Skip to main content
Brain & Spine logoLink to Brain & Spine
. 2024 Jan 5;4:102745. doi: 10.1016/j.bas.2024.102745

Surgical treatment of traumatic fractures of the thoracic and lumbar spine: A systematic review

Timon FG Vercoulen a,b,, Menco JS Niemeyer b, Felix Peuker b, Jorrit-Jan Verlaan b, F Cumhur Oner b, Said Sadiqi b
PMCID: PMC10951763  PMID: 38510618

Abstract

Introduction

The treatment of traumatic thoracic and lumbar spine fractures remains controversial. To date no consensus exists on the correct choice of surgical approach and technique.

Research question

to provide a comprehensive up-to-date overview of the available different surgical methods and their quantified outcomes.

Methods

PubMed and EMBASE were searched between 2001 and 2020 using the term ‘spinal fractures’. Inclusion criteria were: adults, ≥10 cases, ≥12 months follow-up, thoracic or lumbar fractures, and surgery <3 weeks of trauma. Studies were categorized per surgical technique: Posterior open (PO), posterior percutaneous (PP), stand-alone vertebral body augmentation (SA), anterior scopic (AS), anterior open (AO), posterior percutaneous and anterior open (PPAO), posterior percutaneous and anterior scopic (PPAS), posterior open and anterior open (POAO) and posterior open and anterior scopic (POAS). The PO group was used as a reference group.

Results

After duplicate removal 6042 articles were identified. A total of 102 articles were Included, in which 137 separate surgical technique cohorts were described: PO (n = 75), PP, (n = 39), SA (n = 12), AO (n = 5), PPAO (n = 1), PPAS (n = 1), POAO (n = 2) and POAS (n = 2).

Discussion and conclusion

For type A3/A4 burst fractures, without severe neurological deficit, posterior percutaneous (PP) technique seems the safest and most feasible option in the past two decades. If needed, PP can be combined with anterior augmentation to prevent secondary kyphosis. Furthermore, posterior open (PO) technique is feasible in almost all types of fractures. Also, this technique can provide for an additional posterior decompression or fusion. Overall, no neurologic deterioration was reported following surgical intervention.

Keywords: Spine, Trauma, Thoracal, Lumbar, Fracture, Surgery

Highlights

  • Posterior percutaneous fixation seem to produce comparable results on kyphosis correction compared to the posterior open technique, with less blood loss and a shorter duration of surgery for type A3/A4 burst fractures, without severe neurological deficit.

  • A posterior open technique is feasible in almost all types of fractures, and is most applied when additional posterior decompression or fusion is required, which cannot be achieved by more minimal invasive methods.

  • Overall, following all surgical techniques no neurological deterioration was reported.

1. Introduction

Controversies remain on the optimal treatment of traumatic thoracic and lumbar spine fractures. Among different countries, regions, hospitals and even surgeons a wide range of treatment alternatives are seen, depending on their training and available materials (Vaccaro et al., 2016; Thomas et al., 2006; Abudou et al., 2013). In order to uniform the description, cluster fractures, and determine prognosis, a variety of classification systems have been introduced. Currently, the most commonly used system is the AO Spine Thoracolumbar Classification System, which incorporates radiological morphology and clinical factors (Vaccaro et al., 2013). However, as it does offer a uniform description for thoracic and lumbar fractures of the spine, it is not a treatment algorithm.

Depending on several clinical parameters, traumatic thoracic and lumbar spine fractures can be treated either surgical or conservative. Surgical treatment aims to reduce the fracture, prevent neurological deterioration, avoid further post-traumatic spinal deformity while maintaining spinal alignment and, if needed, perform a neural decompression. However, there is variety in literature regarding the optimal surgical approach and technique for different types of spine fractures. The decision depends on injury morphology, neurological status, integrity of the posterior ligamentous complex, available resources and, probably most importantly, surgeon expertise. Roughly, the types of surgical approach can be classified as anterior, posterior or combined. The choice depends on the required reduction, stabilization and neural decompression (Vaccaro et al., 2006). In 2004, Verlaan et al. published a thorough review that described the clinical relevance of the surgical treatment options for traumatic thoracic and lumbar fractures. Over the past two decades there have been various developments and less invasive techniques have become more mainstream.

Various meta-analysis and narrative reviews have been published on the treatment of traumatic thoracic and lumbar fractures of the spine (Xu et al., 2013; Lu et al., 2022; McAnany et al., 2016; Phan et al., 2015; Yi et al., 2006; Hughes et al., 2021; Sun et al., 2017; Tan et al., 2019; Kim et al., 2015; Pneumaticos et al., 2013). However, no comprehensive up-to-date overview is available of the different surgical methods, while using quantified outcome data. Therefore, the current authors have sought to provide an update on the 2004 review, using the same research team and more extensive methods (Verlaan et al., 2004).

2. Methods

2.1. Search strategy

A systematic literature search was performed in PubMed and EMBASE using the search term ‘Spinal fractures’ for articles published between 2001 and 2020. No language restrictions were imposed and a cross-reference check was performed (Appendix 1). For all missing full-texts the library of our academic institution was consulted, and the authors were e-mailed with the request to provide the full text.

2.2. Study selection

Article screening was performed by four researchers (TV, MN, FP, SS). Inclusion criteria were: reporting adult subjects (>18 years of age); including more than 10 cases; a minimum of 12 months of follow-up; adequate description of the surgical procedure; using generally accepted outcome instruments; surgery performed within three weeks after trauma; including only thoracic or lumbar fractures. Studies that included non-traumatic fractures of the spine were excluded. The articles meeting the inclusion and exclusion criteria were extracted for full-text analysis.

2.3. Data extraction

Data extraction was performed using a standardized form, simultaneously accessible for all authors (Google Spreadsheets, Google LLC, 2021/2022). Studies were categorized per surgical approach (posterior, anterior or combined) and sub-divided in one of the nine surgical technique groups.

  • Posterior open (PO)

  • Posterior percutaneous (PP)

  • Stand-alone vertebral augmentation (SA)

  • Anterior scopic (AS)

  • Anterior open (AO)

  • Posterior percutaneous and anterior open (PPAO)

  • Posterior percutaneous and anterior scopic (PPAS)

  • Posterior open and anterior open (POAO)

  • Posterior open and anterior scopic (POAS).

A description of the included studies is outlined in Appendix 1.

2.4. Data analysis

No quality assessment could be performed. Data was analyzed using the abovementioned surgical technique groups. Descriptive statistics were applied to summarize the distribution of values per group. The PO group was considered as the reference group, since it was found to be the most applied approach and included the largest number of studies and subjects.

To calculate the Cobb angle correction loss, the difference in Cobb angle between the directly postoperative Cobb angle and the Cobb angle at follow-up were calculated for each surgical technique group. Overall correction was defined as the difference between the pre-operative Cobb angle and the Cobb angle at follow-up.

3. Results

In total, 9151 articles were identified following the search strategy. A cross-reference check resulted in 107 additional articles. After duplicate removal, as well as title and abstract screening, 312 articles remained for further analysis. Of these articles, 209 were excluded due to various reasons (Fig. 1). Ultimately, 102 articles were analyzed of which 137 patient cohorts could be extracted that were treated with any of the surgical techniques. Five prospective controlled trials were found comparing the following.

  • different time to surgery using traditional posterior pedicle screw constructs (Cengiz et al., 2008),

  • applying a traditional posterior pedicle screw construct using a less invasive posterior approach compared with an open approach (Chang et al., 2018),

  • the use of a traditional posterior pedicle screw construct compared with a group where posterior fusion was added (Jindal et al., 2012),

  • the use of a traditional posterior pedicle screw construct compared with a group with added laminar hooks (Korovessis et al., 2004),

  • posterior fusion with instrumentation, compared with anterior fusion with instrumentation (Wood et al., 2005).

Fig. 1.

Fig. 1

PRISMA flow chart of included studies.

