Abstract
肿瘤细胞通过改变自身代谢以适应能量和生物合成的需求。线粒体作为肿瘤细胞代谢重编程的关键细胞器,其功能异常是癌症发生和进展的主要驱动因素。线粒体动力学和能量代谢途径的改变对免疫细胞活化、增殖和分化至关重要,肿瘤微环境通过诱导免疫细胞线粒体代谢重编程和线粒体动力学变化,影响肿瘤浸润免疫细胞的活化和功能,进而促进肿瘤免疫抑制微环境形成;线粒体应激介导的线粒体DNA泄露可通过激活多条天然免疫信号通路,如cGAS-STING、TLR9和NLRP3,在宿主抗肿瘤免疫响应和肿瘤免疫抑制微环境的塑造中扮演复杂的调控角色,线粒体DNA介导的免疫原性细胞死亡是目前极具潜力的抗肿瘤免疫治疗手段;线粒体活性氧作为肿瘤发生的重要媒介,通过改变肿瘤微环境中免疫细胞组成,推动肿瘤免疫抑制微环境形成。本文围绕线粒体生物学与抗肿瘤免疫应答之间的关系,从多个角度探讨线粒体在肿瘤-宿主互作中的核心作用,以期为开发靶向线粒体的抗肿瘤免疫治疗策略提供参考。
Keywords: 肿瘤免疫, 肿瘤微环境, 线粒体, 线粒体动力学, 线粒体能量代谢, 线粒体DNA, 线粒体活性氧, 综述
Abstract
Tumor cells adapt their metabolism to meet the demands for energy and biosynthesis. Mitochondria, pivotal organelles in the metabolic reprogramming of tumor cells, contribute to tumorigenesis and cancer progression significantly through various dysfunctions in both tumor and immune cells. Alterations in mitochondrial dynamics and metabolic signaling pathways exert crucial regulatory influence on the activation, proliferation, and differentiation of immune cells. The tumor microenvironment orchestrates the activation and functionality of tumor-infiltrating immune cells by reprogramming mitochondrial metabolism and inducing shifts in mitochondrial dynamics, thereby facilitating the establishment of a tumor immunosuppressive microenvironment. Stress-induced leakage of mitochondrial DNA contributes multifaceted regulatory effects on anti-tumor immune responses and the immunosuppressive microenvironment by activating multiple natural immune signals, including cGAS-STING, TLR9, and NLRP3. Moreover, mitochondrial DNA-mediated immunogenic cell death emerges as a promising avenue for anti-tumor immunotherapy. Additionally, mitochondrial reactive oxygen species, a crucial factor in tumorigenesis, drives the formation of tumor immunosuppressive microenvironment by changing the composition of immune cells within the tumor microenvironment. This review focuses on the intrinsic relationship between mitochondrial biology and anti-tumor immune responses from multiple angles. We explore the core role of mitochondria in the dynamic interplay between the tumor and the host to facilitate the development of targeted mitochondrial strategies for anti-tumor immunotherapy.
Keywords: Tumor immunity, Tumor microenvironment, Mitochondrion, Mitochondrial dynamics, Mitochondrial energy metabolism, Mitochondrial DNA, Mitochondrial reactive oxygen species, Review
线粒体是由原核生物α-变形菌进化而来的存在于大多数真核细胞中的一种功能多样的细胞器,由线粒体外膜和内膜、线粒体膜间隙、线粒体内膜嵴以及线粒体基质五种不同结构组成[1-2]。线粒体是动物细胞除细胞核外唯一具有DNA的细胞器,mtDNA是一个环状DNA,能编码氧化磷酸化复合物形成所需的13种蛋白质、22种转运RNA和2种线粒体RNA翻译所需的核糖体RNA[3-4]。作为细胞能量代谢和生物合成的中心,线粒体通过氧化磷酸化过程产生ATP以维持细胞内能量稳态[2],同时代谢中间产物则是生物合成途径的重要参与者[2, 5]。此外,线粒体通过释放mtDNA、mtROS和代谢产物等参与调节包括细胞能量代谢、细胞命运决定和免疫反应在内的多种细胞生物学过程。因此,越来越多的研究表明线粒体功能障碍与包括自身免疫性疾病在内的多种疾病发生有关[6-8],而且功能异常的线粒体是细胞恶性转化的驱动力[9-10]。
肿瘤细胞通过重编程相关代谢途径来适应不断增加的能量和生物合成需求。在肿瘤微环境中,肿瘤发展驱动的营养耗竭和代谢副产物过度产生,通过调控肿瘤浸润免疫细胞的代谢重编程及相关信号活化控制不同类型免疫细胞极化,诱导代谢失常介导的抗肿瘤免疫应答缺失,帮助建立免疫抑制的肿瘤微环境。线粒体作为细胞内具有多种生物学功能且高度变化的细胞器[11-12],在调节代谢和激活免疫细胞方面具有关键调控作用[13]。研究显示,肿瘤微环境中包括肿瘤细胞和免疫细胞在内的多种细胞的线粒体功能异常是癌症发生、发展和转移的重要原因[14-15]。
本文围绕线粒体与抗肿瘤免疫应答之间的关系,探讨线粒体与免疫细胞活化,线粒体重要组分mtDNA和mtROS在肿瘤发生发展、免疫抑制的肿瘤微环境生成和肿瘤免疫逃逸中的重要调控作用,旨在深入了解线粒体在肿瘤发生发展过程中的核心作用,以期为开发靶向线粒体的抗肿瘤免疫治疗策略提供依据。
1. 线粒体调控免疫细胞活化、增殖和分化
不同种类和不同表型的免疫细胞具有特定的代谢需求,其活化状态受到多条信号通路调控。线粒体动力学和能量代谢途径变化在免疫细胞活化、增殖和分化过程中发挥至关重要的作用[14]。
线粒体调控T淋巴细胞的活化、增殖和分化。初始T细胞的线粒体形态多为碎片化和圆球状,氧化磷酸化和脂肪酸氧化是维持其静止状态下能量需求的主要途径[16]。而当T淋巴细胞被激活时,有氧糖酵解和脂肪酸合成相关信号活性显著增加,从而维持其增殖和分化能力并促进其发挥相应的生物学功能[17];同时线粒体在T细胞受体簇下方聚集[18],活化的T细胞受体通过上调钙调磷酸酶活性活化动力学相关蛋白1[19-20],并诱导线粒体进一步分裂和线粒体内膜嵴松弛,线粒体数增加和内膜嵴松弛可通过控制糖酵解相关信号在效应T细胞活化中发挥重要调控作用[21]。此外,线粒体在T细胞信号转导和细胞命运决定过程中同样发挥重要作用。T淋巴细胞活化过程中,线粒体在T淋巴细胞和抗原提呈细胞形成的免疫突触中积累[18],T细胞受体活化刺激线粒体生成活性氧和ATP,在维持钙离子稳态和调控其下游相关信号活化中至关重要[18, 22]。而当活化的T细胞向记忆T细胞或调节性T细胞发展时,线粒体则从分裂状态逐渐融合形成长管状结构,线粒体内膜嵴变得紧密,随后细胞代谢状态转向脂肪酸氧化和氧化磷酸化,以维持细胞表型、存活和功能转变[21, 23-25]。在肿瘤组织中,肿瘤细胞对肿瘤微环境中葡萄糖和其他营养物质的潜在竞争则会抑制免疫细胞的代谢和功能[26-27]。在肿瘤微环境中,肿瘤浸润性T细胞长期处于高度氧化应激状态,由于葡萄糖和氧气缺乏环境介导的代谢不足[28-31]和Akt1-PGC1α信号介导的线粒体功能和质量持续损伤[32],其细胞增殖能力、生物膜结构完整性和相关信号通路活化水平受到严重影响,T淋巴细胞抗肿瘤免疫效应和相关细胞因子产生遭到严重破坏[30],最终引发免疫抑制和肿瘤免疫逃逸。
