Skip to main content
Frontiers in Cellular and Infection Microbiology logoLink to Frontiers in Cellular and Infection Microbiology
. 2024 Mar 5;14:1324441. doi: 10.3389/fcimb.2024.1324441

Integrins regulation of wound healing processes: insights for chronic skin wound therapeutics

Dong Yu 1,2, Zhaoyu Lu 1,2, Fengsong Nie 1,2, Yang Chong 1,2,*
PMCID: PMC10949986  PMID: 38505290

Abstract

Integrins are heterodimers composed of non-covalently associated alpha and beta subunits that mediate the dynamic linkage between extracellular adhesion molecules and the intracellular actin cytoskeleton. Integrins are present in various tissues and organs and are involved in different physiological and pathological molecular responses in vivo. Wound healing is an important process in the recovery from traumatic diseases and consists of three overlapping phases: inflammation, proliferation, and remodeling. Integrin regulation acts throughout the wound healing process to promote wound healing. Prolonged inflammation may lead to failure of wound healing, such as wound chronicity. One of the main causes of chronic wound formation is bacterial colonization of the wound. In this review, we review the role of integrins in the regulation of wound healing processes such as angiogenesis and re-epithelialization, as well as the role of integrins in mediating bacterial infections during wound chronicity, and the challenges and prospects of integrins as therapeutic targets for infected wound healing.

Keywords: integrin, wound healing, wound chronicity, bacterial infection, targeted therapy

1. Introduction

Integrins are heterodimers composed of non-covalently associated α and β subunits that link the extracellular matrix (ECM) to the cytoskeleton and mediate dynamic connections between extracellular adhesion molecules and the intracellular actin cytoskeleton as well as intermediate filaments (Hynes, 2004). Intracellular proteins that bind to the cytoplasmic tail of integrins regulate the binding of integrins to extracellular ligands and integrin localization and transport. Cytoplasmic integrin-binding proteins also function downstream of integrins, mediating connections to the cytoskeleton and signaling cascades that affect cell motility, growth, and survival (Morse et al., 2014). In mammals, integrins are composed of 18 α and eight β subunits, classified into laminin-binding integrins ( Figure 1 ): α1β1, α2β1, α3β1, α6β1, α7β1, and α6β4, collagen-binding integrins: α1β1, α2β1, α3β1, α10β1, and α11β1, leukocyte integrins: αLβ2, αMβ2, αXβ2, and αDβ2 and RGD-recognizing integrins: α5β1, αVβ1, αVβ3, αVβ5, αVβ6, αVβ8, and αIIbβ3, and with different binding properties and different tissue distribution (Takada et al., 2007). Integrins are involved in various bodily processes, including trauma, immunity, infection, cell proliferation, inflammation, angiogenesis, and tumors (Hostetter, 1996; LaFlamme and Auer, 1996; Desgrosellier and Cheresh, 2010; Mezu-Ndubuisi and Maheshwari, 2021).

Figure 1.

Figure 1

Members of the human integrin superfamily. At least 18 α subunits and eight β subunits have been identified in humans, and they can produce 24 different integrins. The integrin subunits that bind to each other to form heterodimers are connected by solid lines. By Figdraw.

Skin wounds, in the context of successful healing, include dynamic processes in three overlapping phases: inflammation, proliferation, and tissue remodeling (Martin, 1997). Wound repair is tightly regulated by many factors, including cell-ECM interactions (Martin, 1997), growth factors, and matrix metalloproteinases (MMP) (Gál et al., 2017). The integrin family regulates all processes of wound healing ( Table 1 ), such as hemostasis, inflammation, angiogenesis ( Figure 2 ), re-epithelialization ( Figure 3 ), and fibrosis. Disruption of these regulatory mechanisms at any stage can lead to chronic or non-healing wounds where factors such as persistent inflammation and impaired barrier (Brem and Tomic-Canic, 2007; Harding et al., 2002), oxygenation response (Bishop, 2008), bacterial infection (Edwards and Harding, 2004), age (Swift et al., 2001), and disease state (Brem and Tomic-Canic, 2007) can impede the skin’s ability to repair wounds effectively. In reality, chronic wounds are often accompanied by bacterial infections, and some bacteria, such as Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa), can mediate the integrin family to promote the formation of chronic wounds and thus cause them to persist (Edwards and Harding, 2004; Canchy et al., 2023). Abnormal wound healing is a major challenge in the treatment of skin wounds, and chronic wounds pose a serious emotional and financial burden to patients (Olsson et al., 2019). In this review, we review the role of integrins as bridges in bacterial-cell interactions in the context of wound healing and assess the role of integrins as nodes to inhibit bacteria in wound chronicity, as well as the challenges and perspectives of integrins as targets for therapeutic wound healing.

Table 1.

Main secretory sites and functional roles of different types of integrins.

Type Ligands Secretion sites Functional roles
α1β1 Laminin, collagen EC, FBL, monocytes, macrophages, and myofibroblasts Mediating VEGF-driven angiogenesis, negative feedback regulation of collagen synthesis in FBL (Senger and Davis, 2011; Gardner et al., 1999; Senger et al., 1997)
α2β1 Laminin, collagen Platelets, KC, EC and FBL Mediates KC migration and VEGF-driven angiogenesis (Senger et al., 1997; Grenache et al., 2007)
α3β1 Laminin, platelet-reactive protein KC、EC and FBL Regulation of KC migration during re-epithelialization (Margadant et al., 2009), control of angiogenesis and TGF-β1-mediated responses (da Silva et al., 2010)
α4β1 Thrombospondin, fibronectin, bone bridge protein, ADAM, EDA, VCAM, etc (Huhtala et al., 1995; Shinde et al., 2015; Abonia et al., 2006) Leukocytes, FBL, and EC Regulation of FBL proliferation and TGF-β1 processing (Shinde et al., 2015)
α5β1 Fibronectin, bone bridging protein, pro-fibronectin, ADAM, CCN, etc (Huhtala et al., 1995; Lau, 2016) Platelets, KCs, ECs, FBLs Promote KC migration (Di Russo et al., 2021), etc.
α6β1 Laminin, coagulation-reactive protein, Cyr61, CCN, etc (Lau, 2016) Platelets, EC, leukocytes, and FBL may be involved in platelet-vessel wall interactions and angiogenesis (Huang et al., 2016); interaction with CCN1/Cyr61 promotes myofibroblast senescence and controls fibrogenesis (Jun and Lau, 2010)
α7β1 Laminin Expressed by muscle cells, vascular smooth muscle cells, etc (Riederer et al., 2015; Burkin and Kaufman, 1999)
α8β1 FN, TGF-β1, etc. Myofibroblasts Lead to fibrotic reaction (Bouzeghrane et al., 2004)
α9β1 EDA-FN, VEGF, etc (Shinde et al., 2015; Eto et al., 2002; Vlahakis et al., 2005) KCs, FBLs, neutrophils, and ECs Regulation of KC and FBL growth, neutrophil chemotaxis, and EC migration and angiogenesis (Nakayama et al., 2010; Oommen et al., 2011; Høye et al., 2012)
α10β1 Collagen FBL May mediate the adhesion of FBL to collagen and dynamic connective tissue remodeling events (Zeltz and Gullberg, 2016)
α11β1 Collagen FBL Controls myofibroblast differentiation and may mediate adhesion of FBL to collagen and contribute to collagen reorganization (Zeltz and Gullberg, 2016)
αvβ1 FN, TGF-β1, etc. KC、EC Mediating KC adhesion during re-epithelialization (Jakhu et al., 2018)
αvβ3 Fibronectin(pro), FGF-2, TGF-β1, CCN1/Cyr6, CCN2/CTGF and CCN3/NOV, etc (Lau, 2016; Rusnati et al., 1997; Lin et al., 2005) EC, platelets, FBL, and macrophages Required for neoangiogenesis; regulates fibronectin network structure and stability; mediates EC adhesion to CCN1/Cyr6 and CCN2/CTGF; EC survival; pericyte retention in the vasculature; and FBL proliferation (Mitchell et al., 2009)
αvβ5 TGF-β1, VEGF, CCN1/Cyr6, CCN3/NOV, etc (Lau, 2016; Lin et al., 2005) EC, FBL, and Skin KC may be involved in the conversion of FBL to myofibroblasts (Geuijen and Sonnenberg, 2002), and the interaction with CCN1/Cyr61 mediates FBL migration (Lygoe et al., 2004)
αvβ6 FN, TGF-β1 and -β3, etc. KCs Regulates inflammation and KC proliferation, contributing to the basement membrane and granulation tissue remodeling (Jakhu et al., 2018)
αvβ8 FN, and TGF-β (Lainé et al., 2021) Dendritic cells, FBLs and ECs Mediates TGF-β to regulate inflammation (Worthington John et al., 2015)
α6β4 Laminin-332, Other LM (Sehgal et al., 2006) KC、EC Promotes KC adhesion and migration (Geuijen and Sonnenberg, 2002); regulates angiogenesis in EC (Mercurio et al., 2001; Nikolopoulos et al., 2004)
αIIbβ3 Fibronectin(pro), FN, CCN1/Cyr6 and CCN2/CTGF, etc (Lau, 2016; Andre et al., 2002) Platelets Mediates platelet aggregation in clot formation and regulates fibrin network structure and stability (antithrombotic effect) (Blue et al., 2009)
α4β7 VCAM, etc (Abonia et al., 2006) Leukocytes, dendritic cells Involved in leukocyte transport (Gubatan et al., 2021)
αEβ7 Calcineurin T lymphocytes, dendritic cells Mediated leukocyte transport (Kilshaw, 1999)
αLβ2 Lumican, etc. Leukocytes Mediated leukocyte extravasation through the endothelium (Tan, 2012)
αMβ2 Fibronectin(pro), FN, CCN1/Cyr6, CCN2/CTGF, etc (Lau, 2016) Monocytes, macrophages, NK, neutrophils, and T cells Involved in leukocyte transport across the endothelium (Tan, 2012); complexed with uPAR and its ligand uPA to promote fibrinolysis and fibrin clot clearance by monocytes and neutrophils (Sisco et al., 2007)
αXβ2 Fibronectin (Garnotel et al., 2000) Monocytes, macrophages, dendritic cells, and NK Involved in leukocyte transport (Tan, 2012)
αDβ2 VCAM-1 and CCN1/Cyr6, etc (Lau, 2016; Grayson et al., 1998) Macrophages, eosinophils Involved in leukocyte transport (Tan, 2012)