The other studies were prospective or retrospective cohort studies. The posterior (PO (n = 75)17-77, PP (n = 39) (Fan et al., 2017; Kocis et al., 2020; Lee et al., 2013; Lyu et al., 2016; Pishnamaz et al., 2015; Vanek et al., 2014; Wang et al., 2017; Wang et al., 2013; Zhang et al., 2016; Zou et al., 2017; Afzal et al., 2008; Altay et al., 2007; Andress et al., 2002; Butt et al., 2007; Caruso et al., 2019; Caruso et al., 2018; Ding et al., 2021; He et al., 2013; Jiang et al., 2020; Kerschbaumer et al., 2019; Korovessis et al., 2008b; Korovessis et al., 2017; Korovessis et al., 2014; Li et al., 2016b; Manson et al., 2020; Padalkar and Mehta, 2017; Podet et al., 2020; Proietti et al., 2014; Sanli et al., 2019; Shao et al., 2020; Shin et al., 2020; Teyssedou et al., 2012; Trungu et al., 2019), SA (n = 13)) (He et al., 2013; Kerschbaumer et al., 2019; Teyssedou et al., 2012; Costa et al., 2009; Grelat et al., 2018; Hartmann et al., 2012; Hartmann et al., 2015; Klezl et al., 2011; Maestretti et al., 2014; Saget et al., 2014; Schmelzer-Schmied et al., 2009; Schulz et al., 2015), and anterior (AO (n = 5)) (Wood et al., 2005; Shin et al., 2020; Liang et al., 2017; Oskouian et al., 2006; Smith et al., 2010; Yang et al., 2012) approaches seemed to be the most often reported surgical techniques. As an anterior scopic technique only thoracoscopy was reported, in the found studies it was not used as the sole surgical technique. A combination of these (PPAO (Kreinest et al., 2017), PPAS (Spiegl et al., 2013), POAO (Korovessis et al., 2006; Payer, 2006) and POAS (Schmid et al., 2012; Tandon et al., 2020)) were studied occasionally (Fig. 2). In the past decade, there was an increase in studies including posterior percutaneous technique (PP) while a decrease in studies was observed reporting posterior open technique (PO). The largest number of articles were from Asia (n = 66) followed by Europe (n = 59) (Appendix 2). The mean year published, age, follow-up duration, gender ratio and number of polytrauma patients are reported in Table 1.

Fig. 2.

Fig. 2

Published cohorts per year and type of surgery. PO: Posterior open, PP: Posterior percutaneous, SA: Stand-alone vertebral body augmentation AO: Anterior open, PPAO: Posterior percutaneous and anterior open; PPAS: Posterior percutaneous and anterior scopic, POAO: Posterior open and anterior open, POAO Posterior open and anterior open, POAS: Posterior open and anterior scopic.

Table 1.

General information on the study population.

Patients/cohorts Posterior
Anterior
Combined

PO
PP
SA
AO
PPAO
PPAS
POAO
POAS
2371/75 1366/39 408/12 325/5 47/1 10/1 40/2 36/2
Year published (mean (range)) 2012 2015 2013 2012 2017 2013 2006 2016
(2002–2020) (2002–2020) (2009–2019) (2005–2020) (2006–2006) (2012–2020)
follow-up (months) 32 26 29 31 37 77 35 59,7
range (12–166) (12–72) (12–120) (21–45) (24–46) (20–99)
mean age (years) 41 45 50 42 47 42 38 37
range (25–60) (33–72) (34–75) (38–47) (36–39) (36–39)
gender-ratio (M/F) 0.66 0.62 0.55 0.64 0.55 0.60 0.75 0.67
range (0.40–1.00) (0.45–0.81) (0.34–0.70) (0.55–0.77) (0.70–0.80) (0.57–0.77)
Polytrauma (mean, SD) 9 25 2 NR NR NR NR NR
(11) (13) (NA)

PO: Posterior open, PP: Posterior percutaneous, SA: Stand-alone vertebral body augmentation, AO: Anterior open, PPAO: Posterior percutaneous and anterior open; PPAS: Posterior percutaneous and anterior scopic, POAO: Posterior open and anterior open, POAO Posterior open and anterior open, POAS: Posterior open and anterior scopic.

3.1. Pre-operative

Among the included studies, the most prevalent fracture was a burst fracture of the thoracolumbar spine (AO Spine Classification type A3 or A4). Only ten studies reported on polytrauma patient (PO (Korovessis et al., 2004; Knop et al., 2002; Leferink et al., 2003; Wang et al., 2014a; Xiong et al., 2013; Yue et al., 2002), PP (Podet et al., 2020; Sanli et al., 2019), and SA (Hartmann et al., 2012)), of which four studies included more than 50 percent of polytrauma patients (Xiong et al., 2013; Wang et al., 2014a; Yue et al., 2002; Podet et al., 2020). Most of the differences between studies were found in the pre-operative neurological status. Relatively, more serious pre-operative neurological impairment was seen in patients that received an anterior or combined (anterior and posterior) surgical approach (Table 1, Table 2).

Table 2.

Pre-operative status of the study population.

Fracture Type (AO classification) Posterior
Anterior
Combined
PO PP SA AO PPAO PPAS POAO POAS
Patients reported (n), percentage of reported (%) 2265 (100%) 1295 (100%) 344 (100%) 217 (100%) 47 (100%) 10 (100%) 40 (100%) 36 (100%)
A0, A1, A2 237 (10%) 278 (21%) 209 (61%) 3 (2%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
A3, A4 1603 (70%) 816 (63%) 135 (39%) 154 (68%) 38 (81%) 10 (100%) 34 (85%) 36 (100%)
B 189 (8%) 172 (13%) 0 (0%) 47 (24%) 9 (19%) 0 (0%) 3 (8%) 0 (0%)
C 256 (11%) 29 (2%) 0 (0%) 13 (7%) 0 (0%) 0 (0%) 3 (8%) 0 (0%)
Region of fracture
Subjects (n), percentage of total (%)a 2234 (100%) 1274 (100%) 408 (100%) 303 (100%) 47 (100%) 10 (100%) 40 (100%) 36 (100%)
All levels 655 (29%) 605 (47%) 252 (62%) 163 (54%) 47 (100%) 0 (0%) 0 (0%) 22 (61%)
Thoracic 110 (5%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Thoracolumbar 853 (38%) 478 (38%) 135 (33%) 20 (7%) 0 (0%) 10 (100%) 20 (50%) 14 (39%)
Lumbar 97 (4%) 16 (1%) 0 (0%) 120 (39%) 0 (0%) 0 (0%) 20 (50%) 0 (0%)
Combinationa 519 (23%) 175 (14%) 21 (5%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Neurological status (ASIA)
Subjects (n), percentage of total (%) 2318 (100%) 1266 (100%) 348 (100%) 277 (100%) 47 (100%) 10 (100%) 40 (100%) 36 (100%)
A 239 (10%) 21 (2%) 0 (0%) 63 (23%) 0 (0%) 0 (0%) 6 (15%) 22 (61%)
B 149 (6%) 38 (3%) 0 (0%) 48 (18%) 0 (0%) 0 (0%) 2 (5%) 0 (0%)
C 243 (11%) 64 (5%) 0 (0%) 62 (22%) 0 (0%) 0 (0%) 8 (20%) 0 (0%)
D 282 (12%) 62 (6%) 0 (0%) 59 (21%) 0 (0%) 0 (0%) 5 (13%) 0 (0%)
E 1407 (61%) 1081 (84%) 348 (100%) 45 (16%) 47 (100%) 10 (100%) 19 (48%) 14 (39%)

PO: Posterior open, PP: Posterior percutaneous, SA: Stand-alone vertebral body augmentation, AO: Anterior open, PPAO: Posterior percutaneous and anterior open; PPAS: Posterior percutaneous and anterior scopic, POAO: Posterior open and anterior open, POAO Posterior open and anterior open, POAS: Posterior open and anterior scopic.

a

‘All levels’ includes thoracic, thoracolumbar and lumbar fractures, ‘combination’ includes a combination of two of the three regions.