线粒体调控NK细胞活化。NK细胞是天然的细胞毒性淋巴细胞,其细胞活性与葡萄糖代谢水平显著相关。当葡萄糖水平升高时,NK细胞活性显著增强[33]。活化的NK细胞糖酵解能力、基础氧化磷酸化速率和最大呼吸能力均显著增加[33];而当其向记忆阶段过渡时,线粒体自噬相关蛋白BNIP3-BNIP3L通过诱导线粒体自噬去除损伤线粒体并减少活性氧的生成,促进记忆性NK细胞的形成[34]。研究显示,在低氧肿瘤微环境中,肿瘤浸润NK细胞的线粒体形态相较于正常NK细胞呈现出显著的碎片化分裂状态[35],NK细胞活性和肿瘤杀伤能力明显降低并丧失肿瘤免疫监视能力[35]。
线粒体参与巨噬细胞极化。线粒体在巨噬细胞极化过程中同样起关键作用。巨噬细胞主要可以分为两个亚型,由脂多糖/γ干扰素激活的M1型促炎巨噬细胞和由IL-4激活的M2型抗炎巨噬细胞,其中巨噬细胞向M1型极化时,细胞内代谢反应从氧化磷酸化转为有氧糖酵解,细胞内活性氧水平升高[36],且在这一过程中线粒体分裂增加。而当细胞向M2型极化时,细胞内氧化磷酸化和脂肪酸氧化水平显著增高,且线粒体呈现出融合变长状态[37-38]。
综上,从氧化磷酸化到糖酵解的代谢转变和线粒体形态的动态变化会导致免疫细胞极性和表型的改变,从而影响免疫细胞的生物学效应。因此,深入研究线粒体动力学和代谢在抗肿瘤免疫中的作用,对于调控抗肿瘤免疫和研发抗肿瘤药物具有重要的推动作用。
2. 线粒体DNA在抗肿瘤免疫中的作用
线粒体基因组突变是癌症突变基因组的重要组成部分[39],mtDNA功能障碍和基因突变与癌症的发生密切相关。线粒体基因拷贝数异常、基因异常表达和mtDNA表观遗传学修饰改变经常通过调控细胞代谢、活性氧生成和细胞间相互作用等方式影响癌症的发生和恶性转化[40],且mtDNA基因突变类型、位置和异质性水平能赋予癌细胞不同程度的竞争优势[39-40]。值得注意的是,mtDNA作为细胞内常见的DAMP,其断裂和释放也是线粒体功能障碍介导机体炎症发生的关键因素[41-42]。线粒体功能障碍介导的mtDNA泄露已被证明在衰老相关的慢性炎症中发挥重要作用[43]。
维持线粒体稳态对于细胞的能量代谢、命运决定等具有重要意义。在漫长的进化过程中,生物体形成了一套包括线粒体动力学、生物合成、蛋白质稳态和线粒体自噬在内的完整的线粒体质量控制系统,用于维持线粒体结构和功能的完整性[12, 44]。功能障碍线粒体通过MDV,将线粒体成分挤入细胞外囊泡,对细胞器稳态具有重要的调控作用[45]。在此过程中,氧化的mtDNA通过MDV进入内体-溶酶体途径,并通过外泌体进入细胞外空间,触发多种炎症和抗炎调节途径,从而引发相关免疫反应[46]。
2.1. 线粒体DNA介导天然免疫信号活化调控抗肿瘤免疫
尽管多项研究表明mtDNA在天然免疫活化中的重要性,但目前对于mtDNA从线粒体基质到细胞质的易位机制尚不明确。2014年的两项独立研究显示,mtDNA在线粒体凋亡过程中释放[47-48],后续研究进一步表明凋亡相关的线粒体外膜通透化在mtDNA释放中具有重要调控作用[41-42]。此外,用于代谢物和离子运输的电压依赖性阴离子通道能够在线粒体外膜形成寡聚体,短mtDNA片段从这些寡聚体进入细胞质并触发Ⅰ型干扰素信号[49];细胞应激介导线粒体膜通透性转换孔形成参与短mtDNA片段释放[50-51]。mtDNA释放到细胞质中后能够被cGAS、TLR9和NLRP3等模式识别受体识别,从而活化下游相关炎症信号通路。在肿瘤微环境中,mtDNA的细胞外泄露主要由外泌体、微泡和凋亡小体组成的细胞外囊泡所介导,mtDNA能够通过直接接触或者MDV进入细胞外囊泡,随后由囊泡运输进入细胞外空间,在细胞死亡过程中,mtDNA能够通过机械性损伤介导的细胞膜破裂被动释放到细胞外[52]。尽管许多报道表明含有mtDNA的细胞外囊泡是影响代谢和促进肿瘤生长的关键成分[46, 53-57],但MDV调控mtDNA转运的具体机制仍不明确。
当mtDNA完整性、复制和损伤修复异常导致mtDNA泄露时,细胞质定位的DNA识别受体cGAS能迅速识别mtDNA并诱导第二信使23-cGAMP生成,随后23-cGAMP通过激活内质网定位的接头蛋白STING介导下游Ⅰ型干扰素信号通路和相关炎症反应活化[41]。近年来的研究显示,cGAS-STING信号活化在抗肿瘤免疫中具有重要的调节作用。在许多类型的癌症中,肿瘤T细胞浸润与总体预后呈正相关[58],肿瘤特异性的适应性免疫应答包括细胞毒性T细胞(CD8+ T细胞)激活都依赖于抗原提呈细胞的Ⅰ型干扰素信号,而cGAS-STING信号是介导Ⅰ型干扰素信号活化的重要通路[59]。使用小分子药物激活cGAS-STING信号能够通过触发相关天然免疫信号,激活包括树突状细胞、巨噬细胞、NK细胞、CD4+和CD8+ T细胞在内的多种免疫细胞,导致体内多种肿瘤明显变小甚至完全消失[60-62]。研究表明,在包括结肠癌和黑色素瘤在内的多种小鼠皮下成瘤模型中,通过瘤内注射23-cGAMP激活STING可刺激活化CD8+ T细胞的肿瘤浸润,并促进肿瘤清除[63-66]。总的来说,STING依赖的干扰素调节因子3的活化通过连接天然免疫和适应性免疫在CD8+ T细胞介导的抗肿瘤应答中起重要作用。然而,已有报道也表明在某些细胞类型中,STING激活可能具有促进肿瘤的作用[67]。癌细胞通过抑制下游Ⅰ型干扰素和经典NF-κB信号活化,促进STING依赖的非经典NF-κB信号,增强肿瘤细胞转移能力,如染色体不稳定性通过活化STING依赖的非经典NF-κB信号,促进肿瘤细胞上皮-间充质转化、细胞侵袭和转移[68];乳腺癌和肺癌脑转移模型中,肿瘤细胞通过肿瘤细胞-星形胶质细胞间隙连接通道将23-cGAMP传递给星形胶质细胞并激活其STING信号,促进炎症细胞因子产生,随后活化脑转移癌细胞中的信号转导及转录激活蛋白1和NF-κB信号,从而支持肿瘤细胞生长和化疗耐药[69]。
TLR9通过识别mtDNA的CpG结构域并活化下游MAPK和NF-κB信号,促进相关炎症反应发生[70-71]。值得注意的是,泄露到细胞外的mtDNA还可以通过激活临近免疫细胞的TLR9和cGAS-STING信号参与包括巨噬细胞、树突状细胞和T淋巴细胞在内的多种免疫细胞的极化和功能调控[42, 72]。NLRP3作为细胞质内的多组分蛋白复合体,能够识别泄漏到细胞质中的mtDNA并活化下游caspase-1,促进IL-1和IL-18前体剪切活化,招募巨噬细胞、中性粒细胞和T淋巴细胞参与相关免疫反应[73-78],但同时NLRP3和caspase的活化也能够进一步介导线粒体损伤并促进mtDNA泄露[79-80]。
在肿瘤诱导的线粒体应激过程中,mtDNA会释放到细胞质和细胞外空间并介导多个天然免疫信号活化,这个过程对肿瘤的发生发展具有重要推动作用。如在原发性肝细胞肝癌中,动力学相关蛋白1过表达介导的线粒体功能障碍可通过释放mtDNA活化TLR9-NF-κB信号,增强肿瘤细胞趋化因子配体2的分泌,从而促进TAM的招募和极化,推动癌症发展[81]。在食管鳞状细胞癌中,动力学相关蛋白1过表达诱导线粒体功能障碍和细胞质mtDNA应激,随后通过激活cGAS-STING信号诱导细胞自噬,推动癌症发展进程[82]。值得注意的是,活性氧应激能够诱导含有mtDNA和PD-L1的细胞外囊泡生成来调节肿瘤组织周围的微环境[55, 57],细胞外囊泡随后通过促进巨噬细胞分泌干扰素和IL-6来抑制肿瘤微环境中的T细胞免疫。最近的报道表明,多种癌症患者的外泌体PD-L1水平升高,且与mtDNA和γ干扰素的产生呈正相关[55, 83]。总的来说,目前多篇报道表明含有mtDNA的细胞外囊泡是影响代谢和促进肿瘤生长的关键成分,依赖于MDV的线粒体质量控制系统对于细胞的生存和炎症特性非常重要[56]。因此,通过对MDV生物发生途径的内容物选择性摄取,及其调节线粒体稳态的机制研究将为寻找肿瘤治疗新手段提供一个新角度。
2.2. 线粒体DNA介导的免疫原性细胞死亡增强宿主抗肿瘤免疫响应
生理条件下,caspase依赖的细胞凋亡是一个免疫沉默的过程[84]。caspase通过阻断濒死细胞产生和分泌相关炎性细胞因子,抑制DAMP介导的相关免疫信号[41, 85],避免邻近细胞不必要的免疫激活。如在细胞凋亡过程中,线粒体外膜通透化的形成能够诱导细胞自噬并通过内体溶酶体途径清除受损线粒体,从而减弱mtDNA介导的免疫信号响应[86]。然而,在某些病理条件下,caspase依赖的mtDNA释放或自噬抑制可能将这种免疫沉默的细胞死亡形式转化为免疫原性细胞死亡。最近的研究显示,自噬信号缺失的小鼠在放射治疗后,其乳腺癌细胞中由Ⅰ型干扰素介导的炎症反应显著增强,导致这一反应发生的原因并非细胞核DNA损伤,而是mtDNA泄露[87]。在caspase缺乏的情况下,线粒体外膜通透化通过激活mtDNA-STING信号发挥强大的抗肿瘤作用[88]。其他研究也报道通过药物抑制caspase活性联合细胞毒性治疗可增强宿主的抗肿瘤免疫反应[89-91]。这些发现表明在细胞凋亡过程中,通过调控caspase和细胞自噬活性推动由mtDNA-干扰素信号介导的免疫原性细胞死亡是极具潜力的抗肿瘤治疗方式。
