Abstract
环鸟苷酸-腺苷酸合成酶(cGAS)-干扰素基因刺激因子(STING)信号通路可监测微生物入侵和组织损伤等生理病理异常状态,是天然免疫系统的重要组成之一。作为DNA感受器,cGAS主要识别异常定位于细胞质的双链DNA(dsDNA),通过催化合成二级信使环鸟苷酸-腺苷酸启动由STING介导的Ⅰ型干扰素和炎症信号通路。微核是有丝分裂后期染色体错误分离的产物,也是细胞质dsDNA的重要来源之一。作为一类不稳定的亚细胞器结构,微核核膜倾向于不可逆的破裂,导致微核基因组DNA暴露在细胞质中。暴露的微核基因组DNA招募并激活cGAS-STING信号通路,诱导STING下游信号通路活化,包括Ⅰ型干扰素信号通路和经典核因子κB(NF-κB)信号通路,导致细胞衰老、细胞凋亡和细胞自噬的发生,从而介导免疫系统的活化以清除肿瘤细胞,或者直接诱导肿瘤细胞死亡。另外,STING持续激活诱导的内质网应激,以及慢性Ⅰ型干扰素信号通路和非经典NF-κB信号通路的活化,营造了免疫抑制的肿瘤微环境,导致肿瘤细胞免疫逃逸,促进肿瘤转移和肿瘤细胞存活。因此,在肿瘤的发生发展和治疗过程中,活化的cGAS-STING免疫通路扮演着抑制或促进肿瘤的双重作用。本文阐述了肿瘤微环境中微核诱导cGAS-STING免疫通路活化的机制研究进展,探讨了其在肿瘤发生发展和治疗中的潜在重要作用。
Keywords: 环鸟苷酸-腺苷酸合成酶-干扰素基因刺激因子信号通路, 染色体不稳定, 微核, 肿瘤免疫, 综述
Abstract
Cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) signaling is a significant component of the innate immune system and functions as a vital sentinel mechanism to monitor cellular and tissue aberrations in microbial invasion and organ injury. cGAS, a cytosolic DNA sensor, is specialized in recognizing abnormally localized cytoplasmic double-stranded DNA (dsDNA) and catalyzes the formation of a second messenger cyclic-GMP-AMP (cGAMP), which initiates a cascade of type Ⅰ interferon and inflammatory responses mediated by STING. Micronucleus, a byproduct of chromosomal missegregation during anaphase, is also a significant contributor to cytoplasmic dsDNA. These unstable subcellular structures are susceptible to irreversible nuclear envelope rupture, exposing genomic dsDNA to the cytoplasm, which potently recruits cGAS and activates STING-mediated innate immune signaling and its downstream activities, including type Ⅰ interferon and classical nuclear factor-κB (NF-κB) signaling pathways lead to senescence, apoptosis, autophagy activating anti-cancer immunity or directly killing tumor cells. However, sustained STING activation-induced endoplasmic reticulum stress, activated chronic type Ⅰ interferon and nonclassical NF-κB signaling pathways remodel immunosuppressive tumor microenvironment, leading to immune evasion and facilitating tumor metastasis. Therefore, activated cGAS-STING signaling plays a dual role of suppressing or facilitating tumor growth in tumorigenesis and therapy. This review elaborates on research advances in mechanisms of micronucleus inducing activation of cGAS-STING signaling and its implications in tumorigenesis and therapeutic strategies of malignant tumors.
Keywords: cGAS-STING signaling, Chromosomal instability, Micronucleus, Tumor immunology, Review
染色体不稳定是指细胞在持续有丝分裂过程中发生染色体的错误分离,导致染色体结构或数目异常的现象,被视为人类肿瘤的重要标志。60%~80%的人类肿瘤细胞存在染色体不稳定[1]。染色体不稳定与肿瘤分期呈正相关,在复发以及转移的肿瘤灶中高频率发生[2-4],提示其与肿瘤的转移、治疗耐药性和免疫逃逸等密切相关。理解染色体不稳定如何调控肿瘤转移、治疗耐药性以及免疫逃逸的分子机制,对于深入理解肿瘤的发生发展以及发现肿瘤新的治疗靶点均具有重要意义。近年研究发现,染色体不稳定产生的微核在破裂后,其微核基因组DNA在细胞质中暴露,进而被天然免疫系统中的cGAS-STING信号通路所识别[5]。这一发现将染色体不稳定与免疫系统的活化联系在一起,为我们理解染色体不稳定提供了一个全新的视角。值得注意的是,cGAS-STING信号通路在肿瘤细胞中活化后的功能并不是单一的,具有多样性和复杂性。本综述将系统探讨微核的形成、破裂及其被cGAS-STING信号通路所识别的分子机制,以及微核活化的cGAS-STING信号通路在肿瘤发生中的功能。这对于靶向微核和cGAS-STING信号通路抗肿瘤药物的研发和临床应用具有重要指导意义。
1. cGAS-STING信号通路
1.1. cGAS-STING信号通路的活化
在真核细胞中,为确保生命活动的正常进行,DNA作为遗传物质受到严格的区域化调控,包括包裹在线粒体中的mtDNA,以及细胞核中的基因组DNA。因此,任何出现在细胞质中的dsDNA,包括来源于外源感染的微生物DNA、内源泄露的mtDNA、逆转录元件异常活化产生的dsDNA以及微核破裂暴露的基因组DNA,均会被宿主视为DAMP。DNA感受器cGAS负责识别上述异常的dsDNA。cGAS与dsDNA结合后形成二聚化结构,线性聚集在dsDNA上并发挥活性[6]。cGAS的活性高度依赖于其氨基端的无规则序列与dsDNA的相互作用,这种相互作用通过液-液相分离的方式发生[7],而Trex1会抑制cGAS与dsDNA形成液-液相分离,进而抑制cGAS的活性[8]。在分裂间期,cGAS主要定位于细胞核内,这可能是因为当细胞进入有丝分裂期,细胞核膜解聚,染色体暴露在细胞质中,会诱导cGAS在染色体上富集。当细胞进入有丝分裂末期,新的核膜再次形成,从而cGAS被包裹限制在细胞核中。然而,当异常dsDNA在细胞质中积累时,cGAS会经核孔复合体再次出核[9],其具体分子机制尚未完全明确。分裂间期以及有丝分裂期结合在染色体上的cGAS为何没有激活,这是cGAS活性研究的重要问题。目前,多个研究已经证实,染色质组成的最小单位核小体与cGAS的结合能力远强于裸露dsDNA与cGAS的结合,因此核小体会竞争性与cGAS结合,从而抑制cGAS活化[10-16]。活化的cGAS利用腺苷三磷酸和鸟苷三磷酸生成第二信使cGAMP,cGAMP进而与内质网跨膜蛋白STING结合,诱导其蛋白构象改变和活化,激活PERK-EIF2α信号通路抑制翻译[17]。同时,STING可作为质子通道蛋白诱导微管相关蛋白轻链3B的脂化和NLRP3炎症小体的活化[18]。此外,STING经膜泡运输[19]转运至内质网-高尔基体中间体,再转运至高尔基体,在高尔基体上经棕榈酰化[20]和硫酸化糖胺聚糖修饰[21],招募活化下游核心激酶TANK结合激酶1,继而活化转录因子IRF3,介导Ⅰ型干扰素信号通路的活化,同时STING也会协助经典/非经典NF-κB信号通路的激活。最终STING会被转运至溶酶体诱导凋亡发生,并在溶酶体中降解,从而中止信号[19]。因此,STING在亚细胞器中的定位对其蛋白活性和所承担的功能起着决定性的作用。