3.2. Surgical characteristics

In the PO group, transpedicular spongioplasty using mainly autologous bone grafts, or a mixture with allograft or calcium sulfate was used in 19% of the subjects. In 58% of the subjects in the PO group, an additional decompression and fusion using various types of grafts was applied. Both the PO and PP groups showed small numbers of additional vertebroplasty or kyphoplasty (3% and 1%, respectively). Less fusion, grafts, decompression, and transpedicular spongioplasty were applied in the PP group.

The mean intra-operative blood loss was 430 ml in PO and 239 ml in PP. For SA, blood loss was only reported in two studies (0 ml and 450 ml) (He et al., 2013; Verlaan et al., 2005). The reported duration of surgery was lowest in the SA group, followed by the PP group and highest in the PO group (50, 95, and 134 min, respectively) (Table 3).

Table 3.

Surgery characteristics.

Surgery characteristics percentage of total (%) Posterior
Anterior
Combined
PO PP SA AO PPAS POAO POAS
Patients reported (n), percentage of reported (%) 2312 1320 NR NR NR NR NR
Transpedicular spongioplasty 425 (19%) 32 (2%) NR NR NR NR NR
Patients reported (n) 1548 1000 368 NR NR NR NR
Vertebro- or kyphoplasty 45 (3%) 26 (1%) 368 (100%) NR NR NR NR
Patients reported (n) 1600 748 368 NR NR NR NR
Cement 207 (13%) 52 (7%) 368 (100%) NR NR NR NR
Patients reported (n) 2211 1071 NR 325 10 40 36
Decompression 1020 (46%) 177 (17%) NR 254 (%) 0 9 (23%) 36 (100%)
Patients reported (n) 2048 1118 NR NR 10 40 36
Fusion 1357 (58%) 320 (29%) NR NR 0 40 (100%) 36 (100%)
Graft 1429a 341b NR 253c 10d 40% 36e
Patients reported (n) 1422 774 42 274 NR 40 36
Blood loss (ml, (SD)) 430 (332) 239 (444) 225 (317) 819 (460) NR 1425 (107) 722 (549)
Patients reported (n) 1525 947 196 274 NR 40 36
Duration (min, (SD)) 134 (58) 95 (57) 60 (44) 216 (86) NR 288 (61) 155 (82)

PO: Posterior open, PP: Posterior percutaneous, SA: Stand-alone vertebral body augmentation, AO: Anterior open, PPAO: Posterior percutaneous and anterior open; PPAS: Posterior percutaneous and anterior scopic, POAO: Posterior open and anterior open, POAO Posterior open and anterior open, POAS: Posterior open and anterior scopic.

%: anterior: autograft cortical n = 20, both autograft cancellous and artificial; posterior: autograft cortical n = 20, allograft cancellous n = 20.

a

autograft cancellous n = 271, autograft cortical n = 365, allograft cancellous n = 63, artificial n = 20, unknown n = 207, both autograft cancellous and cortical n = 130, both auto- and allograft cancellous n = 30, both autograft cancellous and artificial n = 137, both auto- and allograft cortical n = 64, allograft cancellous + cortical and autograft cortical n = 32, both auto- and allograft cancellous and cortical n = 110.

b

autograft cancellous n = 50, autograft cortical n = 158, artificial n = 38, unknown n = 95.

c

autograft cancellous n = 171, both autograft cancellous and cortical n = 22, autograft cancellous and allograft cortical n = 60.

d

anterior: unknown n = 10; posterior: autograft cortical n = 10.

e

anterior: autograft cancellous n = 14, both autograft cancellous and cortical n = 22; posterior: both autograft cancellous and cortical n = 36.

3.3. Post-operative

Post-operative data, including immobilization method (e.g. brace), hospital stay and complications, was reported for only 11 of the 74 cohorts. A wide variety in immobilization period was found, in mean amount of weeks this was 11 (PP), 8 (PO), 3 (SA), 1 (AO), 3 (POAO). If reported, then often a brace was used (Butt et al., 2008; Formica et al., 2016; Guo et al., 2010; Khattab and Elkhateeb, 2019; Zou et al., 2017; Butt et al., 2007; Shin et al., 2020). Moreover, the hospital stay (mean days) was 10 in three PP cohorts (Pishnamaz et al., 2015; Butt et al., 2007; Shin et al., 2020) and 7 in three PO cohorts (Formica et al., 2016; Khattab and Elkhateeb, 2019; Pishnamaz et al., 2015). Of the number of patients with reported data on post-operative complications, 4% of the PO group (Butt et al., 2008; Formica et al., 2016; Guo et al., 2010; Khattab and Elkhateeb, 2019; Pishnamaz et al., 2015; Zou et al., 2017) 10% in PP group (Pishnamaz et al., 2015; Zou et al., 2017; Butt et al., 2007) and 4% in AO group (Shin et al., 2020) had a complication of any sorts.

3.4. Follow-up

Reports of material failure were rare, yet occurred most following PO (2%), followed by PP (1%) and SA (0–1%). No material failure was found following AO and POAO. As shown in Table 4, reoperation rate was low in all groups, ranging from 0 to 2%. The Cobb angle pre-operatively and at follow-up was widely reported (Table 5). The lowest overall correction was found following SA (1°), the other cohorts measured a minimum of 6°. The change in ASIA score was reported in 53 cohorts (PO), 29 cohorts (PP), 10 cohorts (SA), 5 cohorts (AO), 2 cohorts (POAS) and 1 cohort (POAO). Overall, any surgical intervention led to an improvement of ASIA score or an unchanged ASIA score, with the exception of two cases of neurological deterioration. One patient in the PO group deteriorated from ASIA D to ASIA A and one in the PP group from ASIA D to ASIA B (Fig. 3) 725.

Table 4.

Complications at follow-up and immobilization duration.

General follow-up data Posterior
Anterior
Combined
PO PP SA AO POAO POAS
Patients reported (n) (cohorts reported) 1152–1638 (36–56) 342–525 (13–20) 301–308 (10–11) 98 - 209 (2–4) 0-3 (1–2) 36 (2)
Weeks immobilization (mean weeks), range 8 (0–24) 10 (0–36) 3 (0–13) 2 (0–4) 3 (NA) 0
Material failure (n, %) 41 (3%) 7 (2%) 0 1 (0–1%) 0 NR
Reoperation (n, %) 27 (2%) 7 (1%) 1 (0–1%) 0 0 NR

PO: Posterior open, PP: Posterior percutaneous, SA: Stand-alone vertebral body augmentation, AO: Anterior open, POAO: Posterior open and anterior open, POAO Posterior open and anterior open, POAS: Posterior open and anterior scopic.

Table 5.

Cobb angle pre-operative, post-operative and at follow-up. Also reported are the correction lost and overall correction at final follow-up.

Posterior
Anterior
Combined
PO PP SA AO PPAO POAO POAS
Pre-operative
Patients reported (n) 1944 1074 353 277 47 40 36
Cobb (mean, SD) 15.2 (8.1) 13.5 (6.5) 7.3 (7.7) 17.3 (2.3) 14 18.0 (2.8) 10.0 (33.9)
Post-operative
Patients reported (n) 177 100 NR 46 NR NR NR
Cobb (mean, SD) 1.18 (2.94) 6.13 (6.53) 11.9 (NA) NR NR
Follow-up
Patients reported (n) 1762 938 344 277 NR 40 14
Follow-up duration (range) 34 (12–166)* 25 (12–72) 34 (12–120) 29 (21–45) 35 (24–46) 20
Cobb (mean, SD) 7.65 (5.99) 7.23 (4.65) 6.09 (9.29) 9.68 (7.98) 7.65 (9.40) −2.40
Relations
Patients reported (n) 177 100 NR 46 NR NR NR
Correction lost (mean, SD) 6.42 (2.25) 2.10 (5.56) 9.10 (NA) NR NR
Patients reported (n), (cohorts reported) 1706 (56) 962 (29) 323 (8) 277 (4) NR 40 (2) 14 (1)
Overall correction (mean, SD) 7.50 (6.70) 6.39 (5.23) 1.06 (4.31) 7.65 (7.91) 10.35 (6.58) 11.6 (NA)

PO: Posterior open, PP: Posterior percutaneous, SA: Stand-alone vertebral body augmentation, AO: Anterior open, PPAO: Posterior percutaneous and anterior open; PPAS: Posterior percutaneous and anterior scopic, POAO: Posterior open and anterior open, POAO Posterior open and anterior open, POAS: Posterior open and anterior scopic; SD: Standard deviation; NR: Not reported; NA: Not applicable.