3. 线粒体活性氧在肿瘤免疫逃逸中的关键调控作用
细胞氧化应激是指细胞由于遭受有害刺激或发生剧烈的代谢改变,细胞内高活性分子如活性氧自由基产生过多,氧化与抗氧化系统失衡,从而导致细胞损伤的过程[56]。线粒体是细胞内最主要的活性氧生成细胞器,通过有氧呼吸中的电子传递链和氧化磷酸化过程产生活性氧[92]。生理条件下,低水平的活性氧作为细胞信号转导的重要调控分子,参与调控基因表达、细胞增殖、分化和应激反应等多种细胞生命活动,但细胞内活性氧水平过高则会造成核质和线粒体DNA、蛋白质和脂质的氧化损伤,并最终导致细胞损伤。因此,保持细胞内活性氧生成和消耗的动态平衡对于维持细胞稳态和机体健康具有重要意义[93]。
相较于正常细胞,肿瘤细胞往往携带更多活性氧,包括促癌基因激活、肿瘤抑制功能丧失、线粒体活性改变和组织炎症在内的多个促肿瘤事件均会导致活性氧过量生成,而活性氧介导的氧化应激反应又会进一步推动炎症、纤维化和肿瘤等疾病的病理进程[93-95]。活性氧作为肿瘤发生的重要媒介,在肿瘤细胞增殖、迁移和侵袭,以及血管生成、炎症和免疫逃逸等不同方面均有重要调控作用,帮助肿瘤细胞适应严峻的生存环境,且其介导的炎症反应还可以改变肿瘤微环境中免疫细胞组成,影响微环境的免疫抑制性[93]。需要注意的是,活性氧在肿瘤的发生发展过程中是一把双刃剑,化疗和放疗可能通过刺激肿瘤细胞内活性氧大量生成,诱导肿瘤细胞死亡并增加抗肿瘤治疗的敏感性[15, 56, 96]。
3.1. 活性氧促进肿瘤免疫抑制微环境形成
目前研究普遍认为肿瘤微环境是一种慢性炎症环境,活性氧在炎症性微环境形成中起着核心调控作用[97],并最终推动癌症的发生发展。如肿瘤细胞可通过诱导炎症细胞因子分泌,稳定缺氧诱导因子-1α,激活AMPK信号,促进NADPH产生等途径来适应高活性氧环境,避免细胞死亡,促进肿瘤转移和血管生成[93, 98]。活性氧可以通过诱导MAPK信号活化,调控IL-1β、IL-6和肿瘤坏死因子α等NF-κB介导的炎症因子的分泌[99-101],调控肿瘤细胞炎症反应。活性氧还参与调控肿瘤微环境中决定癌症进展的相关免疫细胞活化状态,高水平活性氧通过抑制微环境中浸润性T细胞表面的T细胞受体-抗原肽-MHC复合物形成,抑制T淋巴细胞活化,致使肿瘤细胞逃避免疫系统攻击,从而促进癌症进展[102]。研究还发现肿瘤细胞和微环境中的免疫抑制细胞协同作用诱导mtROS产生,帮助肿瘤组织建立免疫耐受[103-107]。
线粒体质量控制系统中的AAA蛋白酶Lon与多种蛋白相互作用诱导活性氧生成,通过介导NF-κB信号轴活化增强下游相关信号的活性,推动肿瘤发生发展[108-113]。在肿瘤中高表达的缺氧诱导因子-1α通过诱导Lon表达促进mtROS的产生[108];Lon通过与吡咯啉-5-羧酸还原酶1相互作用上调mtROS生成,从而活化mtROS-NF-κB信号轴诱导肿瘤细胞释放IL-6、γ干扰素、TGF-β和血管内皮生长因子等细胞因子,调控肿瘤细胞炎症反应和增殖潜能,最终推动肿瘤组织建立免疫抑制的肿瘤微环境[110]。最近的一项研究表明,顺铂治疗过程中,mtROS通过促进Lon蛋白表达活化钠离子/钙离子通道蛋白NCLX调控细胞内钙离子水平,抑制肿瘤细胞凋亡,增加肿瘤细胞在活性氧胁迫下的顺铂抗性[114]。
3.2. 线粒体活性氧对肿瘤微环境中免疫细胞活化的影响
为避免高水平活性氧对免疫细胞的有害影响,机体内存在一套严密的调控机制以保持免疫细胞活性和活性氧水平之间的微妙平衡[115]。在NK细胞和T淋巴细胞中精确控制活性氧水平可以防止其对其他淋巴细胞造成损伤。有研究表明,在肿瘤微环境中,IL-15诱导NK细胞通过硫氧还蛋白系统获得抗氧化应激的能力,并有利于保护肿瘤微环境内其他淋巴细胞免受活性氧的侵害[116]。抗肿瘤免疫过程中,活化的T淋巴细胞和NK细胞通过增加活性氧生成募集中性粒细胞和巨噬细胞,最终达到杀伤肿瘤细胞的目的[117],而另一方面,升高的活性氧又可以通过缺氧诱导因子1α[107]等多种途径促进免疫抑制细胞如骨髓源性抑制细胞、TAM和调节性T细胞的转化[56, 93],支持肿瘤细胞的生长,例如肿瘤相关成纤维细胞通过增加周围单核细胞的氧化应激,促进其向骨髓源性抑制细胞转化,从而抑制CD8+ T细胞的增殖[118-119],促进肿瘤进展。因此,了解恶性肿瘤中活性氧与免疫细胞活化之间的复杂性是探索活性氧靶向癌症治疗潜力的关键。
作为信号中间体,活性氧生成和消耗的平衡在T细胞活化、促进T细胞抗原特异性增殖和细胞凋亡等方面均具有重要调控作用[120-121]。适度的活性氧水平对于T淋巴细胞的正常活化和分化至关重要,但高水平活性氧则通过上调凋亡相关因子Fas和下调抗凋亡蛋白Bcl-2表达促进T细胞凋亡[122]。此外,细胞外活性氧还能通过改变抗原提呈细胞中抗原肽的免疫原性影响T细胞的激活[123]。免疫原性细胞死亡过程中,细胞内包括ATP、内质网钙调蛋白和高迁移率族蛋白B1在内的多种DAMP泄露到细胞外空间,随后这些DAMP通过与树突状细胞上的受体相互作用激活树突状细胞,并最终引发T淋巴细胞的抗肿瘤免疫反应[124],靶向清除肿瘤细胞外活性氧可以增加T淋巴细胞的肿瘤浸润,恢复免疫原性细胞死亡诱导的T细胞抗肿瘤免疫[125]。此外,调节性T细胞中还原性谷胱甘肽缺乏会引发丝氨酸代谢异常,转录调控因子Foxp3表达下调,最终导致调节性T细胞的免疫抑制功能减弱[126]。这些研究表明,活性氧水平和持续生成能力在免疫原性细胞死亡发生及其是否引发有效的抗肿瘤免疫中具有关键作用[127-128]。
长期以来,活性氧都被认为是线粒体的有害代谢物[129],但近年来研究表明mtROS是防止过度免疫反应所必需的信号分子,特别是在调控巨噬细胞的免疫响应方面具有关键作用[130]。正常情况下,活性氧在不同条件下通过调控相关信号通路影响巨噬细胞极化[93, 131]。此外,活性氧在极化的巨噬细胞中同样也具有重要的调控作用,如M1型巨噬细胞通过Nox2信号产生活性氧激活NF-κB信号,增强细胞吞噬作用[132],但高水平的活性氧对巨噬细胞有害[133]。而在肿瘤发生过程中,巨噬细胞又可以成为肿瘤微环境中占比较多的维持肿瘤组织免疫稳态的免疫细胞群。肿瘤细胞通过分泌肿瘤源性因子重塑肿瘤外周和远端微环境,这些因子可以刺激微环境中定植和循环的单核细胞和巨噬细胞活化,并加速肿瘤进展[56]。尽管TAM可以展现出促炎M1型和抗炎M2型两种极化形式,但随着研究的进展,目前普遍共识均倾向于认为TAM表现出与M2型巨噬细胞相似的功能,通过分泌多种细胞因子、趋化因子和蛋白酶促进肿瘤生长、转移、血管生成和免疫抑制[134-136]。已有研究发现,线粒体Lon在M2型巨噬细胞中表达上调[110],暗示在肿瘤发生过程中,巨噬细胞可能存在多个信号通过调控Lon表达来诱导mtROS产生,在TAM分化过程中发挥重要作用。
由单核细胞分化而来的树突状细胞具有抗原提呈和活化T细胞的能力,在启动和控制免疫反应中同样具有重要的作用[137]。树突状细胞的成熟过程受到不同类型刺激的调控,当未成熟的树突状细胞受到促炎性细胞因子IL-6或者TLR配体脂多糖的刺激时,其会转变为可表达CD80、CD86和IL-6的成熟树突状细胞,并启动效应T细胞应答信号[138]。而当树突状细胞受到调节因子IL-10、TGF-β、维生素D3和皮质类固醇刺激时,则会转变成表达IL-10、吲哚胺2,3-二氧酶和PD-L1的耐受性树突状细胞,又称为调节性树突状细胞,最终导致效应T细胞的分化受损或调节性T细胞活化[138]。肿瘤微环境通过诱导调节性树突状细胞和骨髓源性抑制细胞分化,促进免疫抑制性微环境的形成[139-141]。此外肿瘤细胞和TAM分泌的TGF-β和IL-10还可以抑制树突状细胞介导的抗原提呈和适应性免疫反应[142-144]。越来越多的研究表明,肿瘤微环境中活性氧的浓度在调控免疫细胞的细胞毒性或免疫抑制作用中具有重要作用[145-148]。长期暴露在活性氧微环境中会导致机体处于慢性炎症状态[146],而不同的炎症环境决定了树突状细胞和T淋巴细胞之间的抗原交叉提呈能力[149],因此不同的活性氧应激水平可能导致不同功能类型的树突状细胞活化[149]。此前的研究表明,T淋巴细胞和树突状细胞在抗原提呈过程中均表现出细胞内活性氧的升高[150]。然而,也有研究显示在老化的树突状细胞中,活性氧的浓度升高会阻碍树突状细胞的抗原交叉提呈和促炎能力,从而破坏树突状细胞的肿瘤杀伤作用[151]。
4. 结语
线粒体通过生成大量ATP为细胞生命活动提供充足能量,同时在生物大分子合成代谢、细胞信号转导、免疫细胞活化、细胞命运决定等多个方面具有重要的调控功能。本文通过探究线粒体代谢和生物合成、线粒体重要信号调控组分mtDNA和mtROS与肿瘤微环境以及免疫系统之间复杂的相互作用(图1),旨在从线粒体与肿瘤免疫的角度为开发新的抗肿瘤免疫疗法提供思路。
图1. 线粒体调控肿瘤免疫的经典途径.