FBL, fibroblasts; KC, keratin-forming cells; EC, endothelial cells; VEGF, vascular endothelial cell growth factor; FN, fibronectin; TGF-β, transforming growth factor beta; EDA, extra domain A; ADAM, a disintegrin and metalloproteinase; CCN, Cyr61-CTGF-Nov; Cyr6, cysteine-rich protein 6; VCAM, vascular cell adhesion molecule; uPAR, urokinase-type plasminogen activator receptor.

Figure 2.

Figure 2

Promotion of new capillary formation by integrins during wound healing. Vascular endothelial growth factor (VEGF) induces a 5- to 7-fold increase in the protein expression of two collagen receptors, α1β1 and α2β1 integrins, on the surface of dermal microvascular endothelial cells (ECs) through the induction of mRNAs encoding α1 and α2 integrins subunits. α5 integrin localizes to cell junctions and participates in the angiopoietin (Ang)/Tie2 signaling pathway to maintain vascular homeostasis. αvβ3 integrin synergizes with VEGF to activate angiogenesis in ECs through VEGFR-2 phosphorylation. α6β1 integrin appears to promote platelet pro-mediated angiogenesis associated with endothelial colony forming cells (ECFCs). VEGF-A can induce endothelial and cancer cell migration by directly binding α9β1 integrin. By Figdraw.

Figure 3.

Figure 3

Shows that integrins regulate the re-epithelialization phase of the wound healing process. Galectin-3 promotes epithelial cell migration by cross-linking Mannoside Acetylglucosaminyltransferase 5 (MGAT5)-modified complex N-glycans on α3β1 integrins and subsequently activating α3β1-integrin-Rac1 signaling to promote lamellar pseudopod formation. The interaction of α5β1 integrins with fibronectin may contribute to keratinocyte proliferation in addition to promoting keratinocyte adhesion and motility on this matrix. α9β1 integrin interacts with another ECM component, elastic microfibril interface localization protein 1 (EMILIN1), to regulate keratinocyte proliferation, but α9β1 integrin antagonizes α3β1-dependent mTLD/BMP-1 expression and skin basement membrane reorganization and maturation. αvβ1 and α6β4 integrins also regulate keratinocyte migration. By Figdraw.

2. Role of integrins in bacterial infections

Prolonged inflammation may result in wounds that do not heal, such as chronic ulcers (Wang et al., 2018). The causes of chronic wounds are complex: local tissue hypoxia, wound bacterial colonization, and repetitive ischemia-reperfusion injury can all lead to chronic wounds (Mustoe et al., 2006), and inflammation due to bacterial colonization of wounds remains one of the most causes of persistent wound healing (Mustoe et al., 2006). The ECM is a non-cellular, three-dimensional macromolecular network composed of collagen, proteoglycan/glycosaminoglycan, elastin, fibronectin, laminin, and several other glycoproteins that regulate a variety of cellular functions and are essential for the maintenance of normal body homeostasis (Theocharis et al., 2016). The ECM serves as the primary microenvironment for wound healing, and integrin-mediated adhesion to the ECM may play an important role. Most chronic wounds at this stage are accompanied by bacterial infections, the most common causative agents being S. aureus and P. aeruginosa (Rhoads et al., 2012; Silva et al., 2018). Mechanisms such as the formation of bacterial biofilm, among others (Bjarnsholt, 2013; Wu et al., 2019). Such as in mouse periodontal disease (PD), bacterial biofilms inhibit β6 integrin expression and transforming growth factor-β1 signaling, leading to gingival inflammation (Uehara et al., 2022). Bacterial biofilms present in periodontal pockets inhibit αvβ6 integrin expression levels in periodontal disease and exacerbate the inflammatory response (Bi et al., 2017). Biofilm formation is tied to the regulated synthesis of extracellular matrix components (Rowan-Nash Aislinn et al., 2019), a structural group of different bacterial species that contribute to the chronicity of most wound healing, and bacteria associated with biofilms are highly resistant to antibiotics (Venkatesan et al., 2015). In addition, there are other pathogenic bacteria, such as anaerobic bacteria (Choi et al., 2019) and Streptococcus hemolytic type B (Silva et al., 2018).

2.1. Integrins and S. aureus

S. aureus is one of the most important human pathogens. S. aureus is known for its role in hospital-acquired infections and methicillin resistance and is now considered a global clinical problem (Chambers and DeLeo, 2009). This microorganism causes a variety of surface and systemic diseases and is frequently associated with oral mucositis. It is also a causative or worsening agent in various skin conditions, including atopic dermatitis, carbuncles, cellulitis, boils, hair follicles, Kawasaki syndrome, impetigo, psoriasis, and scalded skin syndrome (Morishita et al., 1999; Skov and Baadsgaard, 2000; Yarwood et al., 2000; Chiller et al., 2001; Cho et al., 2001a; Cho et al., 2001b; Breuer et al., 2002; Patel and Finlay, 2003). S. aureus is a major cause of wound infections and is thought to delay wound healing (Bowler et al., 2001) ( Table 2 ). A prominent feature common to almost all S. aureus isolates is the expression of ECM-binding proteins, collectively referred to as microbial surface component recognition adhesion matrix molecules (MSCRAMMs) (Patti et al., 1994; Foster and Höök, 1998). It is possible to colonize the host by attaching to components of the ECM to initiate infection (Foster and Höök, 1998), such as cell wall-attached fibronectin-binding proteins A and B that allow bacteria to bind tightly to the ECM protein fibronectin (FN) (Flock et al., 1987; JÖNsson et al., 1991).

Table 2.

Role of different integrins in normal wound healing (granulation tissue) and bacterial infection.

Type Granulation tissue Bacterial infections
α5β1 Regulates re-epithelialization and promotes migration of keratin-forming cells (Di Russo et al., 2021) Mediating the attachment of eukaryotic cells to the extracellular matrix protein fibronectin (JÖNsson et al., 1991)
αvβ3 Regulates angiogenesis and promotes FBL proliferation (Mitchell et al., 2009) Mediated Staphylococcus aureus bloodstream infection (Flock et al., 1987)
αvβ6 Regulates inflammation and keratin-forming cells proliferation (Jakhu et al., 2018) Regulation of bacterial biofilms (Hynes, 1996; Mathelié-Guinlet et al., 2020)
αIIbβ3 Mediated platelet aggregation (Blue et al., 2009) Mediated adhesion of Aureus to platelets (Miajlovic et al., 2010; Zapotoczna et al., 2013)