Fig. 3.

Fig. 3

ASIA score pre-operative and post-operative per surgical method.

4. Discussion

As this study shows, there has been a substantial number of publications on the surgical treatment of traumatic thoracic and lumbar spine fractures. However, the quality of the available evidence is low, with only a small number of randomized controlled trials (RCT). Various surgical treatment techniques have been compared in mostly mono-center retrospective cohort studies, with incomparable results due to a difference in follow-up time points and outcomes. This comprehensive systematic review quantifies the different outcomes data of all available studies concerning surgical treatment of traumatic thoracic and lumbar spine fractures over the past two decades. The quantity of the available data provides the best possible means to evaluate trends in surgical methods.

It is notable that the posterior percutaneous technique (PP) has been gaining in popularity in recent years. The posterior percutaneous technique is applied in similar rates and spinal regions in patients with type A3/A4 burst fractures and type B distraction injury fractures. It also measures comparable results to the posterior open technique (PO) regarding kyphosis correction, with less blood loss and a shorter surgery duration. Overall, the postoperative immobilization (e.g., with a brace) period seemed slightly less compared to PO the hospital length of stay in the PP group was relatively longer. This could be explained due to the low amount of studies that reported on this subject and the differences between the patient population of the studies. The included studies by Phan et al. (2015) and Lu et al. (2022) compared PP with PO and reported a shorter hospital stay, shorter operation time, lower infection rates and better pain scores following surgery, while maintaining similar radiographic outcome data (Lu et al., 2022; Phan et al., 2015). However, PP requires a longer learning curve and may expose the surgeon to more radiation (Court and Vincent, 2012). Moreover, it is rarely used in combination with neural decompression (Wood et al., 2005; Fan et al., 2017; Kocis et al., 2020; Lee et al., 2013; Lyu et al., 2016; Pishnamaz et al., 2015; Vanek et al., 2014; Wang et al., 2017; Wang et al., 2013; Zhang et al., 2016; Zou et al., 2017; Afzal et al., 2008; Altay et al., 2007; Andress et al., 2002; Butt et al., 2007; Caruso et al., 2019; Caruso et al., 2018; Ding et al., 2021; He et al., 2013; Jiang et al., 2020; Kerschbaumer et al., 2019; Korovessis et al., 2008b; Korovessis et al., 2017; Korovessis et al., 2014; Li et al., 2016b; Manson et al., 2020; Padalkar and Mehta, 2017; Podet et al., 2020; Proietti et al., 2014; Sanli et al., 2019; Shao et al., 2020; Shin et al., 2020; Teyssedou et al., 2012; Trungu et al., 2019).

Between 2009 and 2015 there was a rise in stand-alone vertebral augmentation (SA) use without fixation, mainly in Europe. Furthermore, only data of neurological intact patients that sustained a type A fracture was available. Advantages of the SA procedures include its minimal invasive approach, restoration of kyphosis, maintaining kyphosis correction and early pain reduction (He et al., 2013; Kerschbaumer et al., 2019; Teyssedou et al., 2012; Costa et al., 2009; Grelat et al., 2018; Hartmann et al., 2012; Hartmann et al., 2015; Klezl et al., 2011; Maestretti et al., 2014; Saget et al., 2014; Schmelzer-Schmied et al., 2009; Schulz et al., 2015; Verlaan et al., 2005). This procedure is mainly compared to conservative treatment with a brace, or a combination of posterior fixation and vertebroplasty or kyphoplasty. Three studies in the current review compared PP combined with SA to SA alone, and found that a combination of SA and PP had more favorable results (He et al., 2013; Kerschbaumer et al., 2019). This may be indicated when there is an A3 or A4 fracture with significant comminution or severely affected endplates. In this situation, protrusion of the intervertebral disc can occur through the endplates, possibly leading to failure of kyphosis correction (Teyssedou et al., 2012; Saget et al., 2014; Verlaan et al., 2005). The result of SA and PP combined was most favorable in a study by He et al. (2013), where only patients older than 65 years were included (He et al., 2013). This could be because of the increased benefit for elderly patients from anterior reinforcement and additional posterior reinforcement of the spine. The beneficial effect might be explained due to pre-existent sagittal- and coronal balance problems, possibly causing higher acting forces on the implants (Benoist, 2003). Furthermore, It should be noted that the risk of (osteoporotic) fractures may be higher in these patients, possibly resulting in different fracture characteristics limiting comparison to traumatic fractures (Waterloo et al., 2012). Although studies with osteoporotic fractures were excluded, age-related loss of bone density may have affected these results. The Deutsche Gesellschaft für Orthopädie und Unfallchirurgie (DGOU) Osteoporotic Fracture Classification System makes a clear distinction in fracture assessment for osteoporotic fractures of the spine (Schnake et al., 2018). This distinction should be acknowledged in future studies, and different treatment strategies may be needed separately for non-osteoporotic vertebral fractures and osteoporotic vertebral fractures.

The studies on anterior approaches only addressed the open variant. A relatively large number of patients with neurological deficit and more severe fractures were included. One of the studies used a procedure called selective corpectomy, in which the vertebral body was spared as much as possible to reduce the risk of cage subsidence (Liang et al., 2017). Advantages mentioned in this study include a more thorough neural decompression and clearance of the spinal canal, the need of stabilization of fewer segments for the same strength of the construct compared to posterior fusion (Allain, 2011; Xu et al., 2013). However, it should be noted that no difference in neurological recovery was found. This is also found in the study by Xu et al., in which the open anterior (AO) approach was associated with longer operative time, similar neurological outcome, greater blood loss and higher costs than the posterior open (PO) approach for thoracolumbar fractures (Xu et al., 2013). Despite only few studies reported on complication rate, similar rate of complications were reported between both procedures (Shin et al., 2020; Liang et al., 2017; Oskouian et al., 2006; Smith et al., 2010; Yang et al., 2012). It is likely that the complication and immobilization rates is underreported in literature.

4.1. Implications

Due to the variability in study design of the included articles, these findings should be interpreted with care. The authors would like to emphasize the importance of a uniform method to report the outcome of after treatment of traumatic thoracic and lumbar spine fractures. To standardize reporting, it is important to classify fractures according to the common and widely used classification systems, document neurological recovery according to a uniform system and report on relevant surgical characteristics (e.g., complication rate). Furthermore, the authors of this study would like to acknowledge the importance of including patient-reported outcomes for evaluating the success of surgical techniques during follow-up moment, besides using merely radiographic angles. Recently, the AO Spine PROST (Patient Reported Outcome Spine Trauma) was developed as the first patient-reported outcome measure specifically designed for spine trauma patients (Sadiqi et al., 2021; Sadiqi et al., 2017; Sadiqi et al., 2020).

4.2. Limitations

This systematic review has several limitations. There is a high probability of selection bias and publication bias, due to the retrospective nature and low sample sizes in most studies. However, due to the vast quantity of included studies, this study exemplifies a contemporary trend of the current practice of the different surgical techniques. Unfortunately, no meta-analysis could be performed due to the heterogeneity in methodology, follow-up, and outcome measures used in the included studies. Moreover, various important injury and patient characteristics—e.g., the frequency and severity of polytrauma injuries—were rarely reported.

5. Conclusion

In conclusion, this comprehensive systematic review describes and compares quantitative data regarding different surgical techniques for the treatment of traumatic thoracic and lumbar spine fractures. For type A3/A4 burst fractures without severe neurological deficit, posterior percutaneous (PP) technique seems the safest and most feasible option. If needed, PP can be combined with anterior augmentation in order to prevent secondary kyphosis in communitive fractures or severely affected endplates. Furthermore, posterior open (PO) technique is feasible in almost all types of fractures. Also, there seems to be particular use for this technique when additional posterior decompression or fusion is required, which cannot be achieved by more minimal invasive methods. Overall, no neurologic deterioration was reported following surgical intervention. Randomized controlled trials are imperative for a true comparison of surgical methods, and unfortunately were scarcely available. This systematic review exhibits a comprehensive overview of trends and clinical outcomes related to most common surgical treatment strategies in literature for patients with traumatic thoracic and lumbar spine fractures.

