway to reduce oxidative stress and inflammatory response. Int. Immunopharm. 2021;100 doi: 10.1016/j.intimp.2021.108159. [DOI] [PubMed] [Google Scholar]
  • 32.Jung H.W., Mahesh R., Lee J.G., Lee S.H., Kim Y.S., Park Y.K. Pinoresinol from the fruits of Forsythia koreana inhibits inflammatory responses in LPS-activated microglia. Neurosci. Lett. 2010;480(3):215–220. doi: 10.1016/j.neulet.2010.06.043. [DOI] [PubMed] [Google Scholar]
  • 33.Liu J.X., Li X., Yan F.G., Pan Q.J., Yang C., Wu M.Y., Li G., Liu H.F. Protective effect of forsythoside B against lipopolysaccharide-induced acute lung injury by attenuating the TLR4/NF-κB pathway. Int. Immunopharm. 2019;66:336–346. doi: 10.1016/j.intimp.2018.11.033. [DOI] [PubMed] [Google Scholar]
  • 34.Qu L.H., Chen C., He W., Chen Y.Y., Li Y., Wen Y., Zhou S.C., Jiang Y.Q., Yang X.P., Zhang R., Shen L. Glycyrrhizic acid ameliorates LPS-induced acute lung injury by regulating autophagy through the PI3K/AKT/mTOR pathway. Am. J. Transl. Res. 2019;11(4):2042–2055. [PMC free article] [PubMed] [Google Scholar]
  • 35.Schulte B.C., Wu W., Rosen T. Azelaic acid: evidence-based update on mechanism of action and clinical application. J. Drugs Dermatol. JDD. 2015;14(9):964–968. [PubMed] [Google Scholar]
  • 36.Li X.Q., Shan C., Wu Z.H., Yu H.J., Yang A.D., Tan B. Emodin alleviated pulmonary inflammation in rats with LPS-induced acute lung injury through inhibiting the mTOR/HIF-1α/VEGF signaling pathway. Inflamm. Res. 2020;69(4):365–373. doi: 10.1007/s00011-020-01331-3. [DOI] [PubMed] [Google Scholar]
  • 37.Chen Q., Shao X.B., He Y.Y., Lu E.K., Zhu L.J., Tang W.D. Norisoboldine attenuates sepsis-induced acute lung injury by modulating macrophage polarization via PKM2/HIF-1α/PGC-1α pathway. Biol. Pharm. Bull. 2021;44(10):1536–1547. doi: 10.1248/bpb.b21-00457. [DOI] [PubMed] [Google Scholar]
  • 38.Xin X.B., Yao D.H., Zhang K., Han S., Liu D.N., Wang H.Y., Liu X.Y., Li G.Y., Huang J., Wang J.H. Protective effects of Rosavin on bleomycin-induced pulmonary fibrosis via suppressing fibrotic and inflammatory signaling pathways in mice. Biomed. Pharmacother. 2019;115:108870. doi: 10.1016/j.biopha.2019.108870. [DOI] [PubMed] [Google Scholar]
  • 39.He X.Y., Wu L.J., Wang W.X., Xie P.J., Chen Y.H., Wang F. Amygdalin-A pharmacological and toxicological review. J. Ethnopharmacol. 2020;254 doi: 10.1016/j.jep.2020.112717. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Multimedia component 1
mmc1.pdf (2.1MB, pdf)

Data Availability Statement

The data are contained within the article and supplementary materials.


Articles from Heliyon are provided here courtesy of Elsevier

RESOURCES