线粒体代谢重编程和线粒体动力学通过调控包括T淋巴细胞和NK细胞在内的多种免疫细胞的增殖、活化和分化等过程,促进免疫细胞的肿瘤杀伤和免疫监视功能. 肿瘤细胞通过上调有氧糖酵解活性、线粒体分裂、线粒体生物合成以及氧化磷酸化途径促进大量线粒体活性氧生成,高活性氧水平通过抑制肿瘤细胞凋亡,促进肿瘤细胞增殖、上皮间充质转化、侵袭、血管生成推动肿瘤发生发展,同时通过抑制T细胞活化,促进T细胞凋亡、抑制NK细胞肿瘤杀伤和免疫监视功能、促进免疫抑制细胞生成等途径促进免疫抑制微环境形成. 泄露到细胞质和细胞外空间的线粒体DNA通过活化cGAS-STING、TLR9和NLRP3等天然免疫信号,促进免疫细胞活化,推动免疫原性细胞死亡发生,增强宿主抗肿瘤免疫活性;mtDNA还可以通过细胞外囊泡进入细胞外空间,促进肿瘤微环境中TAM浸润和免疫抑制肿瘤微环境形成. ROS:活性氧;mtROS:线粒体活性氧;mtDNA:线粒体DNA;FAO:脂肪酸氧化;OXPHOS:氧化磷酸化;MHC:主要组织相容性复合体;TCR:T细胞受体;CTLA:细胞毒性T淋巴细胞相关抗原;PD-L1:程序性死亡受体配体1;PD-1:程序性死亡受体-1;ATP:腺苷三磷酸;FAS:脂肪酸合成;MAPK:促分裂原活化的蛋白激酶;NF-κB:核因子κB;cGAS:环鸟苷酸-腺苷酸合成酶;STING:干扰素基因刺激因子;NLRP:NOD样受体热蛋白结构域相关蛋白;TLR:Toll样受体;Mφ:巨噬细胞;MDSC:骨髓源性抑制细胞;DC:树突状细胞;regDC:调节性树突状细胞;Treg:调节性T细胞;TAM:肿瘤相关巨噬细胞.
线粒体能量代谢和生物合成在免疫细胞的活化过程中发挥关键调控作用,而肿瘤细胞竞争性消耗葡萄糖和肿瘤缺氧微环境则会通过介导线粒体损伤和活性氧大量生成,导致免疫细胞长期处于代谢不足和高氧化应激环境,破坏免疫细胞的活化及其肿瘤免疫监视功能,从而获得肿瘤免疫逃逸功能。因此,将代谢疗法和免疫检查点结合,通过改善免疫细胞能量代谢,减少免疫细胞线粒体功能障碍和mtROS的产生,从而增加效应T细胞存活和记忆T细胞产生,减少肿瘤微环境中可用总能量,是目前控制肿瘤生长的一种新策略[15]。此外,通过嵌合抗原受体T细胞的体外mtDNA编辑来促进线粒体生物合成和氧化磷酸化,从而弥补机体抗肿瘤免疫过程中肿瘤浸润的效应T细胞的进行性损失,增加免疫细胞的抗肿瘤免疫能力;通过放疗方式促进线粒体功能障碍和活性氧爆发,从而引起肿瘤细胞的凋亡级联反应,也将是重要的抗肿瘤免疫研究和临床实践方向[15]。
mtDNA损伤、突变和细胞质泄露可导致多种疾病,是癌症发生发展的关键因素。细胞发生自身损伤时,细胞质mtDNA是诱导天然免疫信号活化的重要信号分子。在生理条件下,mtDNA以类核结构的形式存在于线粒体基质中,当细胞发生损伤时,线粒体形成线粒体外膜通透化或线粒体膜通透性转换孔,介导mtDNA进入细胞质并活化包括NLRP3、TLR9和cGAS-STING在内的多个天然免疫信号,引发细胞炎症反应,并导致细胞死亡。值得注意的是,在正常情况下,细胞凋亡是免疫沉默的,而在某些条件下,如通过药物抑制caspase活性时,mtDNA介导的炎症反应显著增强,推动免疫原性细胞死亡发生,显著增强了宿主的抗肿瘤免疫反应。靶向mtDNA已成为一种很有前途的癌症治疗策略,mtDNA损伤后的应答机制对于mtDNA靶向药物的开发、疗效预测和潜在耐药分析至关重要。
尽管线粒体在癌症和免疫系统之间复杂的相互作用中起核心调控作用,通过靶向线粒体调节免疫系统来调整宿主的抗肿瘤免疫能力的治疗策略是目前基础和临床研究的重要方向,但这些研究目前仍处于早期阶段。如何在不同细胞亚群活化过程中调控线粒体活性和生物学功能,如何将能量平衡向免疫细胞转移,在抑制肿瘤细胞代谢的同时促进免疫细胞线粒体功能障碍和代谢不足的修复,这些都是目前值得深入探索的研究方向,也将成为改善临床患者抗肿瘤疗效的重要环节。
Acknowledgments
研究得到国家自然科学基金(82001668,32370759)支持
Acknowledgments
This work was supported by the National Natural Science Foundation of China (82001668, 32370759)
[缩略语]
线粒体DNA(mitochondrial DNA,mtDNA);腺苷三磷酸(adenosine triphosphate,ATP);线粒体活性氧(mitochondria reactive oxygen species,mtROS);损伤相关分子模式(damage associated molecular pattern,DAMP);线粒体衍生囊泡(mitochondria-derived vesicle,MDV);环鸟苷酸-腺苷酸合成酶(cyclic guanosine monophosphate-adenosine monophosphate synthase,cGAS);Toll样受体(toll-like receptor,TLR);NOD样受体热蛋白结构域相关蛋白(NOD-like receptor thermal protein domain associated protein,NLRP);环鸟苷酸-腺苷酸(cyclic guanosine monophosphate-adenosine monophosphate,cGAMP);干扰素基因刺激因子(stimulator of interferon genes,STING);核因子κB(nuclear factor-κB,NF-κB);促分裂原活化的蛋白激酶(mitogen-activated protein kinase,MAPK);胱天蛋白酶(cysteine-containing aspartate-specific protease,caspase);肿瘤相关巨噬细胞(tumor-associated macrophage,TAM);程序性死亡受体配体(programmed death-ligand,PD-L);AMP活化蛋白激酶(AMP-activated protein kinase,AMPK);还原型烟酰胺腺嘌呤二核苷酸磷酸(nico-tinamide adenine dinucleotide phosphate,NADPH);主要组织相容性复合体(major histocompatibility complex,MHC);转化生长因子(transforming growth factor,TGF)
利益冲突声明
所有作者均声明不存在利益冲突
Conflict of Interests
The authors declare that there is no conflict of interests
参考文献(References)
- 1.FAN L, WU D, GOREMYKIN V, et al. Phylogenetic analyses with systematic taxon sampling show that mitochondria branch within alphaproteobacteria[J]. Nat Ecol Evol, 2020, 4(9): 1213-1219. 10.1038/s41559-020-1239-x [DOI] [PubMed] [Google Scholar]
- 2.CHANDEL N S. Mitochondria[J]. Cold Spring Harb Perspect Biol, 2021, 13(3): a040543. 10.1101/cshperspect.a040543 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.BANOTH B, CASSEL S L. Mitochondria in innate immune signaling[J]. Transl Res, 2018, 202: 52-68. 10.1016/j.trsl.2018.07.014 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.BONAWITZ N D, CLAYTON D A, SHADEL G S. Initiation and beyond: multiple functions of the human mitochondrial transcription machinery[J]. Mol Cell, 2006, 24(6): 813-825. 10.1016/j.molcel.2006.11.024 [DOI] [PubMed] [Google Scholar]
- 5.WELLEN K E, THOMPSON C B. A two-way street: reciprocal regulation of metabolism and signalling[J]. Nat Rev Mol Cell Biol, 2012, 13(4): 270-276. 10.1038/nrm3305 [DOI] [PubMed] [Google Scholar]
- 6.HARRINGTON J S, RYTER S W, PLATAKI M, et al. Mitochondria in health, disease, and aging[J]. Physiol Rev, 2023, 103(4): 2349-2422. 10.1152/physrev.00058.2021 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.RODA G, CHIEN NG S, KOTZE P G, et al. Crohn’s disease[J]. Nat Rev Dis Primers, 2020, 6(1): 22. 10.1038/s41572-020-0156-2 [DOI] [PubMed] [Google Scholar]
- 8.BASSO P J, ANDRADE-OLIVEIRA V, CÂMARA N O S. Targeting immune cell metabolism in kidney diseases[J]. Nat Rev Nephrol, 2021, 17(7): 465-480. 10.1038/s41581-021-00413-7 [DOI] [PubMed] [Google Scholar]
- 9.BENNETT C F, LATORRE-MURO P, PUIGSERVER P. Mechanisms of mitochondrial respiratory adaptation[J]. Nat Rev Mol Cell Biol, 2022, 23(12): 817-835. 10.1038/s41580-022-00506-6 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.VYAS S, ZAGANJOR E, HAIGIS M C. Mitochondria and cancer[J]. Cell, 2016, 166(3): 555-566. 10.1016/j.cell.2016.07.002 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.BEREITER-HAHN J. Behavior of mitochondria in the living cell[J]. Int Rev Cytol, 1990, 122: 1-63. 10.1016/s0074-7696(08)61205-x [DOI] [PubMed] [Google Scholar]
- 12.CHAN D C. Mitochondrial dynamics and its involve-ment in disease[J]. Annu Rev Pathol, 2020, 15: 235-259. 10.1146/annurev-pathmechdis-012419-032711 [DOI] [PubMed] [Google Scholar]
- 13.MILLS E L, KELLY B, O’NEILL L. Mitochondria are the powerhouses of immunity[J]. Nat Immunol, 2017, 18(5): 488-498. 10.1038/ni.3704 [DOI] [PubMed] [Google Scholar]
- 14.BAI R, CUI J. Mitochondrial immune regulation and anti-tumor immunotherapy strategies targeting mitochondria[J]. Cancer Lett, 2023, 564: 216223. 10.1016/j.canlet.2023.216223 [DOI] [PubMed] [Google Scholar]
- 15.KLEIN K, HE K, YOUNES A I, et al. Role of mitochondria in cancer immune evasion and potential therapeutic approaches[J]. Front Immunol, 2020, 11: 573326. 10.3389/fimmu.2020.573326 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.RON-HAREL N, SANTOS D, GHERGUROVICH J M, et al. Mitochondrial biogenesis and proteome remodeling promote one-carbon metabolism for T cell activation[J]. Cell Metab, 2016, 24(1): 104-117. 10.1016/j.cmet.2016.06.007 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.MACIVER N J, MICHALEK R D, RATHMELL J C. Metabolic regulation of T lymphocytes[J]. Annu Rev Immunol, 2013, 31: 259-283. 10.1146/annurev-immunol-032712-095956 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.SCHWINDLING C, QUINTANA A, KRAUSE E, et al. Mitochondria positioning controls local calcium influx in T cells[J]. J Immunol, 2010, 184(1): 184-190. 10.4049/jimmunol.0902872 [DOI] [PubMed] [Google Scholar]