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: J.J. Verlaan reports a relationship with Philips Healthcare that includes: funding grants. J.J. Verlaan reports a relationship with SentryX that includes: board membership and equity or stocks. F.C. Oner reports a relationship with AO spine knowledge forum trauma that includes: board membership. F.C. Öner guest editor Brain and Spine If there are other authors, they declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Handling editor: F Kandziora

Appendix 1. Study characteristics

Author Year Country Continent Surgical method Study design Subjects (n) Follow-up (mos)
Amelot et al. (½) (Amelot et al., 2017) 2017 France Europe Posterior open Retrospective 25 13
Amelot et al. (½) (Amelot et al., 2017) 2017 France Europe Posterior open Retrospective 82 19
Aono et al. (Aono et al., 2016) 2016 Japan Asia Posterior open Retro-/prospective 27 50
Butt et al. (Butt et al., 2008) 2008 India Asia Posterior open Prospective 120 25
Cengiz et al. (½) (Cengiz et al., 2008) 2008 Turkey Europe Posterior open RCT 12 15
Cengiz et al. (½) (Cengiz et al., 2008) 2008 Turkey Europe Posterior open RCT 15 15
Chang et al. (½) (Chang et al., 2018) 2018 China Asia Posterior open RCT 30 28
Chang et al. (½) (Chang et al., 2018) 2018 China Asia Posterior open RCT 32 29
Chokshi et al. (Chokshi and Shah, 2019) 2019 India Asia Posterior open Prospective 50 18
Dai et al. (½) (Dai et al., 2009) 2009 China Asia Posterior open Prospective 37 72
Dai et al. (½) (Dai et al., 2009) 2009 China Asia Posterior open Prospective 36 72
De Gendt et al. (De Gendt et al., 2020) 2020 Netherlands Europe Posterior open Prospective 20 166
Defino et al. (Defino and Canto, 2007) 2007 Brazil Latin America Posterior open Prospective 20 24
Dobran et al. (½) (Dobran et al., 2016) 2016 Italy Europe Posterior open Retrospective 30 33
Dobran et al. (½) (Dobran et al., 2016) 2016 Italy Europe Posterior open Retrospective 30 31
Fan et al. (½) (Fan et al., 2017) 2017 China Asia Posterior open Retrospective 49 16
Farrokhi et al. (½) (Farrokhi et al., 2010) 2010 Iran Asia Posterior open Prospective 42 37
Farrokhi et al. (½) (Farrokhi et al., 2010) 2010 Iran Asia Posterior open Prospective 38 37
Fisher et al. (Fisher et al., 2009) 2009 Canada North America Posterior open Retro-/prospective 27 38
Formica et al. (Formica et al., 2016) 2016 Italy Europe Posterior open Retrospective 43 12
Ge et al. (Ge et al., 2011) 2011 China Asia Posterior open Prospective 41 33
Guo et al. (Guo et al., 2010) 2010 China Asia Posterior open Prospective 42 15
Hadgaonkar et al. (Hadgaonkar et al., 2017) 2017 India Asia Posterior open Prospective 11 24
Hariri et al. (Hariri et al., 2018) 2018 USA North America Posterior open Retrospective 64 12
Hofstetter et al. (Hofstetter et al., 2011) 2011 USA North America Posterior open Retrospective 17 21
Islam et al. (Islam et al., 2011) 2011 Dhaka Asia Posterior open Prospective 16 14
Jindal et al. (½) (Jindal et al., 2012) 2012 India Asia Posterior open RCT 23 24
Jindal et al. (½) (Jindal et al., 2012) 2012 India Asia Posterior open RCT 24 24
Khattab et al. (Khattab and Elkhateeb, 2019) 2019 Egypt Africa Posterior open Prospective 27 38
Knop et al. (Knop et al., 2002) 2002 Germany Europe Posterior open Retrospective 29 42
Kocis et al. (½) (Kocis et al., 2020) 2020 Czech Republic Europe Posterior open Prospective 23 12
Korovessis et al. (½) (Korovessis et al., 2004) 2004 Greece Europe Posterior open RCT 20 52
Korovessis et al. (Korovessis et al., 2008a) 2008 Greece Europe Posterior open Prospective 23 29
Korovessis et al. (½) (Korovessis et al., 2004) 2004 Greece Europe Posterior open RCT 20 52
Korovessis et al. (½) (Korovessis et al., 2006) 2006 Greece Europe Posterior open Prospective 20 48
Lee et al. (½) (Lee et al., 2013) 2013 South Korea Asia Posterior open Retrospective 27 40
Leferink et al. (Leferink et al., 2003) 2003 Netherlands Europe Posterior open Retrospective 19 54
Li et al. (½) (Li et al., 2012) 2012 China Asia Posterior open Retrospective 30 13
Li et al. (½) (Li et al., 2005) 2005 China Asia Posterior open Retrospective 75 37
Li et al. (Li et al., 2016a) 2016 China Asia Posterior open Retrospective 50 12
Li et al. (½) (Li et al., 2005) 2005 China Asia Posterior open Retrospective 45 40
Li et al. (½) (Li et al., 2012) 2012 China Asia Posterior open Retrospective 30 13
Liu et al. (½) (Liu et al., 2015) 2015 China Asia Posterior open Retrospective 33 53
Liu et al. (½) (Liu et al., 2015) 2015 China Asia Posterior open Retrospective 30 48
Lyu et al. (⅓) (Lyu et al., 2016) 2016 China Asia Posterior open Prospective 30 18
Maior et al. (Maior et al., 2018) 2018 Romania Europe Posterior open Retrospective 44 12
Marré et al. (Marre et al., 2011) 2011 Chili Latin America Posterior open Retrospective 51 89
Masuda et al. (Masuda et al., 2015) 2015 Japan Asia Posterior open Retrospective 11 50
Modi et al. (Modi et al., 2009) 2009 South Korea Asia Posterior open Retrospective 31 34
Ökten et al. (½) (Okten et al., 2015) 2015 Turkey Europe Posterior open Retrospective 35 27
Ökten et al. (½) (Okten et al., 2015) 2015 Turkey Europe Posterior open Retrospective 35 27
Pishnamaz et al. (½) (Pishnamaz et al., 2015) 2015 Germany Europe Posterior open Prospective 43 43
Schmid et al. (½) (Schmid et al., 2012) 2012 Austria Europe Posterior open Prospective 21 20
Scholz et al. (Scholz et al., 2018) 2018 Germany Europe Posterior open Prospective 10 24
Siebenga et al. (Siebenga et al., 2006) 2006 Netherlands Europe Posterior open Prospective 17 52
Van Herck et al. (Van Herck et al., 2009) 2009 Belgium Europe Posterior open Retrospective 30 24
Vanek et al. (½) (Vanek et al., 2014) 2014 Czech Republic Europe Posterior open Prospective 17 14
Verlaan et al. (Verlaan et al., 2005) 2005 The Netherlands Europe Posterior open Prospective
Verlaan et al. (Verlaan et al., 2015) 2015 Netherlands Europe Posterior open Prospective 20 72
Wang et al. (½) (Wang et al., 2008a) 2008 China Asia Posterior open Retrospective 20 Unknown
Wang et al. (Wang et al., 2008b) 2008 China Asia Posterior open Retrospective 27 32
Wang et al. (Wang et al., 2014b) 2014 China Asia Posterior open Retrospective 30 38
Wang et al.127 2013 China Asia Posterior open Retrospective 10 22
Wang et al. (Wang et al., 2014a) 2014 China Asia Posterior open Prospective 20 30
Wang et al. (½) (Wang et al., 2008a) 2008 China Asia Posterior open Retrospective 50 Unknown
Wang et al. (½) (Wang et al., 2017) 2017 China Asia Posterior open Retrospective 49 23
Wu et al. (Wu et al., 2016) 2016 China Asia Posterior open Prospective 62 28
Xiong et al. (Xiong et al., 2013) 2013 China Asia Posterior open Retrospective 11 21
Yaldiz et al. (Yaldiz et al., 2015) 2015 Turkey Europe Posterior open Retrospective 20 12
Yue et al. (Yue et al., 2002) 2002 USA North America Posterior open Prospective 32 22