Integrin β1-containing receptors are known for their role in cell adhesion and their ability to signal the transduction of cell attachment to the ECM (Schwartz and Ginsberg, 2002). In the in vitro experiments, S. aureus can invade eukaryotic cells by indirectly engaging the β1 integrin-containing host receptor, but non-pathogenic Staphylococcus carnosus is not invasive (Agerer et al., 2003). α5β1 integrin is a vital cell surface receptor that mediates the attachment of eukaryotic cells to the ECM protein fibronectin (Hynes, 1996). FN has recently been shown to act as a molecular bridge linking FN-binding proteins (FnBP) -expressing S. aureus to α5β1 integrin on the surface of human cells (Joh et al., 1999). This interaction not only tightly anchors S. aureus to its eukaryotic host cells but also promotes the internalization of the microbe by human epithelial and endothelial cell and mouse fibroblasts (Dziewanowska et al., 1999; Sinha et al., 1999; Fowler et al., 2000; Jett Bradley and Gilmore Michael, 2002) ( Figure 4 ). In addition, an in vitro study found that one study found that necrotizing soft tissue infections with S. aureus isolates showed high rates of internalization and cytotoxicity to human myocytes, and the cellular basis of the high internalization rate in myocytes was attributed to the higher expression of α5β1 integrins in myocytes (Baude et al., 2019). The ability of S. aureus to be internalized by and survive in host cells, such as keratinocytes, may contribute to developing persistent or chronic infections, eventually leading to deeper tissue infection or dissemination. Internalization of S. aureus by immortalized keratinocytes requires bacterial FnBPs and is mediated by the significant fibronectin-binding α5β1 integrin. However, unlike the internalization of immortalized keratinocytes, the internalization of S. aureus by native keratinocytes can occur through FnBP-dependent and non-dependent pathways (Kintarak et al., 2004). In addition, in oral infections, multi-strain oral biofilms inhibit αvβ6 integrin expression in gingival epithelial cells (Bi et al., 2017). And periodontal inflammation caused by αvβ6 integrin deficiency also resulted in significant alterations in the oral microbiome (Uehara et al., 2022). However, the second fibronectin-binding integral protein αvβ6 found on keratin-forming cells does not mediate S. aureus internalization (Kintarak et al., 2004).

Figure 4.

Figure 4

Staphylococcus aureus (S. aureus) evades bactericidal mechanisms. Fibronectin (FN) acts as a molecular bridge linking FnBP-expressing S. aureus to α5β1 integrin on the surface of human cells, tightly anchoring S. aureus to its eukaryotic host cells, and also facilitating microbial internalization by human epithelial and endothelial cells (ECs) and mouse fibroblasts. Furthermore, internalization of S. aureus by immortalized keratinocytes requires bacterial FnBPs and is mediated by the significant fibronectin-binding α5β1 integrin. S. aureus counteracts the extracellular bactericidal machinery of mast cells (MCs) by increasing fibronectin-binding protein expression and inducing Hla-ADAM10-mediated upregulation of β1 integrins in MCs. Vascular endothelial dysfunction is attributed to S. aureus aggregation factor A (ClfA) to adhere to αvβ3 integrins expressed on endothelial cells, where fibrinogen (FG) plays a key role. Direct binding of the S. aureus surface protein IsdB to endothelial αvβ3 integrins plays a vital role in host cell adhesion and invasion, ultimately leading to life-threatening disease. By Figdraw.

In vitro infection tests have shown that S. aureus counteracts the extracellular bactericidal mechanism of mast cells (MCs) by increasing fibronectin-binding protein expression and inducing Hla-ADAM10 (a disintegrin and metalloproteinase 10)-mediated upregulation of β1 integrins in MCs (Goldmann et al., 2016). An experiment on mice showed that IFN-gamma intervention, partly by β1 integrins, drives enhanced antimicrobial and pro-inflammatory responses of human MCs to S. aureus (Swindle et al., 2015). An in vitro study found that a protein exported by S.aureus, α-toxin interacts with β1-integrin, a receptor for the host ECM protein, suggesting that β1-integrin may be a potential receptor for α-toxin on epithelial cells. The α-toxin inhibits S. aureus adhesion and internalization by interfering with integrin-mediated pathogen-host cell interactions (Liang and Ji, 2006).

In addition, an α5β1/αvβ3 integrin antagonist has been found to inhibit S. aureus invasion of epithelial cells (Melby et al., 2000). A study of mouse models found that vascular endothelial dysfunction was attributed to the ability of S. aureus aggregation factor A (ClfA) to adhere to αvβ3 integrins expressed on endothelial cell (EC), with fibrinogen (Fg) playing a pivotal role (McDonnell et al., 2016a). The direct binding of the S. aureus surface protein iron-regulated surface determinant B (IsdB) to EC αvβ3 integrins plays an essential role in host cell adhesion and invasion, ultimately leading to life-threatening disease (Mathelié-Guinlet et al., 2020). Therefore, αvβ3 integrin blockade represents an attractive target for treating S. aureus blood-borne infections. Furthermore, force-enhanced adhesion between IsdB and integrins may be one of the multiple mechanisms that have been developed by staphylococci to effectively colonize or invade their hosts while resisting the shear forces encountered in various environments after infection (Otto, 2014), and S. aureus can adhere to platelets through the high-affinity form of IsdB bound to the platelet integrin αIIbβ3 integrin without the need for additional ECM proteins (Miajlovic et al., 2010; Zapotoczna et al., 2013). In addition, αDβ2 integrins have been observed to have a role in Salmonella typhimurium and S. aureus infections (Nascimento et al., 2008).

Integrin-linked kinases and Rac1 mediate the invasion of S. aureus into keratinocytes, and the bacteria can invade keratinocytes via the integrin-linked kinase-Rac1 pathway. Thus, integrin-linked kinase may be a critical factor in preventing staphylococcal skin infections (Sayedyahossein et al., 2015), and therefore, this is speculated to be a biological target for the treatment of S. aureus infections.

2.2. Integrins and P. aeruginosa

P. aeruginosa is a ubiquitous gram-negative environmental bacterium that can cause serious infections in skin wounds, such as in patients with severe burns (Azzopardi et al., 2014). It can form biofilms (Mah et al., 2003) and invade and increase the host cells. P. aeruginosa has been shown to have the propensity to enter and colonize injured epithelial cells (Engel and Eran, 2011), and there is ample experimental evidence that loss of epithelial polarity increases the harmful effects of P. aeruginosa on host cells (Engel and Eran, 2011). P. aeruginosa has evolved ways of manipulating host epithelial cell polarity to promote infection (Engel and Eran, 2011; Tran Cindy et al., 2014). Integrins are usually restricted to the basolateral plasma membrane of epithelial cells, and when reaching the basolateral side, P. aeruginosa has access to integrins (Thuenauer et al., 2020). Current studies on integrin-mediated P. aeruginosa are mostly limited to α5β1 and αvβ5 integrins in respiratory epithelial cells (Buommino et al., 2014; Roger et al., 1999; Leroy-Dudal et al., 2004). The P. aeruginosa lectin the fucose-specific lectin LecB clears integrins from the surface of cells at the wound margin and blocks cell migration and wound healing dose-dependent manner (Thuenauer et al., 2020). Further studies are needed to determine the role of integrins in P. aeruginosa infections in infected wounds, which seems to be a clear direction for treating P. aeruginosa infections.

2.3. Integrins and other bacterial

Integrins also mediate the infectious effects of some other species of bacteria on the organism. Entry into epithelial cells and prevention of primary immune responses are prerequisites for successful colonization and subsequent infection of human hosts by Streptococcus pyogenes (group A streptococci, GAS). The interaction of GAS with fibrinogen promotes integrin-mediated internalization of bacteria into keratin-forming cells, and α1β1 and α5β1 integrins are the major keratin-forming cell receptors involved in this process (Siemens et al., 2011). Excessive bacterial invasion disrupts the attachment between the tooth surface and epithelium, leading to periodontitis. Integrin α5 may be involved in the invasion of aggregatibacter actinomycetemcomitans Y4 into gingival epithelial cells, and the resulting signal transduction cascade decreases cell adhesion and reduces the defensive role of gingival epithelial cells by reducing integrin expression (Kochi et al., 2017). Adhesion of Candida albicans germ tube human endothelial cell lines is mediated by αvβ3 and this adhesion is significantly blocked by the anti-β3 monoclonal antibody Gly-Arg-Gly-Asp-Ser-Pro (GRGDSP) peptide or heparin and completely eliminated by their combination (Santoni et al., 2001). Therefore, αvβ3 blockade may be used as one of the therapeutic options against Candida albicans infection. In addition, H. pylori induces the expression of integrin α5β1 and activates H. pylori-infected gastric epithelial cells via proteinase-activated receptor-2 (PAR2)-induced trypsin, which may play an important role in H. pylori-associated carcinogenesis (Seo et al., 2009).