- 19.CEREGHETTI G M, STANGHERLIN A, MARTINS DE BRITO O, et al. Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria[J]. Proc Natl Acad Sci U S A, 2008, 105(41): 15803-15808. 10.1073/pnas.0808249105 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.SMITH-GARVIN J E, KORETZKY G A, JORDAN M S. T cell activation[J]. Annu Rev Immunol, 2009, 27: 591-619. 10.1146/annurev.immunol.021908.132706 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.BUCK M D, O’SULLIVAN D, KLEIN GELTINK R I, et al. Mitochondrial dynamics controls T cell fate through metabolic programming[J]. Cell, 2016, 166(1): 63-76. 10.1016/j.cell.2016.05.035 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.ZHANG L, ZHANG W, LI Z, et al. Mitochondria dysfunction in CD8+ T cells as an important contribu-ting factor for cancer development and a potential target for cancer treatment: a review[J]. J Exp Clin Cancer Res, 2022, 41(1): 227. 10.1186/s13046-022-02439-6 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.PACELLA I, PICONESE S. Immunometabolic check-points of Treg dynamics: adaptation to microenviron-mental opportunities and challenges[J]. Front Immunol, 2019, 10: 1889. 10.3389/fimmu.2019.01889 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.PEARCE E L, POFFENBERGER M C, CHANG C H, et al. Fueling immunity: insights into metabolism and lymphocyte function[J]. Science, 2013, 342(6155): 1242454. 10.1126/science.1242454 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.GOMES L C, DI BENEDETTO G, SCORRANO L. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability[J]. Nat Cell Biol, 2011, 13(5): 589-598. 10.1038/ncb2220 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.WHERRY E J, KURACHI M. Molecular and cellular insights into T cell exhaustion[J]. Nat Rev Immunol, 2015, 15(8): 486-499. 10.1038/nri3862 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.SISKA P J, RATHMELL J C. T cell metabolic fitness in antitumor immunity[J]. Trends Immunol, 2015, 36(4): 257-264. 10.1016/j.it.2015.02.007 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.SCHARPING N E, RIVADENEIRA D B, MENK A V, et al. Mitochondrial stress induced by continuous stimulation under hypoxia rapidly drives T cell exhaustion[J]. Nat Immunol, 2021, 22(2): 205-215. 10.1038/s41590-020-00834-9 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.HO P C, BIHUNIAK J D, MACINTYRE A N, et al. Phosphoenolpyruvate is a Metabolic checkpoint of anti-tumor T cell responses[J]. Cell, 2015, 162(6): 1217-1228. 10.1016/j.cell.2015.08.012 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.CHANG C H, QIU J, O'SULLIVAN D, et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression[J]. Cell, 2015, 162(6): 1229-1241. 10.1016/j.cell.2015.08.016 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.CASCONE T, MCKENZIE J A, MBOFUNG R M, et al. Increased tumor glycolysis characterizes immune resistance to adoptive T cell therapy[J]. Cell Metab, 2018, 27(5): 977-987.e4. 10.1016/j.cmet.2018.02.024 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.SCHARPING N E, MENK A V, MORECI R S, et al. The tumor microenvironment represses T cell mito-chondrial biogenesis to drive intratumoral T cell metabolic insufficiency and dysfunction[J]. Immunity, 2016, 45(3): 701-703. 10.1016/j.immuni.2016.08.009 [DOI] [PubMed] [Google Scholar]
- 33.ABARCA-ROJANO E, MUÑIZ-HERNÁNDEZ S, MORENO-ALTAMIRANO M M, et al. Re-organization of mitochondria at the NK cell immune synapse[J]. Immunol Lett, 2009, 122(1): 18-25. 10.1016/j.imlet.2008.10.008 [DOI] [PubMed] [Google Scholar]
- 34.O’SULLIVAN T E, JOHNSON L R, KANG H H, et al. BNIP3- and BNIP3L-mediated mitophagy promotes the generation of natural killer cell memory[J]. Immunity, 2015, 43(2): 331-342. 10.1016/j.immuni.2015.07.012 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35.ZHENG X, QIAN Y, FU B, et al. Mitochondrial fragmentation limits NK cell-based tumor immuno-surveillance[J]. Nat Immunol, 2019, 20(12): 1656-1667. 10.1038/s41590-019-0511-1 [DOI] [PubMed] [Google Scholar]
- 36.MILLS E L, KELLY B, LOGAN A, et al. Succinate dehydrogenase supports metabolic repurposing of mito-chondria to drive inflammatory macrophages[J]. Cell, 2016, 167(2): 457-470.e13. 10.1016/j.cell.2016.08.064 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37.RAMOND E, JAMET A, COUREUIL M, et al. Pivotal role of mitochondria in macrophage response to bacterial pathogens[J]. Front Immunol, 2019, 10: 2461. 10.3389/fimmu.2019.02461 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38.NEAGU M, CONSTANTIN C, POPESCU I D, et al. Inflammation and metabolism in cancer cell-mitochondria key player[J]. Front Oncol, 2019, 9: 348. 10.3389/fonc.2019.00348 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.JU Y S, ALEXANDROV L B, GERSTUNG M, et al. Origins and functional consequences of somatic mitochondrial DNA mutations in human cancer[J/OL]. Elife, 2014, 3: e02935. 10.7554/elife.02935.027 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.LIN Y, YANG B, HUANG Y, et al. Mitochondrial DNA-targeted therapy: a novel approach to combat cancer[J]. Cell Insight, 2023, 2(4): 100113. 10.1016/j.cellin.2023.100113 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41.CHEN S, LIAO Z, XU P. Mitochondrial control of innate immune responses[J]. Front Immunol, 2023, 14: 1166214. 10.3389/fimmu.2023.1166214 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42.RILEY J S, TAIT S W. Mitochondrial DNA in inflammation and immunity[J/OL]. EMBO Rep, 2020, 21(4): e49799. 10.15252/embr.201949799 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43.AMORIM J A, COPPOTELLI G, ROLO A P, et al. Mitochondrial and metabolic dysfunction in ageing and age-related diseases[J]. Nat Rev Endocrinol, 2022, 18(4): 243-258. 10.1038/s41574-021-00626-7 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44.NI H M, WILLIAMS J A, DING W X. Mitochondrial dynamics and mitochondrial quality control[J]. Redox Biol, 2015, 4: 6-13. 10.1016/j.redox.2014.11.006 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45.SUGIURA A, MCLELLAND G L, FON E A, et al. A new pathway for mitochondrial quality control: mitochondrial-derived vesicles[J]. EMBO J, 2014, 33(19): 2142-2156. 10.15252/embj.201488104 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46.ZHANG Y, TAN J, MIAO Y, et al. The effect of extracellular vesicles on the regulation of mitochondria under hypoxia[J]. Cell Death Dis, 2021, 12(4): 358. 10.1038/s41419-021-03640-9 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 47.WHITE M J, MCARTHUR K, METCALF D, et al. Apoptotic caspases suppress mtDNA-induced STING-mediated type Ⅰ IFN production[J]. Cell, 2014, 159(7): 1549-1562. 10.1016/j.cell.2014.11.036 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48.RONGVAUX A, JACKSON R, HARMAN C C, et al. Apoptotic caspases prevent the induction of type Ⅰ interferons by mitochondrial DNA[J]. Cell, 2014, 159(7): 1563-1577. 10.1016/j.cell.2014.11.037 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49.KIM J, GUPTA R, BLANCO L P, et al. VDAC oligomers form mitochondrial pores to release mtDNA fragments and promote lupus-like disease[J]. Science, 2019, 366(6472): 1531-1536. 10.1126/science.aav4011 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 50.GARCÍA N, CHÁVEZ E. Mitochondrial DNA fragments released through the permeability transition pore correspond to specific gene size[J]. Life Sci, 2007, 81(14): 1160-1166. 10.1016/j.lfs.2007.08.019 [DOI] [PubMed] [Google Scholar]
- 51.PATRUSHEV M, KASYMOV V, PATRUSHEVA V, et al. Mitochondrial permeability transition triggers the release of mtDNA fragments[J]. Cell Mol Life Sci, 2004, 61(24): 3100-3103. 10.1007/s00018-004-4424-1 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52.DE GAETANO A, SOLODKA K, ZANINI G, et al. Molecular mechanisms of mtDNA-mediated inflammation[J]. Cells, 2021, 10(11): 2898. 10.3390/cells10112898 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53.LIU J, PENG X, YANG S, et al. Extracellular vesicle PD-L1 in reshaping tumor immune microenvironment: biological function and potential therapy strategies[J]. Cell Commun Signal, 2022, 20(1): 14. 10.1186/s12964-021-00816-w [DOI] [PMC free article] [PubMed] [Google Scholar]