1.2. cGAS-STING信号通路抑制或促进肿瘤
由cGAS-STING介导的Ⅰ型干扰素信号通路的激活在其抗肿瘤作用中扮演着重要的角色。在肿瘤微环境中,Ⅰ型干扰素信号通路介导免疫细胞如树突状细胞、T淋巴细胞、NK细胞的活化和招募[22-27],NF-κB信号通路能够协同Ⅰ型干扰素信号通路增强NK细胞活性,从而协同抑制肿瘤的生长[28]。值得一提的是,在肿瘤微环境中,除了免疫细胞和肿瘤细胞外,基质细胞中STING活化诱导的炎症信号通路同样能够重塑免疫微环境,并以诱导肿瘤细胞坏死的方式直接抑制肿瘤生长[29]。最新研究发现,肿瘤细胞中的STING通过与己糖激酶2的相互作用抑制有氧糖酵解,促进肿瘤微环境中CD8+和CD4+ T细胞的招募,进而抑制肿瘤生长[30]。细胞衰老是正常细胞癌变过程中的重要阻碍。衰老细胞中cGAS-STING信号通路的活化一方面介导了SASP释放,诱导免疫细胞浸润,促进肿瘤免疫,清除衰老细胞[31-33];另一方面介导了IRF3-RB复合体的形成,阻滞细胞周期,从而抑制肿瘤细胞的生长(将发表的研究成果)。而逃逸了衰老命运的细胞在其演化为肿瘤细胞的进程中仍会遇到其他障碍,如复制危机。伴随端粒损伤激活的cGAS-STING信号通路以炎症非依赖的方式介导自噬的发生,对进入复制危机的异常细胞进行清除[10]。
尽管cGAS-STING信号通路具有上述抑制肿瘤细胞生长和促进肿瘤免疫的功能,但肿瘤细胞会采取一系列的措施抑制cGAS-STING信号通路的正常活化:如促癌蛋白HER2通过招募下游蛋白激酶B与STING形成复合物,有效抑制cGAS-STING信号通路[34];Ⅱ型神经纤维瘤中重要的驱动蛋白Merlin的点突变能够通过“功能获得性”的方式招募IRF3形成复合体,经由液-液相分离的方式抑制IRF3入核,从而阻断STING下游信号通路的正常激活[35]。上述促癌蛋白HER2和Merline点突变对STING活化的抑制均促进肿瘤细胞生存以及化疗耐药性产生。
近年来有大量研究表明,cGAS-STING信号通路还具有促进肿瘤细胞存活、产生抗肿瘤耐药性以及免疫抑制的功能。cGAS-STING信号通路的激活引发了非经典NF-κB信号通路活化,进而释放IL-6来介导STAT3信号通路的活化,从而促进肿瘤细胞存活以及耐药性产生[36]。活化的非经典NF-κB信号通路同样能够促进肿瘤转移。此外,持续的炎症能够诱导免疫抑制的肿瘤微环境[37]。Cañadas等[38]研究表明,在小细胞肺癌中,内源逆转录病毒异常活化,激活MAVS和STING介导的慢性炎症;慢性炎症上调程序性死亡受体配体1,从而营造免疫抑制的肿瘤微环境。最新研究发现,STING长期活化能够重塑下游信号通路,激活内质网应激信号通路,诱导免疫抑制的肿瘤微环境[39]。已有研究证实,STING活化能够促进B细胞中IL-35表达上调,与NK细胞上受体相结合,抑制NK细胞的增殖及抗肿瘤活性,同样有助于营造免疫抑制的肿瘤微环境[40]。肿瘤移植实验证明,肿瘤细胞能够通过释放cGAMP激活肿瘤微环境中T淋巴细胞中的STING信号通路,以Ⅰ型干扰素非依赖的方式高效诱导T淋巴细胞死亡,导致T淋巴细胞耗竭,从而造成免疫逃逸[41-42]。此外,非典型NF-κB信号通路或者持续的Ⅰ型干扰素信号通路活化能够抑制树突状细胞活性,招募免疫抑制髓系细胞,营造免疫抑制的肿瘤微环境[43-45]。
2. 细胞微核
2.1. 细胞微核的形成
有丝分裂末期,因错误分离而滞留在纺锤体中央区域的整条染色体或染色体片段具有招募核膜的能力,形成独立于细胞核的包裹染色体的膜结构称为微核(图1)。微核的形成常常与有丝分裂的中断和持续的DNA损伤有关,但有研究表明其在健康组织中也低丰度存在[46]。此外,微核的染色体具有倾向性,近核膜分布、体积较大的异染色质更倾向于形成微核,这些异染色质在S期复制时表现出滞后性,从而更容易发生DNA复制缺陷和错误,这种复制的不完整性进一步影响了染色体的正确折叠和组装,导致纺锤体微管无法准确捕获和分离姐妹染色单体,最终导致微核的形成[47]。
2.2. 微核核膜的破裂及修复
不同于细胞核,微核是一种极不稳定的亚细胞结构,其核膜倾向于不可逆的破裂。在多种细胞系、肺癌患者和哺乳动物早期胚胎中都观测到微核破裂的现象[48-51]。在微核核膜破裂前,微核如同细胞核一般,能够招募核膜结构,包括核孔复合体,并且能够启动DNA转录、DNA复制和DNA损伤修复等[52-54]。然而部分微核核膜由于缺乏核孔复合体的装配,导致其丧失核功能[55]。微核核膜破裂后会丢失大量核蛋白,同样导致其丧失核功能[56],并抑制组蛋白的翻译后修饰[57]。与此同时,破裂的微核会发生大量的DNA损伤[56, 58-59],这是因为破裂的微核会迅速启动核膜修复机制,招募内质网膜到破损的区域,因而导致黏附在内质网膜上的核酸外切酶Trex1在微核上富集,对微核基因组DNA进行切割,造成大量DNA末端损伤,随后招募DNA损伤修复复合体进行修复[59],最终导致微核基因组DNA产生大量的突变和重组。关于破裂微核的命运仍存在争议。一种解释是破裂的微核在细胞质内持续存在,直至进入下一轮有丝分裂周期[53, 57],在这个过程中,细胞核膜解聚,微核基因组DNA会重新融到细胞核基因组DNA中。然而,这一过程可能为肿瘤基因组导入大量的突变和重组,引发染色体碎裂[52, 58, 60]。这些突变和重组为肿瘤细胞提供了天然的筛选库,促进肿瘤的发生发展以及耐药性的产生。值得一提的是,容纳了微核基因组DNA的细胞在后续有丝分裂中会倾向于新微核的形成[51, 54]。另一种解释是破裂的微核在细胞质中会逐步碎裂成染色质片段[2]。也有认为破裂的微核会以cGAS依赖的方式发生溶酶体介导的降解[61]。微核的破裂过程如图2所示。
与细胞核核膜破裂一样,微核核膜破裂之前连续的核纤层上会出现间隙[1],核纤层间隙的产生是核膜破裂的必要条件[1, 62]。过表达核纤层蛋白B1或B2能够抑制微核的破裂。有丝分裂末期便可以观测到微核核膜上核纤层间隙的形成,但微核核膜并不会立刻破裂,微核核膜的破裂一般高频率地发生在微核形成后的几小时,甚至少部分微核可以一直保持完整。当前研究表明,决定微核核膜破裂的主要因素是膜曲率和基于肌动蛋白的物理挤压,总的来说,较小微核的膜曲率较大,因此更易破裂[57, 63]。有研究表明抑制肌动蛋白纤维束能够阻碍微核的破裂[56],可见较大微核的破裂可能需要基于肌动蛋白的物理挤压。此外,微核中捕获染色体的长度和基因密度是微核核膜稳定性的关键因素,并决定了微核破裂的时间;其中19号染色体是人类最小的染色体之一,也是基因密度最高的染色体,因此捕获了19号染色体的微核也是最稳定的[64]。细胞核膜发生破裂时,只需几分钟便会被修复完整[65-67],即使有少部分破裂会持续几小时但最终也会被修复[68-70]。然而微核核膜的破裂几乎是不可逆的[57]。Vietri等[71]发现,微核体积较小,可能导致其缺乏限制染色质修饰蛋白CHMP7-LEM结构域核膜蛋白2积累的能力,因此介导核膜修复的内体分选转运复合体Ⅲ复合物过度活化,造成微核核膜变形,最终诱使微核核膜碎片化。破裂的微核虽然能够迅速启动核膜修复系统,确保了细胞核膜的快速精准修复,但微核破裂时失控的核膜修复机制会引起微核不可逆破裂,最终诱导基因组染色体碎裂,为基因组稳定带来灾难性后果。
3. 微核破裂与cGAS-STING信号通路激活的相关性
染色体错误分离形成的微核,在形成之初仍是由核膜包裹将染色体隔绝的区域化结构。但伴随微核核膜破裂,微核基因组DNA区域化结构消失,导致其暴露在细胞质中[57]。cGAS作为DNA感受器,能够迅速感知暴露在细胞质中的微核基因组DNA,在微核上富集活化,合成第二信使cGAMP,诱导STING蛋白活化,介导下游炎症信号通路的激活,包括Ⅰ型干扰素信号通路、经典/非经典NF-κB信号通路以及SASP[2, 37, 72-74]。Härtlova等[5]研究表明,过表达核纤层蛋白B2阻止微核破裂能够阻断cGAS-STING介导的炎症信号通路的活化,证明破裂的微核可激活cGAS-STING信号通路。Bakhoum等[2]利用染色体示踪实验证明了破裂微核中的染色质会逐步碎裂成细胞质DNA,这为微核基因组DNA能够活化cGAS提供了直接证据。在微核核膜破裂之初,微核基因组DNA仍保持着由核小体作为最小单位组装而成的染色质结构,即使cGAS在破裂微核上富集,其活性仍会被核小体所抑制。但伴随着微核染色质逐步碎裂成细胞质DNA,完整的核小体结构丧失,这为cGAS活性的释放提供了可能。此外,Mackenzie等[73]对含有微核的核糖核酸酶H2亚基A缺失的原代成纤维细胞进行了流式分选以及单细胞测序,首次在单细胞水平证明了微核的形成与cGAS-STING信号通路的激活具有直接相关性,即只在包含微核的细胞中检测到cGAS-STING信号通路活化。
4. 微核活化的cGAS-STING信号通路与肿瘤免疫