2.4. Integrins and targeted therapy for bacterial infections

The integrin family, a large group of proteins in the human body, is involved in a variety of physiological processes, and for this family of proteins, we can effectively use them to regulate a number of pathophysiological processes in the organism. Based on the mechanism of integrin-mediated bacterial infection in wound healing, it appears that bacterial infection in the vast majority of cases requires the regulation of integrins. Earlier, it was found that the interaction of staphylococcal alpha toxin with α5β1 integrin and the overproduction of TNF-α may contribute to the destruction of epithelial cells during S. aureus infection (Liang and Ji, 2007). Recently, S. aureus has also been found to counteract the extracellular bactericidal mechanism of mast cell by increasing the expression of fibronectin-binding proteins and inducing Hla-ADAM10-mediated upregulation of β1 integrins in mast cell (Goldmann et al., 2016). At this point, it may be possible to effectively treat S. aureus infections by inhibiting targets associated with integrins. As inhibition of the major integrin αVβ3 reduces the attachment of S. aureus to sheared human endothelial cells (McDonnell et al., 2016b), blocking αVβ3 is an attractive target for the treatment of S. aureus blood-borne infections. There is evidence that alpha-melanocyte-stimulating hormone (α-MSH), a neuropeptide produced primarily by the pituitary gland but which is also produced by many extra-pituitary cells, including skin keratin-forming cells, has anti-inflammatory and antimicrobial effects and reduces the internalization of S. aureus. α-MSH prematurely downregulates the production of integrins such as beta1 and heat shock surface protein 70 (Donnarumma et al., 2004), to reduce infection and the inflammatory response.

In contrast, one study found that in mouse skin lacking integrin-linked kinase in the epidermis, S. aureus penetrated the skin 35 times more than normal skin; thus, integrin-linked kinase has potential as a targeted therapy for the prevention of S. aureus skin infections (Sayedyahossein et al., 2015). Fibronectin or β1 integrin-blocking antibodies completely eliminate IFN-γ-dependent S. aureus junctions, and IFN-γ can trigger human mast cells mediated by β1 integrins to enhance antibacterial and pro-inflammatory responses to IFN-γ-dependent S. aureus (Swindle et al., 2015). In these cases, increasing integrin levels requires integrin activation, and common activators such as talin, kindlin, and mechanical force (Sun et al., 2019; Lu et al., 2022). It has also been found that P. aeruginosa can produce the fucose-specific lectin LecB, which specifically removes integrins from the surface of cells located at the wound edge and blocks cell migration and wound healing in a dose-dependent manner (Rowan-Nash Aislinn et al., 2019; Thuenauer et al., 2020). When appropriate, integrin supplementation may antagonize this blocking effect and promote wound healing.

In clinical trials for the treatment of sepsis, cilengitide prevented ClfA from binding αVβ3 on endothelial cells, slowing infection without affecting normal endothelial cell function (McDonnell et al., 2016b). Thus, targeted inhibition of αVβ3 treatment seems to be locally applied for wound healing. The α5β1 integrin is one of the staphylococcal α-toxin receptors involved in mediating the cytotoxicity of α-toxin (Liang and Ji, 2007). α-MSH exerts a protective effect on the skin by reducing infection and inflammatory processes through the downregulation of β1 integrins (Donnarumma et al., 2004). LecB inhibitors can also be used as a treatment strategy in addition to antibiotics (Sommer et al., 2018; Thuenauer et al., 2020). In contrast, integrin receptors promoted increased binding of S. aureus to IFN γ-treated huMCs (Swindle et al., 2015), demonstrating the complexity of the MC response in relation to the cytokine environment. For these, there are no practical clinical studies yet, so appropriate drug development and clinical trials become a top priority for integrin-targeted therapy.

3. Conclusion and prospect

The integrin family is a group of functionally diverse protein families that play key roles in various physiological and pathological mechanisms by acting as a bridge between protein-cell, cell-cell, and bacterial-cell. The integrin family’s role in bacterial-cell linkage during wound healing suggests that treatment targeting integrins can effectively promote wound healing and reduce bacterial infections. However, the human body is a unified organic whole, and integrins can largely regulate the promotion of overall wound healing. Therefore, activation of integrins is preferred in most cases. At this stage, there are few studies on the activation of integrins to block bacterial infections, which is a wide research space and requires our joint efforts to fill the gap. However, in order to treat bacterial infections in pathological wound healing, the targeting of integrins needs to be context-specific and, when certain conditions allow, appropriately inhibited, and these need to be explored and evaluated more. S. aureus and P. aeruginosa, the two most common gram-positive and gram-negative bacteria in hospital-acquired infections, are reviewed in the article, which focuses on the mechanism of their invasion into the organism via integrins and provides a systematic review for the treatment of clinical bacterial infections as well as a summary of recent studies on integrins and their related derivatives as target therapeutics. In conclusion, the use of integrins as targets for blocking bacterial infections has very high potential.

Author contributions

DY: Conceptualization, Data curation, Formal Analysis, Methodology, Writing – original draft, Writing – review & editing. ZL: Data curation, Formal Analysis, Writing – review & editing. FN: Formal Analysis, Investigation, Methodology, Writing – review & editing. YC: Conceptualization, Data curation, Formal Analysis, Funding acquisition, Investigation, Methodology, Project administration, Resources, Supervision, Validation, Visualization, Writing – review & editing.

Acknowledgments

Acknowledge the administrative support of Yangzhou University. The figures were generated by Figdraw.

Funding Statement

The author(s) declare financial support was received for the research, authorship, and/or publication of this article. This work was supported by the National Natural Science Foundation of China [grant numbers 81802792], Project of Yangzhou University Medical Innovation and Transformation Special Fund New Medical Cross Innovation Team [grant numbers AHYZUCXTD 202108], Postgraduate Research & Practice Innovation Program of Jiangsu Province [grant numbers SJCX22_1822], Postdoctoral Science Foundation of Jiangsu Province [grant numbers 2020Z409], Science and technology projects for social development of Yangzhou City [grant numbers YZ2022106].