- 54.ZENG X, LI X, ZHANG Y, et al. IL6 induces mtDNA leakage to affect the immune escape of endometrial carcinoma via cGAS-STING[J]. J Immunol Res, 2022, 2022: 3815853. 10.1155/2022/3815853 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 55.CHENG A N, CHENG L C, KUO C L, et al. Mitochondrial lon-induced mtDNA leakage contributes to PD-L1-mediated immunoescape via STING-IFN signaling and extracellular vesicles[J/OL]. J Immunother Cancer, 2020, 8(2): e001372. 10.1136/jitc-2020-001372 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 56.KUO C L, PONNERI BABUHARISANKAR A, LIN Y C, et al. Mitochondrial oxidative stress in the tumor microenvironment and cancer immunoescape: foe or friend?[J]. J Biomed Sci, 2022, 29(1): 74. 10.1186/s12929-022-00859-2 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 57.CHEN G, HUANG A C, ZHANG W, et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response[J]. Nature, 2018, 560(7718): 382-386. 10.1038/s41586-018-0392-8 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 58.RIBAS A, WOLCHOK J D. Cancer immunotherapy using checkpoint blockade[J]. Science, 2018, 359(6382): 1350-1355. 10.1126/science.aar4060 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 59.CHIN E N, SULPIZIO A, LAIRSON L L. Targeting STING to promote antitumor immunity[J]. Trends Cell Biol, 2023, 33(3): 189-203. 10.1016/j.tcb.2022.06.010 [DOI] [PubMed] [Google Scholar]
- 60.CORRALES L, GLICKMAN L H, MCWHIRTER S M, et al. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity[J]. Cell Rep, 2015, 11(7): 1018-1030. 10.1016/j.celrep.2015.04.031 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 61.NICOLAI C J, WOLF N, CHANG I C, et al. NK cells mediate clearance of CD8(+) T cell-resistant tumors in response to STING agonists[J]. Sci Immunol, 2020, 5(45): eaaz2738. 10.1126/sciimmunol.aaz2738 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 62.JASSAR A S, SUZUKI E, KAPOOR V, et al. Activation of tumor-associated macrophages by the vascular disrupting agent 5, 6-dimethylxanthenone-4-acetic acid induces an effective CD8+ T-cell-mediated antitumor immune response in murine models of lung cancer and mesothelioma[J]. Cancer Res, 2005, 65(24): 11752-11761. 10.1158/0008-5472.can-05-1658 [DOI] [PubMed] [Google Scholar]
- 63.WANG H, HU S, CHEN X, et al. cGAS is essential for the antitumor effect of immune checkpoint blockade[J]. Proc Natl Acad Sci U S A, 2017, 114(7): 1637-1642. 10.1073/pnas.1621363114 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 64.DENG L, LIANG H, XU M, et al. STING-dependent cytosolic DNA sensing promotes radiation-induced Type Ⅰ interferon-dependent antitumor immunity in immunogenic tumors[J]. Immunity, 2014, 41(5): 843-852. 10.1016/j.immuni.2014.10.019 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 65.FU J, KANNE D B, LEONG M, et al. STING agonist formulated cancer vaccines can cure established tumors resistant to PD-1 blockade[J]. Sci Transl Med, 2015, 7(283): 283ra52. 10.1126/scitranslmed.aaa4306 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 66.SIVICK K E, DESBIEN A L, GLICKMAN L H, et al. Magnitude of therapeutic STING activation determines CD8+ T cell-mediated anti-tumor immunity[J]. Cell Rep, 2019, 29(3): 785-789. 10.1016/j.celrep.2019.09.089 [DOI] [PubMed] [Google Scholar]
- 67.WU J, DOBBS N, YANG K, et al. Interferon-inde-pendent activities of mammalian STING mediate antiviral response and tumor immune evasion[J]. Immunity, 2020, 53(1): 115-126.e5. 10.1016/j.immuni.2020.06.009 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 68.BAKHOUM S F, NGO B, LAUGHNEY A M, et al. Chromosomal instability drives metastasis through a cytosolic DNA response[J]. Nature, 2018, 553(7689): 467-472. 10.1038/nature25432 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 69.CHEN Q, BOIRE A, JIN X, et al. Carcinoma-astrocyte gap junctions promote brain metastasis by cGAMP transfer[J]. Nature, 533(7604): 493-498. 10.1038/nature18268 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 70.FITZGERALD K A, KAGAN J C. Toll-like receptors and the control of immunity[J]. Cell, 2020, 180(6): 1044-1066. 10.1016/j.cell.2020.02.041 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 71.WEST A P, SHADEL G S. Mitochondrial DNA in innate immune responses and inflammatory pathology[J]. Nat Rev Immunol, 2017, 17(6): 363-375. 10.1038/nri.2017.21 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 72.AMARI L, GERMAIN M. Mitochondrial extracellular vesicles—origins and roles[J]. Front Mol Neurosci, 2021, 14: 767219. 10.3389/fnmol.2021.767219 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 73.ZHONG Z, UMEMURA A, SANCHEZ-LOPEZ E, et al. NF-κB restricts inflammasome activation via elimination of damaged mitochondria[J]. Cell, 2016, 164(5): 896-910. 10.1016/j.cell.2015.12.057 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 74.NETEA M G, SIMON A, VAN DE VEERDONK F, et al. IL-1beta processing in host defense: beyond the inflammasomes[J/OL]. PLoS Pathog, 2010, 6(2): e1000661. 10.1371/journal.ppat.1000661 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 75.ZHONG Z, LIANG S, SANCHEZ-LOPEZ E, et al. New mitochondrial DNA synthesis enables NLRP3 inflammasome activation[J]. Nature, 2018, 560(7717): 198-203. 10.1038/s41586-018-0372-z [DOI] [PMC free article] [PubMed] [Google Scholar]
- 76.TUMURKHUU G, SHIMADA K, DAGVADORJ J, et al. Ogg1-dependent DNA repair regulates NLRP3 inflammasome and prevents atherosclerosis[J/OL]. Circ Res, 2016, 119(6): e76-90. 10.1161/circresaha.116.308362 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 77.SHIMADA K, CROTHER T R, KARLIN J, et al. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis[J]. Immunity, 2012, 36(3): 401-414. 10.1016/j.immuni.2012.01.009 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 78.NAKAHIRA K, HASPEL J A, RATHINAM V A, et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome[J]. Nat Immunol, 2011, 12(3): 222-230. 10.1038/ni.1980 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 79.YU J, NAGASU H, MURAKAMI T, et al. Inflammasome activation leads to caspase-1-dependent mitochondrial damage and block of mitophagy[J]. Proc Natl Acad Sci U S A, 2014, 111(43): 15514-15519. 10.1073/pnas.1414859111 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 80.BRONNER D N, ABUAITA B H, CHEN X, et al. Endoplasmic reticulum stress activates the inflammasome via NLRP3- and caspase-2-driven mitochondrial damage[J]. Immunity, 2015, 43(3): 451-462. 10.1016/j.immuni.2015.08.008 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 81.BAO D, ZHAO J, ZHOU X, et al. Mitochondrial fission-induced mtDNA stress promotes tumor-associated macro-phage infiltration and HCC progression[J]. Oncogene, 2019, 38(25): 5007-5020. 10.1038/s41388-019-0772-z [DOI] [PMC free article] [PubMed] [Google Scholar]
- 82.LI Y, CHEN H, YANG Q, et al. Increased Drp1 promotes autophagy and ESCC progression by mtDNA stress mediated cGAS-STING pathway[J]. J Exp Clin Cancer Res, 2022, 41(1): 76. 10.1186/s13046-022-02262-z [DOI] [PMC free article] [PubMed] [Google Scholar]
- 83.THEODORAKI M N, YERNENI S S, HOFFMANN T K, et al. Clinical significance of PD-L1(+) exosomes in plasma of head and neck cancer patients[J]. Clin Cancer Res, 2018, 24(4): 896-905. 10.1158/1078-0432.ccr-17-2664 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 84.MARTIN S J, HENRY C M, CULLEN S P. A perspective on mammalian caspases as positive and negative regulators of inflammation[J]. Mol Cell, 2012, 46(4): 387-397. 10.1016/j.molcel.2012.04.026 [DOI] [PubMed] [Google Scholar]
- 85.MCARTHUR K, KILE B T. Apoptotic mitochondria prime anti-tumour immunity[J]. Cell Death Discov, 2020, 6(1): 98. 10.1038/s41420-020-00335-6 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 86.LINDQVIST L M, FRANK D, MCARTHUR K, et al. Autophagy induced during apoptosis degrades mito-chondria and inhibits type Ⅰ interferon secretion[J]. Cell Death Differ, 2018, 25(4): 784-796. 10.1038/s41418-017-0017-z [DOI] [PMC free article] [PubMed] [Google Scholar]
- 87.YAMAZAKI T, KIRCHMAIR A, SATO A, et al. Mitochondrial DNA drives abscopal responses to radiation that are inhibited by autophagy[J]. Nat Immunol, 2020, 21(10): 1160-1171. 10.1038/s41590-020-0751-0 [DOI] [PubMed] [Google Scholar]