4.1. 微核活化的cGAS-STING信号通路在肿瘤发生发展中的作用
Senovilla等[74]研究发现,肿瘤细胞复杂的核型能够激活肿瘤细胞自身和T淋巴细胞介导的抗肿瘤免疫系统,抑制肿瘤生长,因此认为染色体不稳定与免疫激活存在直接的相关性。Santaguida等[33]发现,染色体不稳定能够导致肿瘤细胞周期阻滞以及衰老的发生,同时经由cGAS-STING信号通路活化NK细胞介导对肿瘤细胞的杀伤。此外,在促癌基因RAS驱动的肿瘤细胞中,细胞质染色质碎片激活的cGAS-STING通路会显著促进免疫系统介导的肿瘤细胞清除[75]。微核对cGAS-STING信号通路的活化将染色体不稳定与肿瘤免疫微环境的重塑联系起来,这也与早期肿瘤发生过程中肿瘤细胞复杂的核型与染色体错误分离从而抑制肿瘤生长结果一致[76-77]。
然而,cGAS-STING信号通路的持续激活具有促进肿瘤的作用。在DNA损伤药物长期涂抹诱导的小鼠皮肤癌原发瘤模型中,敲除STING会明显抑制炎症信号以及原发瘤的形成[78]。在三阴性乳腺癌细胞中,染色体的错误分离可激活cGAS-STING信号通路,进而活化非经典NF-κB信号通路,诱导IL-6释放以及活化IL-6/STAT3信号通路,促进了三阴性乳腺癌细胞的存活和耐药性的产生[37]。最新研究发现,染色体不稳定造成的STING慢性激活会活化内质网应激信号通路,进而导致肿瘤的免疫逃逸,证明了单次STING信号通路活化激活的是Ⅰ型干扰素信号通路,而多次STING信号通路活化激活的是下游的内质网应激信号通路和NF-κB信号通路,这为肿瘤细胞中Ⅰ型干扰素信号通路的关闭以及STING下游信号通路的重塑提供了直接证据[40]。
此外,在人乳腺癌和肺癌细胞中,染色体错误分离诱导的慢性cGAS-STING激活能够通过下游非典型NF-κB通路的活化介导肿瘤细胞转移,STING的缺失、抑制微核的形成和破裂、抑制非典型NF-κB转录因子的活性均可以抑制肿瘤细胞的转移[2]。但一项最新研究发现,肺腺癌肿瘤细胞中的STING活化能够以T淋巴细胞和NK细胞依赖的方式抑制休眠肿瘤细胞的复苏和转移[79]。因此,在肿瘤发生发展的不同阶段,STING的激活可能会有截然不同的功能。另外,肿瘤细胞也会以环境依赖的方式重塑STING下游的信号通路,以减少STING活化对肿瘤带来的不利影响,继而允许STING活化维持肿瘤细胞生长、肿瘤转移和耐药性的产生。
4.2. 微核活化的cGAS-STING信号通路在肿瘤治疗中的作用
广泛使用的化疗药物如端粒酶抑制剂、PARP抑制剂和TOP2A抑制剂以及电离辐射均可诱导染色体错误分离,促使微核形成。除了已知的抗肿瘤机制外,近期研究表明化疗药物诱导微核形成进而活化cGAS-STING信号通路在其抗肿瘤作用中至关重要。如端粒酶抑制剂能够诱导复制危机,STING活化诱导的细胞自噬是清除染色体不稳定肿瘤细胞的关键机制[10]。同样,PARP抑制剂除了抑制复制功能外,其活化的cGAS-STING信号通路在诱导肿瘤细胞凋亡以及炎症信号介导的抗肿瘤免疫中扮演着重要角色[80-82]。TOP2A抑制剂通过cGAS-STING信号通路诱导细胞衰老的发生和SASP的释放[75]。电离辐射后,肿瘤细胞中的cGAS-STING信号通路以T淋巴细胞依赖的方式促进全身抗肿瘤免疫,诱导移植的乳腺癌和黑色素瘤的消退[72, 83]。但也有研究发现,长时间的放射治疗过程中,STING活化的Ⅰ型干扰素信号通路以及非经典NF-κB信号通路通过招募抑制性髓系细胞和抑制树突状细胞活性,营造免疫抑制的肿瘤微环境,从而导致放疗耐药性产生[44-46]。
综上所述,微核破裂激活的cGAS-STING信号通路在肿瘤的发生发展及治疗过程中均扮演着复杂的角色:一方面,有助于清除肿瘤细胞;另一方面,也可能导致肿瘤细胞的免疫逃逸、转移和存活,如图3所示。
5. 结语
微核作为不稳定的亚细胞器结构,其形成及破裂等一系列生命活动的具体分子机制仍有许多未知之处。微核基因组DNA,一方面会重新融到细胞核基因组DNA中,为肿瘤基因组积累大量突变和重组,导致染色体碎裂,协助肿瘤细胞的演化发展;另一方面暴露在细胞质中的基因组DNA激活cGAS-STING信号通路,从而参与肿瘤细胞的演化、免疫逃逸等一系列复杂的肿瘤生命活动。因此,微核和cGAS-STING信号通路可作为肿瘤治疗的良好靶标,但应考虑到这两者功能的复杂性,根据肿瘤的发生阶段以及具体情况制订可靠的治疗方案。此外,破裂的微核除了会暴露出基因组DNA,同时也会特异性释放某些核蛋白到细胞质中。这些核蛋白在肿瘤发生发展过程中扮演的角色及功能未知,或将成为一些新的研究方向。
Acknowledgments
研究得到国家自然科学基金(31725017,31830052)、国家重点研发计划(2021YFA1301401)支持. 文章撰写过程得到浙江大学实验动物中心徐令东博士帮助
Acknowledgments
This work was supported by the National Natural Science Foundation of China (31725017, 31830052), and National Key R&D Program of China (2021YFA1301401). The writing of this article was assisted by Dr. XU Lingdong from the Laboratory Animal Center of Zhejiang University
[缩略语]
环鸟苷酸-腺苷酸合成酶(cyclic guanosine monophosphate-adenosine monophosphate synthase,cGAS);干扰素基因刺激因子(stimulator of interferon genes,STING);线粒体DNA(mitochondrial DNA,mtDNA);双链DNA(double-stranded DNA,dsDNA);损伤相关分子模式(damage associated molecular pattern,DAMP);3'-核酸修复外切酶(three-prime repair exonuclease,TREX);环鸟苷酸-腺苷酸(cyclic guanosine monophosphate-adenosine monophosphate,cGAMP);NOD样受体热蛋白结构域相关蛋白(NOD-like receptor thermal protein domain associated protein,NLRP);干扰素调节因子(interferon regulatory factor,IRF);核因子κB(nuclear factor-κB,NF-κB);衰老相关分泌表型(senescence associated secretory phenotype,SASP);视网膜母细胞瘤蛋白(retinoblastoma protein,RB);人表皮生长因子受体(human epidermal growth factor receptor,HER);信号转导及转录活化因子(signal transducer and activator of transcription,STAT);线粒体抗病毒信号蛋白(mitochondrial antiviral signaling protein,MAVS);多腺苷二磷酸核糖聚合酶[poly(ADP-ribose) polymerase,PARP];拓扑异构酶Ⅱα(topoisomerase Ⅱα,TOP2A)
利益冲突声明
所有作者均声明不存在利益冲突
Conflict of Interests
The authors declare that there is no conflict of interests
参考文献(References)
- 1.BAKHOUM S F, CANTLEY L C. The multifaceted role of chromosomal instability in cancer and its microenvironment[J]. Cell, 2018, 174(6): 1347-1360. 10.1016/j.cell.2018.08.027 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.BAKHOUM S F, NGO B, LAUGHNEY A M, et al. . Chromosomal instability drives metastasis through a cytosolic DNA response[J]. Nature, 2018, 553(7689): 467-472. 10.1038/nature25432 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.GOH J Y, FENG M, WANG W, et al. . Chromosome 1q21.3 amplification is a trackable biomarker and actionable target for breast cancer recurrence[J]. Nat Med, 2017, 23(11): 1319-1330. 10.1038/nm.4405 [DOI] [PubMed] [Google Scholar]