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

  1. Abonia J. P., Hallgren J., Jones T., Shi T., Xu Y., Koni P., et al. (2006). Alpha-4 integrins and VCAM-1, but not MAdCAM-1, are essential for recruitment of mast cell progenitors to the inflamed lung. Blood 108, 1588–1594. doi:  10.1182/blood-2005-12-012781 [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Agerer F., Michel A., Ohlsen K., Hauck C. R. (2003). Integrin-mediated Invasion of Staphylococcus aureus into Human Cells Requires Src Family Protein-tyrosine Kinases *. J. Biol. Chem. 278, 42524–42531. doi:  10.1074/jbc.M302096200 [DOI] [PubMed] [Google Scholar]
  3. Andre P., Prasad K. S. S., Denis C. V., He M., Papalia J. M., Hynes R. O., et al. (2002). CD40L stabilizes arterial thrombi by a beta(3) integrin-dependent mechanism. Nat. Med. 8, 247–252. doi:  10.1038/nm0302-247 [DOI] [PubMed] [Google Scholar]
  4. Azzopardi E. A., Azzopardi E., Camilleri L., Villapalos J., Boyce D. E., Dziewulski P., et al. (2014). Gram negative wound infection in hospitalised adult burn patients-systematic review and metanalysis. PloS One 9, e95042. doi:  10.1371/journal.pone.0095042 [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Baude J., Bastien S., Gillet Y., Leblanc P., Itzek A., Tristan A., et al. (2019). Necrotizing Soft Tissue Infection Staphylococcus aureus but not S. pyogenes Isolates Display High Rates of Internalization and Cytotoxicity Toward Human Myoblasts. J. Infect. Dis. 220, 710–719. doi:  10.1093/infdis/jiz167 [DOI] [PubMed] [Google Scholar]
  6. Bi J., Koivisto L., Pang A., Li M., Jiang G., Aurora S., et al. (2017). Suppression of αvβ6 integrin expression by polymicrobial oral biofilms in gingival epithelial cells. Sci. Rep. 7, 4411. doi:  10.1038/s41598-017-03619-7 [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bishop A. (2008). Role of oxygen in wound healing. J. Wound Care 17, 399–402. doi:  10.12968/jowc.2008.17.9.30937 [DOI] [PubMed] [Google Scholar]
  8. Bjarnsholt T. (2013). The role of bacterial biofilms in chronic infections. APMIS 121, 1–58. doi:  10.1111/apm.12099 [DOI] [PubMed] [Google Scholar]
  9. Blue R., Kowalska M. A., Hirsch J., Murcia M., Janczak C. A., Harrington A., et al. (2009). Structural and therapeutic insights from the species specificity and in vivo antithrombotic activity of a novel αIIb-specific αIIbβ3 antagonist. Blood 114, 195–201. doi:  10.1182/blood-2008-08-169243 [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Bouzeghrane F., Mercure C., Reudelhuber T. L., Thibault G. (2004). Alpha8beta1 integrin is upregulated in myofibroblasts of fibrotic and scarring myocardium. J. Mol. Cell. Cardiol. 36, 343–353. doi:  10.1016/j.yjmcc.2003.11.007 [DOI] [PubMed] [Google Scholar]
  11. Bowler P. G., Duerden B. I., Armstrong D. G. (2001). Wound microbiology and associated approaches to wound management. Clin. Microbiol. Rev. 14, 244–269. doi:  10.1128/cmr.14.2.244-269.2001 [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Brem H., Tomic-Canic M. (2007). Cellular and molecular basis of wound healing in diabetes. J. Clin. Invest. 117, 1219–1222. doi:  10.1172/JCI32169 [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Breuer K., HÄussler S., Kapp A., Werfel T. (2002). Staphylococcus aureus: colonizing features and influence of an antibacterial treatment in adults with atopic dermatitis. Br. J. Dermatol. 147, 55–61. doi:  10.1046/j.1365-2133.2002.04872.x [DOI] [PubMed] [Google Scholar]
  14. Buommino E., Domenico M. D., Paoletti I., Fusco A., Gregorio V. D., Cozza V., et al. (2014). AlphaVBeta5 integrins mediates Pseudomonas fluorescens interaction with A549 cells. FBL 19, 408–415. doi:  10.2741/4215 [DOI] [PubMed] [Google Scholar]
  15. Burkin D. J., Kaufman S. J. (1999). The α7β1 integrin in muscle development and disease. Cell Tissue Res. 296, 183–190. doi:  10.1007/s004410051279 [DOI] [PubMed] [Google Scholar]
  16. Canchy L., Kerob D., Demessant A. L., Amici J.-M. (2023). Wound healing and microbiome, an unexpected relationship. J. Eur. Acad. Dermatol. Venereology 37, 7–15. doi:  10.1111/jdv.18854 [DOI] [PubMed] [Google Scholar]
  17. Chambers H. F., DeLeo F. R. (2009). Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat. Rev. Microbiol. 7, 629–641. doi:  10.1038/nrmicro2200 [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Chiller K., Selkin B. A., Murakawa G. J. (2001). Skin microflora and bacterial infections of the skin. J. Invest. Dermatol. Symposium Proc. 6, 170–174. doi:  10.1046/j.0022-202x.2001.00043.x [DOI] [PubMed] [Google Scholar]
  19. Cho S.-H., Strickland I., Boguniewicz M., Leung D. Y. M. (2001. a). Fibronectin and fibrinogen contribute to the enhanced binding of Staphylococcus aureus to atopic skin. J. Allergy Clin. Immunol. 108, 269–274. doi:  10.1067/mai.2001.117455 [DOI] [PubMed] [Google Scholar]
  20. Cho S.-H., Strickland I., Tomkinson A., Fehringer A. P., Gelfand E. W., Leung D. Y. M. (2001. b). Preferential binding of staphylococcus aureus to skin sites of th2-mediated inflammation in a murine model. J. Invest. Dermatol. 116, 658–663. doi:  10.1046/j.0022-202x.2001.01331.x [DOI] [PubMed] [Google Scholar]
  21. Choi Y., Banerjee A., McNish S., Couch K. S., Torralba M. G., Lucas S., et al. (2019). Co-occurrence of anaerobes in human chronic wounds. Microbial Ecol. 77, 808–820. doi:  10.1007/s00248-018-1231-z [DOI] [PubMed] [Google Scholar]
  22. da Silva R. G., Tavora B., Robinson S. D., Reynolds L. E., Szekeres C., Lamar J., et al. (2010). Endothelial αβ1-integrin represses pathological angiogenesis and sustains endothelial-VEGF. Am. J. Pathol. 177, 1534–1548. doi:  10.2353/ajpath.2010.100043 [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Desgrosellier J. S., Cheresh D. A. (2010). Integrins in cancer: biological implications and therapeutic opportunities. Nat. Rev. Cancer 10, 9–22. doi:  10.1038/nrc2748 [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Di Russo J., Young J. L., Wegner J. W., Steins T., Kessler H., Spatz J. P. (2021). Integrin α5β1 nano-presentation regulates collective keratinocyte migration independent of substrate rigidity. Elife 10, e69861. doi:  10.7554/eLife.69861 [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Donnarumma G., Paoletti I., Buommino E., Antonietta Tufano M., Baroni A. (2004). α-MSH reduces the internalization of Staphylococcus aureus and down-regulates HSP 70, integrins and cytokine expression in human keratinocyte cell lines. Exp. Dermatol. 13, 748–754. doi:  10.1111/j.0906-6705.2004.00218.x [DOI] [PubMed] [Google Scholar]
  26. Dziewanowska K., Patti Joseph M., Deobald Claudia F., Bayles Kenneth W., Trumble William R., Bohach Gregory A. (1999). Fibronectin binding protein and host cell tyrosine kinase are required for internalization of staphylococcus aureus by epithelial cells. Infection Immun. 67, 4673–4678. doi:  10.1128/iai.67.9.4673-4678.1999 [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Edwards R., Harding K. G. (2004). Bacteria and wound healing. Curr. Opin. Infect. Dis. 17(2):91–6. doi: 10.1097/00001432-200404000-00004 [DOI] [PubMed] [Google Scholar]
  28. Engel J., Eran Y. (2011). Subversion of mucosal barrier polarity by pseudomonas aeruginosa. Front. Microbiol. 2. doi:  10.3389/fmicb.2011.00114 [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Eto K., Huet C., Tarui T., Kupriyanov S., Liu H. Z., Puzon-McLaughlin W., et al. (2002). Functional classification of ADAMs based on a conserved motif for binding to integrin alpha(9)beta(1) - Implications for sperm-egg binding and other cell interactions. J. OF Biol. Chem. 277, 17804–17810. doi:  10.1074/jbc.M200086200 [DOI] [PubMed] [Google Scholar]
  30. Flock J. I., Fröman G., Jönsson K., Guss B., Signäs C., Nilsson B., et al. (1987). Cloning and expression of the gene for a fibronectin-binding protein from Staphylococcus aureus. EMBO J. 6, 2351–2357-2357. doi:  10.1002/j.1460-2075.1987.tb02511.x [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Foster T. J., Höök M. (1998). Surface protein adhesins of Staphylococcus aureus. Trends Microbiol. 6, 484–488. doi:  10.1016/S0966-842X(98)01400-0 [DOI] [PubMed] [Google Scholar]