- 88.GIAMPAZOLIAS E, ZUNINO B, DHAYADE S, et al. Mitochondrial permeabilization engages NF-κB-depen-dent anti-tumour activity under caspase deficiency[J]. Nat Cell Biol, 2017, 19(9): 1116-1129. 10.1038/ncb3596 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 89.KIM K W, MORETTI L, LU B. M867, a novel selective inhibitor of caspase-3 enhances cell death and extends tumor growth delay in irradiated lung cancer models[J/OL]. PLoS One, 2008, 3(5): e2275. 10.1371/journal.pone.0002275 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 90.MORETTI L, KIM K W, JUNG D K, et al. Radiosensitization of solid tumors by Z-VAD, a pan-caspase inhibitor[J]. Mol Cancer Ther, 2009, 8(5): 1270-1279. 10.1158/1535-7163.mct-08-0893 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 91.HAN C, LIU Z, ZHANG Y, et al. Tumor cells suppress radiation-induced immunity by hijacking caspase 9 signaling[J]. Nat Immunol, 2020, 21(5): 546-554. 10.1038/s41590-020-0641-5 [DOI] [PubMed] [Google Scholar]
- 92.SILWAL P, KIM J K, KIM Y J, et al. Mitochondrial reactive oxygen species: double-edged weapon in host defense and pathological inflammation during infection[J]. Front Immunol, 2020, 11: 1649. 10.3389/fimmu.2020.01649 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 93.CHEUNG E C, VOUSDEN K H. The role of ROS in tumour development and progression[J]. Nat Rev Cancer, 2022, 22(5): 280-297. 10.1038/s41568-021-00435-0 [DOI] [PubMed] [Google Scholar]
- 94.CHURCH S L, GRANT J W, RIDNOUR L A, et al. Increased manganese superoxide dismutase expression suppresses the malignant phenotype of human melanoma cells[J]. Proc Natl Acad Sci U S A, 1993, 90(7): 3113-3117. 10.1073/pnas.90.7.3113 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 95.HYBERTSON B M, GAO B, BOSE S K, et al. Oxidative stress in health and disease: the therapeutic potential of Nrf2 activation[J]. Mol Aspects Med, 2011, 32(4-6): 234-246. 10.1016/j.mam.2011.10.006 [DOI] [PubMed] [Google Scholar]
- 96.LI N, YU L, WANG J, et al. A mitochondria-targeted nanoradiosensitizer activating reactive oxygen species burst for enhanced radiation therapy[J]. Chem Sci, 2018, 9(12): 3159-3164. 10.1039/c7sc04458e [DOI] [PMC free article] [PubMed] [Google Scholar]
- 97.KENNEL K B, GRETEN F R. Immune cell—produced ROS and their impact on tumor growth and metastasis[J]. Redox Biol, 2021, 42: 101891. 10.1016/j.redox.2021.101891 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 98.HAYES J D, DINKOVA-KOSTOVA A T, TEW K D. Oxidative stress in cancer[J]. Cancer Cell, 2020, 38(2): 167-197. 10.1016/j.ccell.2020.06.001 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 99.HOESEL B, SCHMID J A. The complexity of NF-κB signaling in inflammation and cancer[J]. Mol Cancer, 2013, 12: 86. 10.1186/1476-4598-12-86 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 100.FANG J Y, RICHARDSON B C. The MAPK signalling pathways and colorectal cancer[J]. Lancet Oncol, 2005, 6(5): 322-327. 10.1016/s1470-2045(05)70168-6 [DOI] [PubMed] [Google Scholar]
- 101.SHUTO T, XU H, WANG B, et al. Activation of NF-kappa B by nontypeable Hemophilus influenzae is mediated by toll-like receptor 2-TAK1-dependent NIK-IKK alpha /beta-I kappa B alpha and MKK3/6-p38 MAP kinase signaling pathways in epithelial cells[J]. Proc Natl Acad Sci U S A, 2001, 98(15): 8774-8779. 10.1073/pnas.151236098 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 102.WEINBERG S E, SENA L A, CHANDEL N S. Mitochondria in the regulation of innate and adaptive immunity[J]. Immunity, 2015, 42(3): 406-417. 10.1016/j.immuni.2015.02.002 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 103.GABRILOVICH D I, NAGARAJ S. Myeloid-derived suppressor cells as regulators of the immune system[J]. Nat Rev Immunol, 2009, 9(3): 162-174. 10.1038/nri2506 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 104.MAJ T, WANG W, CRESPO J, et al. Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD-L1-blockade resistance in tumor[J]. Nat Immunol, 2017, 18(12): 1332-1341. 10.1038/ni.3868 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 105.ZOU W. Regulatory T cells, tumour immunity and immunotherapy[J]. Nat Rev Immunol, 2006, 6(4): 295-307. 10.1038/nri1806 [DOI] [PubMed] [Google Scholar]
- 106.GRIESS B, MIR S, DATTA K, et al. Scavenging reactive oxygen species selectively inhibits M2 macro-phage polarization and their pro-tumorigenic function in part, via Stat3 suppression[J]. Free Radic Biol Med, 2020, 147: 48-60. 10.1016/j.freeradbiomed.2019.12.018 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 107.BAILLY C. Regulation of PD-L1 expression on cancer cells with ROS-modulating drugs[J]. Life Sci, 2020, 246: 117403. 10.1016/j.lfs.2020.117403 [DOI] [PubMed] [Google Scholar]
- 108.CHENG C W, KUO C Y, FAN C C, et al. Over-expression of Lon contributes to survival and aggressive phenotype of cancer cells through mitochondrial complexⅠ-mediated generation of reactive oxygen species[J/OL]. Cell Death Dis, 2013, 4(6): e681. 10.1038/cddis.2013.204 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 109.PRYDE K R, TAANMAN J W, SCHAPIRA A H. A LON-ClpP proteolytic axis degrades complex Ⅰ to extinguish ROS production in depolarized mitochondria[J]. Cell Rep, 2016, 17(10): 2522-2531. 10.1016/j.celrep.2016.11.027 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 110.KUO C L, CHOU H Y, CHIU Y C, et al. Mito-chondrial oxidative stress by Lon-PYCR1 maintains an immunosuppressive tumor microenvironment that promotes cancer progression and metastasis[J]. Cancer Lett, 2020, 474: 138-150. 10.1016/j.canlet.2020.01.019 [DOI] [PubMed] [Google Scholar]
- 111.KAO T Y, CHIU Y C, FANG W C, et al. Mitochondrial Lon regulates apoptosis through the association with Hsp60-mtHsp70 complex[J/OL]. Cell Death Dis, 2015, 6(2): e1642. 10.1038/cddis.2015.9 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 112.SUNG Y J, KAO T Y, KUO C L, et al. Mitochondrial Lon sequesters and stabilizes p53 in the matrix to restrain apoptosis under oxidative stress via its chaperone activity[J]. Cell Death Dis, 2018, 9(6): 697. 10.1038/s41419-018-0730-7 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 113.PINTI M, GIBELLINI L, NASI M, et al. Emerging role of Lon protease as a master regulator of mito-chondrial functions[J]. Biochim Biophys Acta, 2016, 1857(8): 1300-1306. 10.1016/j.bbabio.2016.03.025 [DOI] [PubMed] [Google Scholar]
- 114.TANGEDA V, LO Y K, BABUHARISANKAR A P, et al. Lon upregulation contributes to cisplatin resistance by triggering NCLX-mediated mitochondrial Ca(2+) release in cancer cells[J]. Cell Death Dis, 2022, 13(3): 241. 10.1038/s41419-022-04668-1 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 115.CHECA J, ARAN J M. Reactive oxygen species: drivers of physiological and pathological processes[J]. J Inflamm Res, 2020, 13: 1057-1073. 10.2147/jir.s275595 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 116.YANG Y, NEO S Y, CHEN Z, et al. Thioredoxin activity confers resistance against oxidative stress in tumor-infiltrating NK cells[J]. J Clin Invest, 2020, 130(10): 5508-5522. 10.1172/jci137585 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 117.SELEDTSOV V I, GONCHAROV A G, SELEDTSOVA G V. Clinically feasible approaches to potentiating cancer cell-based immunotherapies[J]. Hum Vaccin Immunother, 2015, 11(4): 851-869. 10.1080/21645515.2015.1009814 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 118.XIANG H, RAMIL C P, HAI J, et al. Cancer-associated fibroblasts promote immunosuppression by inducing ROS-generating monocytic MDSCs in lung squamous cell carcinoma[J]. Cancer Immunol Res, 2020, 8(4): 436-450. 10.1158/2326-6066.cir-19-0507 [DOI] [PubMed] [Google Scholar]