- 4.TURAJLIC S, XU H, LITCHFIELD K, et al. . Tracking cancer evolution reveals constrained routes to metastases: TRACERx renal[J]. Cell, 2018, 173(3): 581-594.e12. 10.1016/j.cell.2018.03.057 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.HÄRTLOVA A, ERTTMANN S F, RAFFI F A, et al. . DNA damage primes the type Ⅰ interferon system via the cytosolic DNA sensor STING to promote anti-microbial innate immunity[J]. Immunity, 2015, 42(2): 332-343. 10.1016/j.immuni.2015.01.012 [DOI] [PubMed] [Google Scholar]
- 6.ZHOU W, WHITELEY A T, DE OLIVEIRA MANN C C, et al. . Structure of the human cGAS-DNA complex reveals enhanced control of immune surveillance[J]. Cell, 2018, 174(2): 300-311.e11. 10.1016/j.cell.2018.06.026 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.DU M, CHEN Z J. DNA-induced liquid phase conden-sation of cGAS activates innate immune signaling[J]. Science, 2018, 361(6403): 704-709. 10.1126/science.aat1022 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.MOHR L, TOUFEKTCHAN E, VON MORGEN P, et al. . ER-directed TREX1 limits cGAS activation at micronuclei[J]. Mol Cell, 2021, 81(4): 724-738.e9. 10.1016/j.molcel.2020.12.037 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.SUN H, HUANG Y, MEI S, et al. . A nuclear export signal is required for cGAS to sense cytosolic DNA[J]. Cell Rep, 2021, 34(1): 108586. 10.1016/j.celrep.2020.108586 [DOI] [PubMed] [Google Scholar]
- 10.NASSOUR J, RADFORD R, CORREIA A, et al. . Autophagic cell death restricts chromosomal instability during replicative crisis[J]. Nature, 2019, 565(7741): 659-663. 10.1038/s41586-019-0885-0 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.LI T, HUANG T, DU M, et al. . Phosphorylation and chromatin tethering prevent cGAS activation during mitosis[J]. Science, 2021, 371(6535): eabc5386. 10.1126/science.abc5386 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.ZHAO B, XU P, ROWLETT C M, et al. . The molecular basis of tight nuclear tethering and inactivation of cGAS[J]. Nature, 2020, 587(7835): 673-677. 10.1038/s41586-020-2749-z [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.MICHALSKI S, DE OLIVEIRA MANN C C, STAFFORD C A, et al. . Structural basis for seque-stration and autoinhibition of cGAS by chromatin[J]. Nature, 2020, 587(7835): 678-682. 10.1038/s41586-020-2748-0 [DOI] [PubMed] [Google Scholar]
- 14.PATHARE G R, DECOUT A, GLÜCK S, et al. . Structural mechanism of cGAS inhibition by the nucleo-some[J]. Nature, 2020, 587(7835): 668-672. 10.1038/s41586-020-2750-6 [DOI] [PubMed] [Google Scholar]
- 15.BOYER J A, SPANGLER C J, STRAUSS J D, et al. . Structural basis of nucleosome-dependent cGAS inhibi-tion[J]. Science, 2020, 370(6515): 450-454. 10.1126/science.abd0609 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.KUJIRAI T, ZIERHUT C, TAKIZAWA Y, et al. . Structural basis for the inhibition of cGAS by nucleo-somes[J]. Science, 2020, 370(6515): 455-458. 10.1126/science.abd0237 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.ZHANG D, LIU Y, ZHU Y, et al. . A non-canonical cGAS-STING-PERK pathway facilitates the transla-tional program critical for senescence and organ fibrosis[J]. Nat Cell Biol, 2022, 24(5): 766-782. 10.1038/s41556-022-00894-z [DOI] [PubMed] [Google Scholar]
- 18.LIU B, CARLSON R J, PIRES I S, et al. . Human STING is a proton channel[J]. Science, 2023, 381(6657): 508-514. 10.1126/science.adf8974 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.GUI X, YANG H, LI T, et al. . Autophagy induction via STING trafficking is a primordial function of the cGAS pathway[J]. Nature, 2019, 567(7747): 262-266. 10.1038/s41586-019-1006-9 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.MUKAI K, KONNO H, AKIBA T, et al. . Activation of STING requires palmitoylation at the Golgi[J]. Nat Commun, 2016, 7: 11932. 10.1038/ncomms11932 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.FANG R, JIANG Q, GUAN Y, et al. . Golgi apparatus-synthesized sulfated glycosaminoglycans mediate poly-merization and activation of the cGAMP sensor STING[J]. Immunity, 2021, 54(5): 962-975.e8. 10.1016/j.immuni.2021.03.011 [DOI] [PubMed] [Google Scholar]