Yung et al. (Yung and Thng, 2011) 2011 Singapore Asia Posterior open Retrospective 19 18
Zhang et al. (½) (Zhang et al., 2019) 2019 China Asia Posterior open Retrospective 21 12
Zhang et al. (½) (Zhang et al., 2019) 2019 China Asia Posterior open Retrospective 29 12
Zhang et al. (½) (Zhang et al., 2016) 2016 China Asia Posterior open Prospective 30 12
Zou et al. (½) (Zou et al., 2017) 2017 China Asia Posterior open Retrospective 22 15
Afzal et al. (Afzal et al., 2008) 2008 India Asia Posterior percutaneous Retrospective 16 22
Altay et al. (½) (Altay et al., 2007) 2007 Turkey Asia Posterior percutaneous Retrospective 31 33
Altay et al. (½) (Altay et al., 2007) 2007 Turkey Asia Posterior percutaneous Retrospective 32 36
Andress et al. (Andress et al., 2002) 2002 Germany Europe Posterior percutaneous Retrospective 50 68
Butt et al. (Butt et al., 2007) 2007 India Asia Posterior percutaneous Prospective 50 59
Caruso et al. (Caruso et al., 2019) 2019 Italy Europe Posterior percutaneous Retrospective 32 41
Caruso et al. (½) (Caruso et al., 2018) 2018 Italy Europe Posterior percutaneous Retrospective 23 12
Caruso et al. (½) (Caruso et al., 2018) 2018 Italy Europe Posterior percutaneous Retrospective 26 12
Ding et al. (Ding et al., 2021) 2021 China Asia Posterior percutaneous Prospective 24 19
Fan et al. (½) (Fan et al., 2017) 2017 China Asia Posterior percutaneous Retrospective 63 16
He et al. (½) (He et al., 2013) 2013 China Asia Posterior percutaneous Prospective 21 34
Jiang et al. (½) (Jiang et al., 2020) 2020 China Asia Posterior percutaneous Retrospective 56 12
Jiang et al. (½) (Jiang et al., 2020) 2020 China Asia Posterior percutaneous Retrospective 60 12
Kerschbaumer et al. (½) (Kerschbaumer et al., 2019) 2019 France Europe Posterior percutaneous Prospective 14 28
Kocis et al. (½) (Kocis et al., 2020) 2020 Czech Republic Europe Posterior percutaneous Prospective 23 12
Korovessis et al. (Korovessis et al., 2017) 2017 Greece Europe Posterior percutaneous Retrospective 36 31
Korovessis et al. (Korovessis et al., 2014) 2014 Greece Europe Posterior percutaneous Prospective 20 17
Korovessis et al. (Korovessis et al., 2008b) 2008 Greece Europe Posterior percutaneous Prospective 18 22
Lee et al. (½) (Lee et al., 2013) 2013 South Korea Asia Posterior percutaneous Retrospective 32 30
Li et al. (½) (Li et al., 2016b) 2016 China Asia Posterior percutaneous Retrospective 16 12
Li et al. (½) (Li et al., 2016b) 2016 China Asia Posterior percutaneous Retrospective 16 12
Lyu et al. (⅓) (Lyu et al., 2016) 2016 China Asia Posterior percutaneous Prospective 30 18
Lyu et al. (⅓) (Lyu et al., 2016) 2016 China Asia Posterior percutaneous Prospective 30 18
Manson et al. (Manson et al., 2020) 2020 Canada North America Posterior percutaneous Prospective 32 24
Padalkar et al. (Padalkar and Mehta, 2017) 2017 India Asia Posterior percutaneous Retrospective 25 22
Pishnamaz et al. (½) (Pishnamaz et al., 2015) 2015 Germany Europe Posterior percutaneous Prospective 29 29
Podet et al. (Podet et al., 2020) 2020 USA North America Posterior percutaneous Retrospective 59 14
Proietti et al. (Proietti et al., 2014) 2014 Italy Europe Posterior percutaneous Retrospective 63 12
Sanli et al. (Sanli et al., 2019) 2019 Netherlands Europe Posterior percutaneous Prospective 69 19
Shao et al. (Shao et al., 2020) 2020 China Asia Posterior percutaneous Retrospective 22 36
Shin et al. (½) (Shin et al., 2020) 2020 South Korea Asia Posterior percutaneous Retrospective 24 15
Teyssedou et al. (½) (Teyssedou et al., 2012) 2012 France Europe Posterior percutaneous Prospective 16 12
Trungu et al. (½) (Trungu et al., 2019) 2019 Italy Europe Posterior percutaneous Retrospective 73 72
Trungu et al. (½) (Trungu et al., 2019) 2019 Italy Europe Posterior percutaneous Retrospective 71 72
Vanek et al. (½) (Vanek et al., 2014) 2014 Czech Republic Europe Posterior percutaneous Prospective 18 24
Wang et al. (Wang et al., 2013) 2013 China Asia Posterior percutaneous Retrospective 26 24
Wang et al. (½) (Wang et al., 2017) 2017 China Asia Posterior percutaneous Retrospective 56 23
Wood et al. (Wood et al., 2005) 2005 USA North America Posterior percutaneous RCT 38 43
Zhang et al. (½) (Zhang et al., 2016) 2016 China Asia Posterior percutaneous Prospective 29 12
Zou et al. (½) (Zou et al., 2017) 2017 China Asia Posterior percutaneous Retrospective 21 15
Costa et al. (Costa et al., 2009) 2009 Italy Europe Stand-alone cement augmentation Prospective 34 12
Grelat et al. (Grelat et al., 2018) 2018 France Europe Stand-alone cement augmentation Retrospective 77 44
Hartmann et al. (Hartmann et al., 2012) 2012 Germany Europe Stand-alone cement augmentation Retrospective 26 15
Hartmann et al. (Hartmann et al., 2015) 2015 Germany Europe Stand-alone cement augmentation Retrospective 18 27
He et al. (½) (He et al., 2013) 2013 China Asia Stand-alone cement augmentation Prospective 22 34
Kerschbaumer et al. (½) (Kerschbaumer et al., 2019) 2019 France Europe Stand-alone cement augmentation Prospective 60 28
Klezl et al. (Klezl et al., 2011) 2011 UK Europe Stand-alone cement augmentation Prospective 10 12
Maestretti et al. (Maestretti et al., 2014) 2014 Switzerland Europe Stand-alone cement augmentation Prospective 21 120
Saget et al. (Saget et al., 2014) 2014 France Europe Stand-alone cement augmentation Prospective 54 24
Schmelzer-Schmied et al. (Schmelzer-Schmied et al., 2009) 2009 Germany Europe Stand-alone cement augmentation Prospective 20 12
Schulz et al. (Schulz et al., 2015) 2015 Germany Europe Stand-alone cement augmentation Retrospective 17 12
Teyssedou et al. (½) (Teyssedou et al., 2012) 2012 France Europe Stand-alone cement augmentation Prospective 49 12
Liang et al. (Liang et al., 2017) 2017 China Asia Anterior open Unknown 120 24
Oskouian et al. (Oskouian et al., 2006) 2006 USA North America Anterior open Retrospective 60 21
Shin et al. (½) (Shin et al., 2020) 2020 South Korea Asia Anterior open Retrospective 46 45
Smith et al. (Smith et al., 2010) 2010 USA North America Anterior open Retro-/prospective 52 24
Wood et al. (Wood et al., 2005) 2005 USA North America Anterior open
Yang et al. (Yang et al., 2012) 2012 China Asia Anterior open Retrospective 51 26
Kreinest et al. (Kreinest et al., 2017) 2017 Germany Europe Posterior percutaneous, anterior open Prospective 47 37
Spiegl et al. (Spiegl et al., 2013) 2013 Germany Europe Posterior percutaneous, anterior scopic Retrospective 10 77
Korovessis et al. (½) (Korovessis et al., 2006) 2006 Greece Europe Posterior open, anterior open Prospective 20 46
Payer et al. (Payer, 2006) 2006 Switzerland Europe Posterior open, anterior open Prospective 20 24
Schmid et al. (½) (Schmid et al., 2012) 2012 Austria Europe Posterior open, anterior scopic Prospective 14 20
Tandon et al. (Tandon et al., 2020) 2020 India Asia Posterior open, anterior scopic Retrospective 22 99