- 119.FORD K, HANLEY C J, MELLONE M, et al. NOX4 Inhibition potentiates immunotherapy by overcoming cancer-associated fibroblast-mediated CD8 T-cell exclusion from tumors[J]. Cancer Res, 2020, 80(9): 1846-1860. 10.1158/0008-5472.can-19-3158 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 120.SENA L A, LI S, JAIRAMAN A, et al. Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling[J]. Immunity, 2013, 38(2): 225-236. 10.1016/j.immuni.2012.10.020 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 121.DIEBOLD L, CHANDEL N S. Mitochondrial ROS regulation of proliferating cells[J]. Free Radic Biol Med, 2016, 100: 86-93. 10.1016/j.freeradbiomed.2016.04.198 [DOI] [PubMed] [Google Scholar]
- 122.HILDEMAN D A, MITCHELL T, TEAGUE T K, et al. Reactive oxygen species regulate activation-induced T cell apoptosis[J]. Immunity, 1999, 10(6): 735-744. 10.1016/s1074-7613(00)80072-2 [DOI] [PubMed] [Google Scholar]
- 123.WEISKOPF D, SCHWANNINGER A, WEINBERGER B, et al. Oxidative stress can alter the antigenicity of immunodominant peptides[J]. J Leukoc Biol, 2010, 87(1): 165-172. 10.1189/jlb.0209065 [DOI] [PubMed] [Google Scholar]
- 124.KRYSKO D V, GARG A D, KACZMAREK A, et al. Immunogenic cell death and DAMPs in cancer therapy[J]. Nat Rev Cancer, 2012, 12(12): 860-875. 10.1038/nrc3380 [DOI] [PubMed] [Google Scholar]
- 125.DENG H, YANG W, ZHOU Z, et al. Targeted scavenging of extracellular ROS relieves suppressive immunogenic cell death[J]. Nat Commun, 2020, 11(1): 4951. 10.1038/s41467-020-18745-6 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 126.KURNIAWAN H, FRANCHINA D G, GUERRA L, et al. Glutathione restricts serine metabolism to preserve regulatory T cell function[J/OL]. Cell Metab, 2020, 31(5): 920-936.e7. 10.1016/j.cmet.2020.03.004 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 127.MOUGIAKAKOS D, JOHANSSON C C, JITSCHIN R, et al. Increased thioredoxin-1 production in human naturally occurring regulatory T cells confers enhanced tolerance to oxidative stress[J]. Blood, 2011, 117(3): 857-861. 10.1182/blood-2010-09-307041 [DOI] [PubMed] [Google Scholar]
- 128.MOUGIAKAKOS D, JOHANSSON C C, KIESSLING R. Naturally occurring regulatory T cells show reduced sensitivity toward oxidative stress-induced cell death[J]. Blood, 2009, 113(15): 3542-3545. 10.1182/blood-2008-09-181040 [DOI] [PubMed] [Google Scholar]
- 129.ZOROV D B, JUHASZOVA M, SOLLOTT S J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release[J]. Physiol Rev, 94(3): 909-950. 10.1152/physrev.00026.2013 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 130.CANTON M, SÁNCHEZ-RODRÍGUEZ R, SPERA I, et al. Reactive oxygen species in macrophages: sources and targets[J]. Front Immunol, 2021, 12: 734229. 10.3389/fimmu.2021.734229 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 131.ZHOU J, TANG Z, GAO S, et al. Tumor-associated macrophages: recent insights and therapies[J]. Front Oncol, 2020, 10: 188. 10.3389/fonc.2020.00188 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 132.TAN H Y, WANG N, LI S, et al. The reactive oxygen species in macrophage polarization: reflecting its dual role in progression and treatment of human diseases[J]. Oxid Med Cell Longev, 2016, 2016: 2795090. 10.1155/2016/2795090 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 133.MORRIS G, GEVEZOVA M, SARAFIAN V, et al. Redox regulation of the immune response[J]. Cell Mol Immunol, 2022, 19(10): 1079-1101. 10.1038/s41423-022-00902-0 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 134.COFFELT S B, TAL A O, SCHOLZ A, et al. Angio-poietin-2 regulates gene expression in TIE2-expressing monocytes and augments their inherent proangiogenic functions[J]. Cancer Res, 2010, 70(13): 5270-5280. 10.1158/0008-5472.can-10-0012 [DOI] [PubMed] [Google Scholar]
- 135.POLLARD J W. Tumour-educated macrophages promote tumour progression and metastasis[J]. Nat Rev Cancer, 2004, 4(1): 71-78. 10.1038/nrc1256 [DOI] [PubMed] [Google Scholar]
- 136.CASSETTA L, POLLARD J W. A timeline of tumour-associated macrophage biology[J]. Nat Rev Cancer, 2023, 23(4): 238-257. 10.1038/s41568-022-00547-1 [DOI] [PubMed] [Google Scholar]
- 137.COLLIN M, BIGLEY V. Human dendritic cell subsets: an update[J]. Immunology, 2018, 154(1): 3-20. 10.1111/imm.12888 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 138.FUCIKOVA J, PALOVA-JELINKOVA L, BARTUNKOVA J, et al. Induction of tolerance and immunity by dendritic cells: mechanisms and clinical applications [J]. Front Immunol, 2019, 10: 2393. 10.3389/fimmu.2019.02393 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 139.MICHIELSEN A J, NOONAN S, MARTIN P, et al. Inhibition of dendritic cell maturation by the tumor microenvironment correlates with the survival of colorectal cancer patients following bevacizumab treat-ment[J]. Mol Cancer Ther, 2012, 11(8): 1829-1837. 10.1158/1535-7163.mct-12-0162 [DOI] [PubMed] [Google Scholar]
- 140.SCHMIDT S V, NINO-CASTRO A C, SCHULTZE J L. Regulatory dendritic cells: there is more than just immune activation[J]. Front Immunol, 2012, 3: 274. 10.3389/fimmu.2012.00274 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 141.ZONG J, KESKINOV A A, SHURIN G V, et al. Tumor-derived factors modulating dendritic cell function[J]. Cancer Immunol Immunother, 2016, 65(7): 821-833. 10.1007/s00262-016-1820-y [DOI] [PMC free article] [PubMed] [Google Scholar]
- 142.ITO M, MINAMIYA Y, KAWAI H, et al. Tumor-derived TGFbeta-1 induces dendritic cell apoptosis in the sentinel lymph node[J]. J Immunol, 2006, 176(9): 5637-5643. 10.4049/jimmunol.176.9.5637 [DOI] [PubMed] [Google Scholar]
- 143.RUFFELL B, CHANG-STRACHAN D, CHAN V, et al. Macrophage IL-10 blocks CD8+ T cell-dependent responses to chemotherapy by suppressing IL-12 expression in intratumoral dendritic cells[J]. Cancer Cell, 2014, 26(5): 623-637. 10.1016/j.ccell.2014.09.006 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 144.WEBER F, BYRNE S N, LE S, et al. Transforming growth factor-beta1 immobilises dendritic cells within skin tumours and facilitates tumour escape from the immune system[J]. Cancer Immunol Immunother, 2005, 54(9): 898-906. 10.1007/s00262-004-0652-3 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 145.YANG Y, BAZHIN A V, WERNER J, et al. Reactive oxygen species in the immune system[J]. Int Rev Immunol, 2013, 32(3): 249-270. 10.3109/08830185.2012.755176 [DOI] [PubMed] [Google Scholar]
- 146.COUSSENS L M, WERB Z. Inflammation and cancer[J]. Nature, 2002, 420(6917): 860-867. 10.1038/nature01322 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 147.NAHRENDORF M, SWIRSKI F K. Abandoning M1/M2 for a network model of macrophage function[J]. Circ Res, 2016, 119(3): 414-417. 10.1161/circresaha.116.309194 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 148.BAZHIN A V, PHILIPPOV P P, KARAKHANOVA S. Reactive oxygen species in cancer biology and anti-cancer therapy[J]. Oxid Med Cell Longev, 2016, 2016: 4197815. 10.1155/2016/4197815 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 149.JOFFRE O P, SEGURA E, SAVINA A, et al. Cross-presentation by dendritic cells[J]. Nat Rev Immunol, 2012, 12(8): 557-569. 10.1038/nri3254 [DOI] [PubMed] [Google Scholar]
- 150.MATSUE H, EDELBAUM D, SHALHEVET D, et al. Generation and function of reactive oxygen species in dendritic cells during antigen presentation[J]. J Immunol, 2003, 171(6): 3010-3018. 10.4049/jimmunol.171.6.3010 [DOI] [PubMed] [Google Scholar]
- 151.CHOUGNET C A, THACKER R I, SHEHATA H M, et al. Loss of phagocytic and antigen cross-presenting capacity in aging dendritic cells is associated with mitochondrial dysfunction[J]. J Immunol, 2015, 195(6): 2624-2632. 10.4049/jimmunol.1501006 [DOI] [PMC free article] [PubMed] [Google Scholar]