- 22.FUERTES M B, KACHA A K, KLINE J, et al. . Host type Ⅰ IFN signals are required for antitumor CD8+ T cell responses through CD8α dendritic cells[J]. J Exp Med, 2011, 208(10): 2005-2016. 10.1084/jem.20101159 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.DIAMOND M S, KINDER M, MATSUSHITA H, et al. . Type Ⅰ interferon is selectively required by dendritic cells for immune rejection of tumors[J]. J Exp Med, 2011, 208(10): 1989-2003. 10.1084/jem.20101158 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.KLARQUIST J, HENNIES C M, LEHN M A, et al. . STING-mediated DNA sensing promotes antitumor and autoimmune responses to dying cells[J]. J Immunol, 2014, 193(12): 6124-6134. 10.4049/jimmunol.1401869 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.WOO S R, FUERTES M B, CORRALES L, et al. . STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors[J]. Immunity, 2014, 41(5): 830-842. 10.1016/j.immuni.2014.10.017 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.MARCUS A, MAO A J, LENSINK-VASAN M, et al. . Tumor-derived cGAMP triggers a STING-mediated interferon response in non-tumor cells to activate the NK cell response[J]. Immunity, 2018, 49(4): 754-763.e4. 10.1016/j.immuni.2018.09.016 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.MENDER I, ZHANG A, REN Z, et al. . Telomere stress potentiates STING-dependent anti-tumor immunity[J]. Cancer Cell, 2020, 38(3): 400-411.e6. 10.1016/j.ccell.2020.05.020 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.YUM S, LI M, FANG Y, et al. . TBK1 recruitment to STING activates both IRF3 and NF-κB that mediate immune defense against tumors and viral infections[J/OL]. Proc Natl Acad Sci U S A, 2021, 118(14): e2100225118. 10.1073/pnas.2100225118 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.FRANCICA B J, GHASEMZADEH A, DESBIEN A L, et al. . TNFα and radioresistant stromal cells are essential for therapeutic efficacy of cyclic dinucleotide STING agonists in nonimmunogenic tumors[J]. Cancer Immunol Res, 2018, 6(4): 422-433. 10.1158/2326-6066.cir-17-0263 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.ZHANG L, JIANG C, ZHONG Y, et al. . STING is a cell-intrinsic metabolic checkpoint restricting aerobic glycolysis by targeting HK2[J]. Nat Cell Biol, 2023, 25(8): 1208-1222. 10.1038/s41556-023-01185-x [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.KANG T W, YEVSA T, WOLLER N, et al. . Senescence surveillance of pre-malignant hepatocytes limits liver cancer development[J]. Nature, 2011, 479(7374): 547-551. 10.1038/nature10599 [DOI] [PubMed] [Google Scholar]
- 32.GLÜCK S, GUEY B, GULEN M F, et al. . Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence[J]. Nat Cell Biol, 2017, 19(9): 1061-1070. 10.1038/ncb3586 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.SANTAGUIDA S, RICHARDSON A, IYER D R, et al. . Chromosome mis-segregation generates cell-cycle-arrested cells with complex karyotypes that are eliminated by the immune system[J]. Dev Cell, 2017, 41(6): 638-651.e5. 10.1016/j.devcel.2017.05.022 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34.WU S, ZHANG Q, ZHANG F, et al. . HER2 recruits AKT1 to disrupt STING signalling and suppress antiviral defence and antitumour immunity[J]. Nat Cell Biol, 2019, 21(8): 1027-1040. 10.1038/s41556-019-0352-z [DOI] [PubMed] [Google Scholar]
- 35.MENG F, YU Z, ZHANG D, et al. . Induced phase separation of mutant NF2 imprisons the cGAS-STING machinery to abrogate antitumor immunity[J]. Mol Cell, 2021, 81(20): 4147-4164.e7. 10.1016/j.molcel.2021.07.040 [DOI] [PubMed] [Google Scholar]