Appendix 2. Percentage of cohorts included in this study, per continent, per surgical category. PO: Posterior open, PP: Posterior percutaneous, SA: Stand-alone vertebral body augmentation, AO: Anterior open, PPAO: Posterior percutaneous and anterior open; PPAS: Posterior percutaneous and anterior scopic, POAO: Posterior open and anterior open, POAO Posterior open and anterior open, POAS: Posterior open and anterior scopic;

Image 1

References

  1. Abudou M., Chen X., Kong X., Wu T. Surgical versus non-surgical treatment for thoracolumbar burst fractures without neurological deficit. Cochrane Database Syst. Rev. 2013;6(6) doi: 10.1002/14651858.CD005079.pub3. Jun. Epub 2013/06/07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Afzal S., Akbar S., Dhar S.A. Short segment pedicle screw instrumentation and augmentation vertebroplasty in lumbar burst fractures: an experience. Eur. Spine J. 2008;17(3):336–341. doi: 10.1007/s00586-008-0587-z. Mar. Epub 2008/01/15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Allain J. Anterior spine surgery in recent thoracolumbar fractures: an update. Orthop Traumatol Surg Res. 2011;97(5):541–554. doi: 10.1016/j.otsr.2011.06.003. Sep. Epub 2011/08/09. [DOI] [PubMed] [Google Scholar]
  4. Altay M., Ozkurt B., Aktekin C.N., Ozturk A.M., Dogan O., Tabak A.Y. Treatment of unstable thoracolumbar junction burst fractures with short- or long-segment posterior fixation in magerl type a fractures. Eur. Spine J. 2007;16(8):1145–1155. doi: 10.1007/s00586-007-0310-5. Aug. Epub 2007/01/26. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Amelot A., Cristini J., Moles A., Salaud C., Hamel O., Bord E., et al. Non neurologic burst thoracolumbar fractures fixation: case-control study. Injury. 2017;48(10):2150–2156. doi: 10.1016/j.injury.2017.08.002. Oct. Epub 2017/08/16. [DOI] [PubMed] [Google Scholar]
  6. Andress H.J., Braun H., Helmberger T., Schurmann M., Hertlein H., Hartl W.H. Long-term results after posterior fixation of thoraco-lumbar burst fractures. Injury. 2002;33(4):357–365. doi: 10.1016/s0020-1383(02)00030-x. May. Epub 2002/07/02. [DOI] [PubMed] [Google Scholar]
  7. Aono H., Tobimatsu H., Ariga K., Kuroda M., Nagamoto Y., Takenaka S., et al. Surgical outcomes of temporary short-segment instrumentation without augmentation for thoracolumbar burst fractures. Injury. 2016;47(6):1337–1344. doi: 10.1016/j.injury.2016.03.003. Jun. Epub 2016/03/21. [DOI] [PubMed] [Google Scholar]
  8. Benoist M. Natural history of the aging spine. Eur. Spine J. 2003;12(Suppl. 2):S86–S89. doi: 10.1007/s00586-003-0593-0. Oct. Epub 2003/09/10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Butt M.F., Farooq M., Mir B., Dhar A.S., Hussain A., Mumtaz M. Management of unstable thoracolumbar spinal injuries by posterior short segment spinal fixation. Int. Orthop. 2007;31(2):259–264. doi: 10.1007/s00264-006-0161-4. Apr. Epub 2006/06/20. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Butt M.F., Dhar S.A., Farooq M., Hussain A., Mir B.A., Halwai M.A., et al. Neurological outcome following delayed fixation of unstable thoracolumbar spinal injuries with short segment posterior fixation. Neurosciences. 2008;13(1):65–69. Jan. Epub 2008/01/01. [PubMed] [Google Scholar]
  11. Caruso G., Lombardi E., Andreotti M., Lorusso V., Gildone A., Padovani S., et al. Minimally invasive fixation techniques for thoracolumbar fractures: comparison between percutaneous pedicle screw with intermediate screw (PPSIS) and percutaneous pedicle screw with kyphoplasty (PPSK) Eur. J. Orthop. Surg. Traumatol. 2018;28(5):849–858. doi: 10.1007/s00590-018-2122-1. Jul. Epub 2018/01/23. [DOI] [PubMed] [Google Scholar]
  12. Caruso G., Gildone A., Lorusso V., Lombardi E., Andreotti M., Gerace E., et al. Percutaneous fixation and balloon kyphoplasty for the treatment of A3 thoracolumbar fractures. J Clin Orthop Trauma. 2019;10(Suppl. 1):S163–S167. doi: 10.1016/j.jcot.2018.12.012. Oct. Epub 2019/11/07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Cengiz S.L., Kalkan E., Bayir A., Ilik K., Basefer A. Timing of thoracolomber spine stabilization in trauma patients; impact on neurological outcome and clinical course. A real prospective (rct) randomized controlled study. Arch Orthop Trauma Surg. 2008;128(9):959–966. doi: 10.1007/s00402-007-0518-1. Sep. Epub 2007/11/28. [DOI] [PubMed] [Google Scholar]
  14. Chang W., Zhang D., Liu W., Lian X., Jiao Z., Chen W. Posterior paraspinal muscle versus post-middle approach for the treatment of thoracolumbar burst fractures: a randomized controlled trial. Medicine (Baltim.) 2018;97(25) doi: 10.1097/MD.0000000000011193. Jun. Epub 2018/06/21. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Chokshi J.J., Shah M. Outcomes of including fracture level in short- segment fixation for Th oracolumbar fracture dislocation. Asian Spine J. 2019;13(1):56–60. doi: 10.31616/asj.2018.0064. Feb. Epub 2018/10/18. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Costa F., Ortolina A., Cardia A., Sassi M., De Santis A., Borroni M., et al. Efficacy of treatment with percutaneous vertebroplasty and kyphoplasty for traumatic fracture of thoracolumbar junction. J. Neurosurg. Sci. 2009;53(1):13–17. Mar. Epub 2009/03/27. [PubMed] [Google Scholar]
  17. Court C., Vincent C. Percutaneous fixation of thoracolumbar fractures: current concepts. Orthop Traumatol Surg Res. 2012;98(8):900–909. doi: 10.1016/j.otsr.2012.09.014. Dec. Epub 2012/11/21. [DOI] [PubMed] [Google Scholar]
  18. Dai L.Y., Jiang L.S., Jiang S.D. Anterior-only stabilization using plating with bone structural autograft versus titanium mesh cages for two- or three-column thoracolumbar burst fractures: a prospective randomized study. Spine. 2009;34(14):1429–1435. doi: 10.1097/BRS.0b013e3181a4e667. Jun 15. Epub 2009/06/16. [DOI] [PubMed] [Google Scholar]
  19. De Gendt E.E.A., Kuperus J.S., Foppen W., Oner F.C., Verlaan J.J. Clinical, radiological, and patient-reported outcomes 13 years after pedicle screw fixation with balloon-assisted endplate reduction and cement injection. Eur. Spine J. 2020;29(4):914–921. doi: 10.1007/s00586-020-06321-x. Apr. Epub 2020/02/10. [DOI] [PubMed] [Google Scholar]
  20. Defino H.L., Canto F.R. Low thoracic and lumbar burst fractures: radiographic and functional outcomes. Eur. Spine J. 2007;16(11):1934–1943. doi: 10.1007/s00586-007-0406-y. Nov. Epub 2007/06/15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ding S., Lu X., Liu Z., Wang Y. Reduce the fractured central endplate in thoracolumbar fractures using percutaneous pedicle screws and instrumentational maneuvers: technical strategy and radiological outcomes. Injury. 2021;52(4):1060–1064. doi: 10.1016/j.injury.2020.10.014. Apr. Epub 2020/10/18. [DOI] [PubMed] [Google Scholar]