  32. Fowler T., Wann E. R., Joh D., Johansson S., Foster T. J., Höök M. (2000). Cellular invasion by Staphylococcus aureus involves a fibronectin bridge between the bacterial fibronectin-binding MSCRAMMs and host cell β1 integrins. Eur. J. Cell Biol. 79, 672–679. doi:  10.1078/0171-9335-00104 [DOI] [PubMed] [Google Scholar]
  33. Gál P., Varinská L., Fáber L., Novák Š, Szabo P., Mitrengová P., et al. (2017). How signaling molecules regulate tumor microenvironment: parallels to wound repair. Molecules 22(11):1818. doi:  10.3390/molecules22111818 [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Gardner H., Broberg A., Pozzi A., Laato M., Heino J. (1999). Absence of integrin alpha1beta1 in the mouse causes loss of feedback regulation of collagen synthesis in normal and wounded dermis. J. Cell Sci. 112, 263–272. doi:  10.1242/jcs.112.3.263 [DOI] [PubMed] [Google Scholar]
  35. Garnotel R., Rittie L., Poitevin S., Monboisse J. C., Nguyen P., Potron G., et al. (2000). Human blood monocytes interact with type I collagen through alpha(x)ss(2) integrin (CD11c-CD18, gp150-95). J. OF Immunol. 164, 5928–5934. doi:  10.4049/jimmunol.164.11.5928 [DOI] [PubMed] [Google Scholar]
  36. Geuijen C. A. W., Sonnenberg A. (2002). Dynamics of the alpha6beta4 integrin in keratinocytes. Mol. Biol. Cell 13, 3845–3858. doi:  10.1091/mbc.02-01-0601 [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Goldmann O., Tuchscherr L., Rohde M., Medina E. (2016). α-Hemolysin enhances Staphylococcus aureus internalization and survival within mast cells by modulating the expression of β1 integrin. Cell. Microbiol. 18, 807–819. doi:  10.1111/cmi.12550 [DOI] [PubMed] [Google Scholar]
  38. Grayson M. H., van der Vieren M., Sterbinsky S. A., Michael Gallatin W., Hoffman P. A., Staunton D. E., et al. (1998). αdβ2 integrin is expressed on human eosinophils and functions as an alternative ligand for vascular cell adhesion molecule 1 (VCAM-1). J. Exp. Med. 188, 2187–2191. doi:  10.1084/jem.188.11.2187 [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Grenache D. G., Zhang Z., Wells L. E., Santoro S. A., Davidson J. M., Zutter M. M. (2007). Wound healing in the α2β1 integrin-deficient mouse: altered keratinocyte biology and dysregulated matrix metalloproteinase expression. J. Invest. Dermatol. 127, 455–466. doi:  10.1038/sj.jid.5700611 [DOI] [PubMed] [Google Scholar]
  40. Gubatan J., Keyashian K., Rubin S. J. S., Wang J., Buckman C. A., Sinha S. (2021). Anti-integrins for the treatment of inflammatory bowel disease: current evidence and perspectives. Clin. Exp. Gastroenterol. 14, 333–342. doi:  10.2147/CEG.S293272 [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Harding K. G., Morris H. L., Patel G. K. (2002). Healing chronic wounds. BMJ 324, 160. doi:  10.1136/bmj.324.7330.160 [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Hostetter M. K. (1996). An integrin-like protein in Candida albicans: implications for pathogenesis. Trends Microbiol. 4, 242–246. doi:  10.1016/0966-842X(96)10036-6 [DOI] [PubMed] [Google Scholar]
  43. Høye A. M., Couchman J. R., Wewer U. M., Fukami K., Yoneda A. (2012). The newcomer in the integrin family: Integrin α9 in biology and cancer. Adv. Biol. Regul. 52, 326–339. doi:  10.1016/j.jbior.2012.03.004 [DOI] [PubMed] [Google Scholar]
  44. Huang Z., Miao X., Patarroyo M., Nilsson G. P., Pernow J., Li N. (2016). Tetraspanin CD151 and integrin α6β1 mediate platelet-enhanced endothelial colony forming cell angiogenesis. J. Thromb. Haemostasis 14, 606–618. doi:  10.1111/jth.13248 [DOI] [PubMed] [Google Scholar]
  45. Huhtala P., Humphries M. J., McCarthy J. B., Tremble P. M., Werb Z., Damsky C. H. (1995). Cooperative signaling by alpha 5 beta 1 and alpha 4 beta 1 integrins regulates metalloproteinase gene expression in fibroblasts adhering to fibronectin. J. Cell Biol. 129, 867–879. doi:  10.1083/jcb.129.3.867 [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Hynes R. O. (1996). Targeted mutations in cell adhesion genes: what have we learned from them? Dev. Biol. 180, 402–412. doi:  10.1006/dbio.1996.0314 [DOI] [PubMed] [Google Scholar]
  47. Hynes R. O. (2004). The emergence of integrins: a personal and historical perspective. Matrix Biol. 23, 333–340. doi:  10.1016/j.matbio.2004.08.001 [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Jakhu H., Gill G., Singh A. (2018). Role of integrins in wound repair and its periodontal implications. J. Oral. Biol. Craniofacial Res. 8, 122–125. doi:  10.1016/j.jobcr.2018.01.002 [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Jett Bradley D., Gilmore Michael S. (2002). Internalization of staphylococcus aureus by human corneal epithelial cells: role of bacterial fibronectin-binding protein and host cell factors. Infection Immun. 70, 4697–4700. doi:  10.1128/iai.70.8.4697-4700.2002 [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Joh D., Wann E. R., Kreikemeyer B., Speziale P., Höök M. (1999). Role of fibronectin-binding MSCRAMMs in bacterial adherence and entry into mammalian cells. Matrix Biol. 18, 211–223. doi:  10.1016/S0945-053X(99)00025-6 [DOI] [PubMed] [Google Scholar]
  51. JÖNsson K., SignÄS C., MÜLler H.-P., Lindberg M. (1991). Two different genes encode fibronectin binding proteins in Staphylococcus aureus. Eur. J. Biochem. 202, 1041–1048. doi:  10.1111/j.1432-1033.1991.tb16468.x [DOI] [PubMed] [Google Scholar]
  52. Jun J.-I., Lau L. F. (2010). The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing. Nat. Cell Biol. 12, 676–685. doi:  10.1038/ncb2070 [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Kilshaw P. J. (1999). Alpha E beta 7. Mol. Pathol. 52, 203. doi:  10.1136/mp.52.4.203 [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Kintarak S., Whawell Simon A., Speight Paul M., Packer S., Nair Sean P. (2004). Internalization of staphylococcus aureus by human keratinocytes. Infection Immun. 72, 5668–5675. doi:  10.1128/iai.72.10.5668-5675.2004 [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Kochi S., Yamashiro K., Hongo S., Yamamoto T., Ugawa Y., Shimoe M., et al. (2017). Aggregatibacter actinomycetemcomitans regulates the expression of integrins and reduces cell adhesion via integrin α5 in human gingival epithelial cells. Mol. Cell. Biochem. 436, 39–48. doi:  10.1007/s11010-017-3076-z [DOI] [PubMed] [Google Scholar]
  56. LaFlamme S. E., Auer K. L. (1996). Integrin signaling. Semin. Cancer Biol. 7, 111–118. doi:  10.1006/scbi.1996.0016 [DOI] [PubMed] [Google Scholar]
  57. Lainé A., Labiad O., Hernandez-Vargas H., This S., Sanlaville A., Léon S., et al. (2021). Regulatory T cells promote cancer immune-escape through integrin αvβ8-mediated TGF-β activation. Nat. Commun. 12, 6228. doi:  10.1038/s41467-021-26352-2 [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Lau L. F. (2016). Cell surface receptors for CCN proteins. J. Cell Communication Signaling 10, 121–127. doi:  10.1007/s12079-016-0324-z [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Leroy-Dudal J., Gagnière H., Cossard E., Carreiras F., Di Martino P. (2004). Role of αvβ5 integrins and vitronectin in Pseudomonas aeruginosa PAK interaction with A549 respiratory cells. Microbes Infection 6, 875–881. doi:  10.1016/j.micinf.2004.05.004 [DOI] [PubMed] [Google Scholar]
  60. Liang X., Ji Y. (2006). Alpha-toxin interferes with integrin-mediated adhesion and internalization of Staphylococcus aureus by epithelial cells. Cell. Microbiol. 8, 1656–1668. doi:  10.1111/j.1462-5822.2006.00740.x [DOI] [PubMed] [Google Scholar]
  61. Liang X., Ji Y. (2007). Involvement of α5β1-integrin and TNF-α in Staphylococcus aureus α-toxin-induced death of epithelial cells. Cell. Microbiol. 9, 1809–1821. doi:  10.1111/j.1462-5822.2007.00917.x [DOI] [PubMed] [Google Scholar]
  62. Lin C. G., Chen C.-C., Leu S.-J., Grzeszkiewicz T. M., Lau L. F. (2005). Integrin-dependent functions of the angiogenic inducer NOV (CCN3): IMPLICATION IN WOUND HEALING*. J. Biol. Chem. 280, 8229–8237. doi:  10.1074/jbc.M404903200 [DOI] [PubMed] [Google Scholar]