- 36.HONG C, SCHUBERT M, TIJHUIS A E, et al. . cGAS-STING drives the IL-6-dependent survival of chromo-somally instable cancers[J]. Nature, 2022, 607(7918): 366-373. 10.1038/s41586-022-04847-2 [DOI] [PubMed] [Google Scholar]
- 37.COUSSENS L M, WERB Z. Inflammation and cancer[J]. Nature, 2002, 420(6917): 860-867. 10.1038/nature01322 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38.CAÑADAS I, THUMMALAPALLI R, KIM J W, et al. . Tumor innate immunity primed by specific interferon-stimulated endogenous retroviruses[J]. Nat Med, 2018, 24(8): 1143-1150. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.LI J, HUBISZ M J, EARLIE E M, et al. . Non-cell-autonomous cancer progression from chromosomal instability[J]. Nature, 2023, 620(7976): 1080-1088. 10.1038/s41586-023-06464-z [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.LI S, MIRLEKAR B, JOHNSON B M, et al. . STING-induced regulatory B cells compromise NK function in cancer immunity[J]. Nature, 2022, 610(7931): 373-380. 10.1038/s41586-022-05254-3 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41.WU J, DOBBS N, YANG K, et al. . Interferon-independent activities of mammalian STING mediate antiviral response and tumor immune evasion[J]. Immunity, 2020, 53(1): 115-126.e5. 10.1016/j.immuni.2020.06.009 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42.CONCEPCION A R, WAGNER L E 2nd, ZHU J, et al. . The volume-regulated anion channel LRRC8C suppre-sses T cell function by regulating cyclic dinucleotide transport and STING-p53 signaling[J]. Nat Immunol, 2022, 23(2): 287-302. 10.1038/s41590-021-01105-x [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43.HOU Y, LIANG H, RAO E, et al. . Non-canonical NF-κB antagonizes STING sensor-mediated DNA sensing in radiotherapy[J]. Immunity, 2018, 49(3): 490-503.e4. 10.1016/j.immuni.2018.07.008 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44.LIANG H, DENG L, HOU Y, et al. . Host STING-dependent MDSC mobilization drives extrinsic radiation resistance[J]. Nat Commun, 2017, 8(1): 1736. 10.1038/s41467-017-01566-5 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45.WEICHSELBAUM R R, ISHWARAN H, YOON T, et al. . An interferon-related gene signature for DNA damage resistance is a predictive marker for chemo-therapy and radiation for breast cancer[J]. Proc Natl Acad Sci U S A, 2008, 105(47): 18490-18495. 10.1073/pnas.0809242105 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46.GUO X, NI J, LIANG Z, et al. . The molecular origins and pathophysiological consequences of micronuclei: new insights into an age-old problem[J]. Mutat Res Rev Mutat Res, 2019, 779: 1-35. 10.1016/j.mrrev.2018.11.001 [DOI] [PubMed] [Google Scholar]
- 47.KLAASEN S J, TRUONG M A, VAN JAARSVELD R H, et al. . Nuclear chromosome locations dictate segre-gation error frequencies[J]. Nature, 2022, 607(7919): 604-609. 10.1038/s41586-022-04938-0 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48.DAUGHTRY B L, ROSENKRANTZ J L, LAZAR N H, et al. . Single-cell sequencing of primate preim-plantation embryos reveals chromosome elimination via cellular fragmentation and blastomere exclusion[J]. Genome Res, 2019, 29(3): 367-382. 10.1101/gr.239830.118 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49.GRATIA M, RODERO M P, CONRAD C, et al. . Bloom syndrome protein restrains innate immune sensing of micronuclei by cGAS[J]. J Exp Med, 2019, 216(5): 1199-1213. 10.1084/jem.20181329 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 50.HE B, GNAWALI N, HINMAN A W, et al. . Chro-mosomes missegregated into micronuclei contribute to chromosomal instability by missegregating at the next division[J]. Oncotarget, 2019, 10(28): 2660-2674. 10.18632/oncotarget.26853 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 51.KNEISSIG M, KEUPER K, DE PAGTER M S, et al. . Micronuclei-based model system reveals functional consequences of chromothripsis in human cells[J/OL]. Elife, 2019, 8: e50292. 