  63. Lu F., Zhu L., Bromberger T., Yang J., Yang Q., Liu J., et al. (2022). Mechanism of integrin activation by talin and its cooperation with kindlin. Nat. Commun. 13, 2362. doi:  10.1038/s41467-022-30117-w [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Lygoe K. A., Norman J. T., Marshall J. F., Lewis M. P. (2004). αv integrins play an important role in myofibroblast differentiation. Wound Repair Regeneration 12, 461–470. doi:  10.1111/j.1067-1927.2004.12402.x [DOI] [PubMed] [Google Scholar]
  65. Mah T.-F., Pitts B., Pellock B., Walker G. C., Stewart P. S., O’Toole G. A. (2003). A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 426, 306–310. doi:  10.1038/nature02122 [DOI] [PubMed] [Google Scholar]
  66. Margadant C., Raymond K., Kreft M., Sachs N., Janssen H., Sonnenberg A. (2009). Integrin α3β1 inhibits directional migration and wound re-epithelialization in the skin. J. Cell Sci. 122, 278–288. doi:  10.1242/jcs.029108 [DOI] [PubMed] [Google Scholar]
  67. Martin P. (1997). Wound healing–aiming for perfect skin regeneration. Science 276, 75–81. doi:  10.1126/science.276.5309.75 [DOI] [PubMed] [Google Scholar]
  68. Mathelié-Guinlet M., Viela F., Alfeo M. J., Pietrocola G., Speziale P., Dufrêne Y. F. (2020). Single-molecule analysis demonstrates stress-enhanced binding between staphylococcus aureus surface protein isdB and host cell integrins. Nano Lett. 20, 8919–8925. doi:  10.1021/acs.nanolett.0c04015 [DOI] [PubMed] [Google Scholar]
  69. McDonnell C. J., Garciarena C. D., Watkin R. L., McHale T. M., McLoughlin A., Claes J., et al. (2016. a). Inhibition of major integrin αVβ3 reduces Staphylococcus aureus attachment to sheared human endothelial cells. J. Thromb. Haemostasis 14, 2536–2547. doi:  10.1111/jth.13501 [DOI] [PubMed] [Google Scholar]
  70. McDonnell C. J., Garciarena C. D., Watkin R. L., McHale T. M., McLoughlin A., Claes J., et al. (2016. b). Inhibition of major integrin αV β3 reduces Staphylococcus aureus attachment to sheared human endothelial cells. J. Thromb. Haemostasis 14, 2536–2547. doi:  10.1111/jth.13501 [DOI] [PubMed] [Google Scholar]
  71. Melby A. K., Cue D., Mousa S. A., Cleary P. P. (2000). An alpha 5beta 1/alphavbeta3 integrin antagonist inhibits Staphylococcus aureus invasion of epithelial cells. Abstracts Gen. Meeting Am. Soc. Microbiol. 100, 71. [Google Scholar]
  72. Mercurio A. M., Rabinovitz I., Shaw L. M. (2001). The α6β4 integrin and epithelial cell migration. Curr. Opin. Cell Biol. 13, 541–545. doi:  10.1016/S0955-0674(00)00249-0 [DOI] [PubMed] [Google Scholar]
  73. Mezu-Ndubuisi O. J., Maheshwari A. (2021). The role of integrins in inflammation and angiogenesis. Pediatr. Res. 89, 1619–1626. doi:  10.1038/s41390-020-01177-9 [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Miajlovic H., Zapotoczna M., Geoghegan J. A., Kerrigan S. W., Speziale P., Foster T. J. (2010). Direct interaction of iron-regulated surface determinant IsdB of Staphylococcus aureus with the GPIIb/IIIa receptor on platelets. Microbiology 156, 920–928. doi:  10.1099/mic.0.036673-0 [DOI] [PubMed] [Google Scholar]
  75. Mitchell K., Szekeres C., Milano V., Svenson K. B., Nilsen-Hamilton M., Kreidberg J. A., et al. (2009). α3β1 integrin in epidermis promotes wound angiogenesis and keratinocyte-to-endothelial-cell crosstalk through the induction of MRP3. J. Cell Sci. 122, 1778–1787. doi:  10.1242/jcs.040956 [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Morishita Y., Tada T., Sato A., Toi Y., Kanzaki H., Akiyama H. (1999). Possible influences of Staphylococcus aureus on atopic dermatitis — the colonizing features and the effects of staphylococcal enterotoxins. Clin. Exp. Allergy 29, 1110–1117. doi:  10.1046/j.1365-2222.1999.00593.x [DOI] [PubMed] [Google Scholar]
  77. Morse E. M., Brahme N. N., Calderwood D. A. (2014). Integrin cytoplasmic tail interactions. Biochemistry 53, 810–820. doi:  10.1021/bi401596q [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Mustoe T. A., O’Shaughnessy K., Kloeters O. (2006). Chronic wound pathogenesis and current treatment strategies: A unifying hypothesis. Plast. Reconstructive Surg. 117(7 Suppl):35S–41S. doi: 10.1097/01.prs.0000225431.63010.1b [DOI] [PubMed] [Google Scholar]
  79. Nakayama Y., Kon S., Kurotaki D., Morimoto J., Matsui Y., Uede T. (2010). Blockade of interaction of alpha 9 integrin with its ligands hinders the formation of granulation in cutaneous wound healing. Lab. Invest. 90, 881–894. doi:  10.1038/labinvest.2010.69 [DOI] [PubMed] [Google Scholar]
  80. Nascimento D. O., Vieira-De-Abreu A., Pacheco P. S., Bozza P. T., Zimmerman G., Castro-Faria-Neto H. C. (2008). The role of alpha(D)beta(2) integrin in Salmonella Typhimurium and Staphylococcus aureus infection. SHOCK 29, 80–81. [Google Scholar]
  81. Nikolopoulos S. N., Blaikie P., Yoshioka T., Guo W., Giancotti F. G. (2004). Integrin β4 signaling promotes tumor angiogenesis. Cancer Cell 6, 471–483. doi:  10.1016/j.ccr.2004.09.029 [DOI] [PubMed] [Google Scholar]
  82. Olsson M., Järbrink K., Divakar U., Bajpai R., Upton Z., Schmidtchen A., et al. (2019). The humanistic and economic burden of chronic wounds: A systematic review. Wound Repair Regeneration 27, 114–125. doi:  10.1111/wrr.12683 [DOI] [PubMed] [Google Scholar]
  83. Oommen S., Gupta S. K., Vlahakis N. E. (2011). Vascular endothelial growth factor A (VEGF-A) induces endothelial and cancer cell migration through direct binding to integrin {alpha}9{beta}1: identification of a specific {alpha}9{beta}1 binding site. J. Biol. Chem. 286, 1083–1092. doi:  10.1074/jbc.M110.175158 [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Otto M. (2014). Physical stress and bacterial colonization. FEMS Microbiol. Rev. 38, 1250–1270. doi:  10.1111/1574-6976.12088 [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Patel G. K., Finlay A. Y. (2003). Staphylococcal scalded skin syndrome. Am. J. Clin. Dermatol. 4, 165–175. doi:  10.2165/00128071-200304030-00003 [DOI] [PubMed] [Google Scholar]
  86. Patti J. M., Allen B. L., McGavin M. J., Höök M. (1994). MSCRAMM-MEDIATED ADHERENCE OF MICROORGANISMS TO HOST TISSUES. Annu. Rev. Microbiol. 48, 585–617. doi:  10.1146/annurev.mi.48.100194.003101 [DOI] [PubMed] [Google Scholar]
  87. Rhoads D. D., Cox S. B., Rees E. J., Sun Y., Wolcott R. D. (2012). Clinical identification of bacteria in human chronic wound infections: culturing vs. 16S ribosomal DNA sequencing. BMC Infect. Dis. 12, 321. doi:  10.1186/1471-2334-12-321 [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. Riederer I., Bonomo A. C., Mouly V., Savino W. (2015). Laminin therapy for the promotion of muscle regeneration. FEBS Lett. 589, 3449–3453. doi:  10.1016/j.febslet.2015.10.004 [DOI] [PubMed] [Google Scholar]
  89. Roger P., Puchelle E., Bajolet-Laudinat O., Tournier J. M., Debordeaux C., Plotkowski M. C., et al. (1999). Fibronectin and alpha5beta1 integrin mediate binding of Pseudomonas aeruginosa to repairing airway epithelium. Eur. Respir. J. 13, 1301. doi:  10.1034/j.1399-3003.1999.13f14.x [DOI] [PubMed] [Google Scholar]
  90. Rowan-Nash Aislinn D., Korry Benjamin J., Mylonakis E., Belenky P. (2019). Cross-domain and viral interactions in the microbiome. Microbiol. Mol. Biol. Rev. 83(1):e00044-18. doi:  10.1128/mmbr.00044-00018 [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Rusnati M., Tanghetti E., Dell’era P., Gualandris A., Presta M. (1997). alphavbeta3 integrin mediates the cell-adhesive capacity and biological activity of basic fibroblast growth factor (FGF-2) in cultured endothelial cells. Mol. Biol. Cell 8, 2449–2461. doi:  10.1091/mbc.8.12.2449 [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. Santoni G., Spreghini E., Lucciarini R., Amantini C., Piccoli M. (2001). Involvement of αvβ3 integrin-like receptor and glycosaminoglycans in Candida albicans germ tube adhesion to vitronectin and to a human endothelial cell line. Microbial Pathogenesis 31, 159–172. doi:  10.1006/mpat.2001.0459 [DOI] [PubMed] [Google Scholar]