10.7554/elife.50292 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52.CRASTA K, GANEM N J, DAGHER R, et al. . DNA breaks and chromosome pulverization from errors in mitosis[J]. Nature, 2012, 482(7383): 53-58. 10.1038/nature10802 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53.SOTO M, GARCíA-SANTISTEBAN I, KRENNING L, et al. . Chromosomes trapped in micronuclei are liable to segregation errors[J]. J Cell Sci, 2018, 131(13): jcs214742. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 54.UMBREIT N T, ZHANG C Z, LYNCH L D, et al. . Mechanisms generating cancer genome complexity from a single cell division error[J]. Science, 2020, 368(6488): eaba0712. 10.1126/science.aba0712 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 55.LIU S, KWON M, MANNINO M, et al. . Nuclear envelope assembly defects link mitotic errors to chromothripsis[J]. Nature, 2018, 561(7724): 551-555. 10.1038/s41586-018-0534-z [DOI] [PMC free article] [PubMed] [Google Scholar]
- 56.HATCH E M, FISCHER A H, DEERINCK T J, et al. . Catastrophic nuclear envelope collapse in cancer cell micronuclei[J]. Cell, 2013, 154(1): 47-60. 10.1016/j.cell.2013.06.007 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 57.AGUSTINUS A S, AL-RAWI D, DAMERACHARLA B, et al. . Epigenetic dysregulation from chromosomal transit in micronuclei[J]. Nature, 2023, 619(7968): 176-183. 10.1038/s41586-023-06084-7 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 58.ZHANG C Z, SPEKTOR A, CORNILS H, et al. . Chromo-thripsis from DNA damage in micronuclei[J]. Nature, 2015, 522(7555): 179-184. 10.1038/nature14493 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 59.NADER G, AGÜERA-GONZALEZ S, ROUTET F, et al. . Compromised nuclear envelope integrity drives TREX1-dependent DNA damage and tumor cell invasion[J]. Cell, 2021, 184(20): 5230-5246.e22. 10.1016/j.cell.2021.08.035 [DOI] [PubMed] [Google Scholar]
- 60.LY P, BRUNNER S F, SHOSHANI O, et al. . Chro-mosome segregation errors generate a diverse spectrum of simple and complex genomic rearrangements[J]. Nat Genet, 2019, 51(4): 705-715. 10.1038/s41588-019-0360-8 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 61.ZHAO M, WANG F, WU J, et al. . CGAS is a micro-nucleophagy receptor for the clearance of micronuclei[J]. Autophagy, 2021, 17(12): 3976-3991. 10.1080/15548627.2021.1899440 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 62.LENGAUER C, KINZLER K W, VOGELSTEIN B. Genetic instabilities in human cancers[J]. Nature, 1998, 396(6712): 643-649. 10.1038/25292 [DOI] [PubMed] [Google Scholar]
- 63.XIA Y, PFEIFER C R, ZHU K, et al. . Rescue of DNA damage after constricted migration reveals a mechano-regulated threshold for cell cycle[J]. J Cell Biol, 2019, 218(8): 2545-2563. 10.1083/jcb.201811100 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 64.MAMMEL A E, HUANG H Z, GUNN A L, et al. . Chromosome length and gene density contribute to micronuclear membrane stability[J/OL]. Life Sci Alliance, 2022, 5(2): e202101210. 10.26508/lsa.202101210 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 65.DE NORONHA C M, SHERMAN M P, LIN H W, et al. . Dynamic disruptions in nuclear envelope architecture and integrity induced by HIV-1 Vpr[J]. Science, 2001, 294(5544): 1105-1108. 10.1126/science.1063957 [DOI] [PubMed] [Google Scholar]
- 66.DE VOS W H, HOUBEN F, KAMPS M, et al. . Repetitive disruptions of the nuclear envelope invoke temporary loss of cellular compartmentalization in laminopathies[J]. Hum Mol Genet, 2011, 20(21): 4175-4186. 10.1093/hmg/ddr344 [DOI] [PubMed] [Google Scholar]
- 67.VARGAS J D, HATCH E M, ANDERSON D J, et al. . Transient nuclear envelope rupturing during interphase in human cancer cells[J]. Nucleus, 2012, 3(1): 88-100. 10.4161/nucl.18954 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 68.CHEN N Y, KIM P, WESTON T A, et al. . Fibroblasts lacking nuclear lamins do not have nuclear blebs or protrusions but nevertheless have frequent nuclear membrane ruptures[J]. Proc Natl Acad Sci U S A, 2018, 115(40): 10100-10105. 10.1073/pnas.1812622115 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 69.DENAIS C M, GILBERT R M, ISERMANN P, et al. . Nuclear envelope rupture and repair during cancer cell migration[J]. Science, 2016, 352(6283): 353-358. 10.1126/science.aad7297 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 70.RAAB M, GENTILI M, DE BELLY H, et al. . ESCRT Ⅲ repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death[J]. Science, 2016, 352(6283): 359-362. 10.1126/science.aad7611 [DOI] [PubMed] [Google Scholar]
- 71.VIETRI M, SCHULTZ S W, BELLANGER A, et al. . Unrestrained ESCRT-Ⅲ drives micronuclear catastrophe and chromosome fragmentation[J]. Nat Cell Biol, 2020, 22(7): 856-867. 10.1038/s41556-020-0537-5 [DOI] [PubMed] [Google Scholar]
- 72.HARDING S M, BENCI J L, IRIANTO J, et al. . Mitotic progression following DNA damage enables pattern recognition within micronuclei[J]. Nature, 2017, 548(7668): 466-470. 10.1038/nature23470 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 73.MACKENZIE K J, CARROLL P, MARTIN C A, et al. . cGAS surveillance of micronuclei links genome insta-bility to innate immunity[J]. Nature, 2017, 548(7668): 461-465. 10.1038/nature23449 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 74.SENOVILLA L, VITALE I, MARTINS I, et al. . An immu-nosurveillance mechanism controls cancer cell ploidy[J]. Science, 2012, 337(6102): 1678-1684. 10.1126/science.1224922 [DOI] [PubMed] [Google Scholar]
- 75.DOU Z, GHOSH K, VIZIOLI M G, et al. . Cytoplasmic chromatin triggers inflammation in senescence and cancer[J]. Nature, 2017, 550(7676): 402-406. 10.1038/nature24050 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 76.SHELTZER J M, KO J H, REPLOGLE J M, et al. . Single-chromosome gains commonly function as tumor suppressors[J]. Cancer Cell, 2017, 31(2): 240-255. 10.1016/j.ccell.2016.12.004 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 77.ROWALD K, MANTOVAN M, PASSOS J, et al. . Negative selection and chromosome instability induced by Mad2 overexpression delay breast cancer but facilitate oncogene-independent outgrowth[J]. Cell Rep, 2016, 15(12): 2679-2691. 10.1016/j.celrep.2016.05.048 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 78.AHN J, XIA T, KONNO H, et al. . Inflammation-driven carcinogenesis is mediated through STING[J]. Nat Commun, 2014, 5: 5166. 10.1038/ncomms6166 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 79.HU J, SÁNCHEZ-RIVERA F J, WANG Z, et al. . STING inhibits the reactivation of dormant metastasis in lung adenocarcinoma[J]. Nature, 2023, 616(7958): 806-813. 10.1038/s41586-023-05880-5 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 80.DING L, KIM H J, WANG Q, et al. . PARP inhibition elicits STING-dependent antitumor immunity in brca1-deficient ovarian cancer[J]. Cell Rep, 2018, 25(11): 2972-2980.e5. 10.1016/j.celrep.2018.11.054 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 81.SEN T, RODRIGUEZ B L, CHEN L, et al. . Targeting DNA damage response promotes antitumor immunity through STING-mediated T-cell activation in small cell lung cancer[J]. Cancer Discov, 2019, 9(5): 646-661. 10.1158/2159-8290.cd-18-1020 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 82.CHEN Z, YAO L, LIU Y, et al. . LncTIC1 interacts with β-catenin to drive liver TIC self-renewal and liver tumorigenesis[J]. Cancer Lett, 2022, 545: 215835. 10.1016/j.canlet.2022.215835 [DOI] [PubMed] [Google Scholar]
- 83.VANPOUILLE-BOX C, ALARD A, ARYANKALAYIL M J, et al. . DNA exonuclease Trex1 regulates radiothe-rapy-induced tumour immunogenicity[J]. Nat Commun, 2017, 8: 15618. 10.1038/ncomms15618 [DOI] [PMC free article] [PubMed] [Google Scholar]