  93. Sayedyahossein S., Xu S. X., Rudkouskaya A., McGavin M. J., McCormick J. K., Dagnino L. (2015). Staphylococcus aureus keratinocyte invasion is mediated by integrin-linked kinase and Rac1. FASEB J. 29, 711–723. doi:  10.1096/fj.14-262774 [DOI] [PubMed] [Google Scholar]
  94. Schwartz M. A., Ginsberg M. H. (2002). Networks and crosstalk: integrin signalling spreads. Nat. Cell Biol. 4, E65–E68. doi:  10.1038/ncb0402-e65 [DOI] [PubMed] [Google Scholar]
  95. Sehgal B. U., DeBiase P. J., Matzno S., Chew T.-L., Claiborne J. N., Hopkinson S. B., et al. (2006). Integrin β4 regulates migratory behavior of keratinocytes by determining laminin-332 organization*. J. Biol. Chem. 281, 35487–35498. doi:  10.1074/jbc.M606317200 [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Senger D. R., Claffey K. P., Benes J. E., Perruzzi C. A., Sergiou A. P., Detmar M. (1997). Angiogenesis promoted by vascular endothelial growth factor: Regulation through α1β1 and α2β1 integrins. Proc. Natl. Acad. Sci. 94, 13612–13617. doi:  10.1073/pnas.94.25.13612 [DOI] [PMC free article] [PubMed] [Google Scholar]
  97. Senger D. R., Davis G. E. (2011). Angiogenesis (Cold Spring Harbor Perspectives in Biology; ) 3(8):a005090. doi:  10.1101/cshperspect.a005090 [DOI] [PMC free article] [PubMed] [Google Scholar]
  98. Seo J. H., Lim J. W., Yoon J.-H., Kim H. (2009). Proteinase-activated receptor-2 mediates the expression of integrin α5 and β1 in helicobacter pylori-infected gastric epithelial AGS cells. Digestion 80, 40–49. doi:  10.1159/000216353 [DOI] [PubMed] [Google Scholar]
  99. Shinde A. V., Kelsh R., Peters J. H., Sekiguchi K., Van De Water L., McKeown-Longo P. J. (2015). The α4β1 integrin and the EDA domain of fibronectin regulate a profibrotic phenotype in dermal fibroblasts. Matrix Biol. 41, 26–35. doi:  10.1016/j.matbio.2014.11.004 [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. Siemens N., Patenge N., Otto J., Fiedler T., Kreikemeyer B. (2011). Streptococcus pyogenes M49 Plasminogen/Plasmin Binding Facilitates Keratinocyte Invasion via Integrin-Integrin-linked Kinase (ILK) Pathways and Protects from Macrophage Killing *. J. Biol. Chem. 286, 21612–21622. doi:  10.1074/jbc.M110.202671 [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. Silva V., Marcoleta A., Silva V., Flores D., Aparicio T., Aburto I., et al. (2018). Prevalencia y perfil de susceptibilidad antimicrobiana en bacterias aisladas de úlceras crónicas infectadas en adultos. Rev. Chil. infectología 35, 155–162. doi: 10.4067/s0716-10182018000200155 [DOI] [PubMed] [Google Scholar]
  102. Sinha B., François P. P., Nüße O., Foti M., Hartford O. M., Vaudaux P., et al. (1999). Fibronectin-binding protein acts as Staphylococcus aureus invasin via fibronectin bridging to integrin α5β1. Cell. Microbiol. 1, 101–117. doi:  10.1046/j.1462-5822.1999.00011.x [DOI] [PubMed] [Google Scholar]
  103. Sisco M., Chao J. D., Kim I., Mogford J. E., Mayadas T. N., Mustoe T. A. (2007). Delayed wound healing in Mac-1-deficient mice is associated with normal monocyte recruitment. Wound Repair AND REGENERATION 15, 566–571. doi:  10.1111/j.1524-475X.2007.00264.x [DOI] [PubMed] [Google Scholar]
  104. Skov L., Baadsgaard O. (2000). Bacterial superantigens and inflammatory skin diseases. Clin. Exp. Dermatol. 25, 57–61. doi:  10.1046/j.1365-2230.2000.00575.x [DOI] [PubMed] [Google Scholar]
  105. Sommer R., Wagner S., Rox K., Varrot A., Hauck D., Wamhoff E.-C., et al. (2018). Glycomimetic, orally bioavailable lecB inhibitors block biofilm formation of pseudomonas aeruginosa. J. Am. Chem. Soc. 140, 2537–2545. doi:  10.1021/jacs.7b11133 [DOI] [PubMed] [Google Scholar]
  106. Sun Z., Costell M., Fässler R. (2019). Integrin activation by talin, kindlin and mechanical forces. Nat. Cell Biol. 21, 25–31. doi:  10.1038/s41556-018-0234-9 [DOI] [PubMed] [Google Scholar]
  107. Swift M. E., Burns A. L., Gray K. L., DiPietro L. A. (2001). Age-related alterations in the inflammatory response to dermal injury. J. Invest. Dermatol. 117, 1027–1035. doi:  10.1046/j.0022-202x.2001.01539.x [DOI] [PubMed] [Google Scholar]
  108. Swindle E. J., Brown J. M., Rådinger M., DeLeo F. R., Metcalfe D. D. (2015). Interferon-γ enhances both the anti-bacterial and the pro-inflammatory response of human mast cells to Staphylococcus aureus. Immunology 146, 470–485. doi:  10.1111/imm.12524 [DOI] [PMC free article] [PubMed] [Google Scholar]
  109. Takada Y., Ye X., Simon S. (2007). The integrins. Genome Biol. 8, 215. doi:  10.1186/gb-2007-8-5-215 [DOI] [PMC free article] [PubMed] [Google Scholar]
  110. Tan S.-M. (2012). The leucocyte β2 (CD18) integrins: the structure, functional regulation and signalling properties. Bioscience Rep. 32, 241–269. doi:  10.1042/BSR20110101 [DOI] [PubMed] [Google Scholar]
  111. Theocharis A. D., Skandalis S. S., Gialeli C., Karamanos N. K. (2016). Extracellular matrix structure. Advanced Drug Delivery Rev. 97, 4–27. doi:  10.1016/j.addr.2015.11.001 [DOI] [PubMed] [Google Scholar]
  112. Thuenauer R., Landi A., Trefzer A., Altmann S., Wehrum S., Eierhoff T., et al. (2020). The pseudomonas aeruginosa lectin lecB causes integrin internalization and inhibits epithelial wound healing. mBio 11(2):e03260-19. doi:  10.1128/mbio.03260-03219 [DOI] [PMC free article] [PubMed] [Google Scholar]
  113. Tran Cindy S., Eran Y., Ruch Travis R., Bryant David M., Datta A., Brakeman P., et al. (2014). Host cell polarity proteins participate in innate immunity to pseudomonas aeruginosa infection. Cell Host Microbe 15, 636–643. doi:  10.1016/j.chom.2014.04.007 [DOI] [PMC free article] [PubMed] [Google Scholar]
  114. Uehara O., Bi J., Zhuang D., Koivisto L., Abiko Y., Häkkinen L., et al. (2022). Altered composition of the oral microbiome in integrin beta 6-deficient mouse. J. Oral. Microbiol. 14, 2122283. doi:  10.1080/20002297.2022.2122283 [DOI] [PMC free article] [PubMed] [Google Scholar]
  115. Venkatesan N., Perumal G., Doble M. (2015). Bacterial resistance in biofilm-associated bacteria. Future Microbiol. 10, 1743–1750. doi:  10.2217/fmb.15.69 [DOI] [PubMed] [Google Scholar]
  116. Vlahakis N. E., Young B. A., Atakilit A., Sheppard D. (2005). The lymphangiogenic vascular endothelial growth factors VEGF-C and -D are ligands for the integrin α9β1*. J. Biol. Chem. 280, 4544–4552. doi:  10.1074/jbc.M412816200 [DOI] [PMC free article] [PubMed] [Google Scholar]
  117. Wang P.-H., Huang B.-S., Horng H.-C., Yeh C.-C., Chen Y.-J. (2018). Wound healing. J. Chin. Med. Assoc. 81, 94–101. doi:  10.1016/j.jcma.2017.11.002 [DOI] [PubMed] [Google Scholar]
  118. Worthington John J., Kelly A., Smedley C., Bauché D., Campbell S., Marie Julien C., et al. (2015). Integrin αvβ8-mediated TGF-β Activation by effector regulatory T cells is essential for suppression of T-cell-mediated inflammation. Immunity 42, 903–915. doi:  10.1016/j.immuni.2015.04.012 [DOI] [PMC free article] [PubMed] [Google Scholar]
  119. Wu Y.-K., Cheng N.-C., Cheng C.-M. (2019). Biofilms in chronic wounds: pathogenesis and diagnosis. Trends Biotechnol. 37, 505–517. doi:  10.1016/j.tibtech.2018.10.011 [DOI] [PubMed] [Google Scholar]
  120. Yarwood J. M., Leung D. Y. M., Schlievert P. M. (2000). Evidence for the involvement of bacterial superantigens in psoriasis, atopic dermatitis, and Kawasaki syndrome. FEMS Microbiol. Lett. 192, 1–7. doi:  10.1111/j.1574-6968.2000.tb09350.x [DOI] [PubMed] [Google Scholar]
  121. Zapotoczna M., Jevnikar Z., Miajlovic H., Kos J., Foster T. J. (2013). Iron-regulated surface determinant B (IsdB) promotes Staphylococcus aureus adherence to and internalization by non-phagocytic human cells. Cell. Microbiol. 15, 1026–1041. doi:  10.1111/cmi.12097 [DOI] [PubMed] [Google Scholar]
  122. Zeltz C., Gullberg D. (2016). The integrin–collagen connection – a glue for tissue repair? J. Cell Sci. 129, 653–664. doi:  10.1242/jcs.180992 [DOI] [PubMed] [Google Scholar]

Articles from Frontiers in Cellular and Infection Microbiology are provided here courtesy of Frontiers Media SA

RESOURCES