  22. Dobran M., Nasi D., Brunozzi D., di Somma L., Gladi M., Iacoangeli M., et al. Treatment of unstable thoracolumbar junction fractures: short-segment pedicle fixation with inclusion of the fracture level versus long-segment instrumentation. Acta Neurochir. 2016;158(10):1883–1889. doi: 10.1007/s00701-016-2907-0. Oct. Epub 2016/08/20. [DOI] [PubMed] [Google Scholar]
  23. Fan Y., Zhang J., He X., Huang Y., Wu Q., Hao D. A comparison of the mini-open Wiltse approach with pedicle screw fixation and the percutaneous pedicle screw fixation for neurologically intact thoracolumbar fractures. Med Sci Monit. 2017;23:5515–5521. doi: 10.12659/MSM.905271. Nov 20. Epub 2017/11/21. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Farrokhi M.R., Razmkon A., Maghami Z., Nikoo Z. Inclusion of the fracture level in short segment fixation of thoracolumbar fractures. Eur. Spine J. 2010;19(10):1651–1656. doi: 10.1007/s00586-010-1449-z. Oct. Epub 2010/05/25. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Fisher C., Singh S., Boyd M., Kingwell S., Kwon B., Li M.J., et al. Clinical and radiographic outcomes of pedicle screw fixation for upper thoracic spine (T1-5) fractures: a retrospective cohort study of 27 cases. J. Neurosurg. Spine. 2009;10(3):207–213. doi: 10.3171/2008.12.SPINE0844. Mar. Epub 2009/03/27. [DOI] [PubMed] [Google Scholar]
  26. Formica M., Cavagnaro L., Basso M., Zanirato A., Felli L., Formica C., et al. Which patients risk segmental kyphosis after short segment thoracolumbar fracture fixation with intermediate screws? Injury. 2016;47(Suppl. 4):S29–S34. doi: 10.1016/j.injury.2016.07.048. Oct. Epub 2016/08/09. [DOI] [PubMed] [Google Scholar]
  27. Ge C.M., Wang Y.R., Jiang S.D., Jiang L.S. Thoracolumbar burst fractures with a neurological deficit treated with posterior decompression and interlaminar fusion. Eur. Spine J. 2011;20(12):2195–2201. doi: 10.1007/s00586-011-1875-6. Dec. Epub 2011/06/21. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Grelat M., Madkouri R., Comby P.O., Fahed E., Lemogne B., Thouant P. Mid-term clinical and radiological outcomes after kyphoplasty in the treatment of thoracolumbar traumatic vertebral compression fractures. World Neurosurg. 2018;115:e386–e392. doi: 10.1016/j.wneu.2018.04.060. Jul. Epub 2018/04/22. [DOI] [PubMed] [Google Scholar]
  29. Guo K.J., Li H.W., Zhang X.Z., Yuan F. [Development and clinical application of elastic trephine through pedicle of fractured vertebra] Zhonghua Yixue Zazhi. 2010;90(29):2082–2085. Aug 3. Epub 2010/10/30. [PubMed] [Google Scholar]
  30. Hadgaonkar S., Shah K., Khurjekar K., Krishnan V., Shyam A., Sancheti P. A Levering technique using small Parallel Rods for open reduction of high-Grade thoracolumbar dislocation. Global Spine J. 2017;7(4):302–308. doi: 10.1177/2192568217699184. Jun. Epub 2017/08/18. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Hariri O.R., Kashyap S., Takayanagi A., Elia C., Ma Q., Miulli D.E. Posterior-only stabilization for traumatic thoracolumbar burst fractures. Cureus. 2018;10(3):e2296. doi: 10.7759/cureus.2296. Mar 9. Epub 2018/05/12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Hartmann F., Gercek E., Leiner L., Rommens P.M. Kyphoplasty as an alternative treatment of traumatic thoracolumbar burst fractures Magerl type A3. Injury. 2012;43(4):409–415. doi: 10.1016/j.injury.2010.03.025. Apr. Epub 2010/04/27. [DOI] [PubMed] [Google Scholar]
  33. Hartmann F., Griese M., Dietz S.O., Kuhn S., Rommens P.M., Gercek E. Two-year results of vertebral body stenting for the treatment of traumatic incomplete burst fractures. Minim Invasive Ther. Allied Technol. 2015;24(3):161–166. doi: 10.3109/13645706.2014.962546. Jun. Epub 2014/09/30. [DOI] [PubMed] [Google Scholar]
  34. He D., Wu L., Sheng X., Xiao Q., Zhu Y., Yu W., et al. Internal fixation with percutaneous kyphoplasty compared with simple percutaneous kyphoplasty for thoracolumbar burst fractures in elderly patients: a prospective randomized controlled trial. Eur. Spine J. 2013;22(10):2256–2263. doi: 10.1007/s00586-013-2972-5. Oct. Epub 2013/09/03. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Hofstetter C.P., Chou D., Newman C.B., Aryan H.E., Girardi F.P., Hartl R. Posterior approach for thoracolumbar corpectomies with expandable cage placement and circumferential arthrodesis: a multicenter case series of 67 patients. J. Neurosurg. Spine. 2011;14(3):388–397. doi: 10.3171/2010.11.SPINE09956. Mar. Epub 2011/01/18. [DOI] [PubMed] [Google Scholar]
  36. Hughes H., Carthy A.M., Sheridan G.A., Donnell J.M., Doyle F., Butler J. Thoracolumbar burst fractures: a systematic review and meta-analysis comparing posterior-only instrumentation versus combined anterior-posterior instrumentation. Spine. 2021;46(15):E840–E849. doi: 10.1097/BRS.0000000000003934. Aug 1. Epub 2021/07/07. [DOI] [PubMed] [Google Scholar]
  37. Islam M.A., Sakeb N., Islam A., Sarker S.K., Mondol S.K. Evaluation of the results of posterior decompression, posterolateral fusion and stabilization by pedicle screw and rod in traumatic thoracolumbar fractures. Bangladesh Med. Res. Counc. Bull. 2011;37(3):97–101. doi: 10.3329/bmrcb.v37i3.9121. Dec. Epub 2012/02/23. [DOI] [PubMed] [Google Scholar]
  38. Jiang W.Q., Ke Z.Y., Wu K., Chen X.L., Lou Z.Q. Effect of RTS versus percutaneous conventional pedicle screw fixation on type A thoracolumbar fractures: a retrospective cohort study. Eur. Spine J. 2020;29(10):2484–2490. doi: 10.1007/s00586-020-06418-3. Oct. Epub 2020/04/30. [DOI] [PubMed] [Google Scholar]
  39. Jindal N., Sankhala S.S., Bachhal V. The role of fusion in the management of burst fractures of the thoracolumbar spine treated by short segment pedicle screw fixation: a prospective randomised trial. J Bone Joint Surg Br. 2012;94(8):1101–1106. doi: 10.1302/0301-620X.94B8.28311. Aug. Epub 2012/07/31. [DOI] [PubMed] [Google Scholar]
  40. Kerschbaumer G., Gaulin B., Ruatti S., Tonetti J., Boudissa M. Clinical and radiological outcomes in thoracolumbar fractures using the SpineJack device. A prospective study of seventy-four patients with a two point three year mean of follow-up. Int. Orthop. 2019;43(12):2773–2779. doi: 10.1007/s00264-019-04391-1. Dec. Epub 2019/08/17. [DOI] [PubMed] [Google Scholar]
  41. Khattab M.F., Elkhateeb T.M. Posterior short-segment fixation with transforaminal lumbar interbody fusion for the treatment of unstable lower lumbar fracture. Current Orthopaedic Practice. 2019;30(2):147–153. [Google Scholar]
  42. Kim B.G., Dan J.M., Shin D.E. Treatment of thoracolumbar fracture. Asian Spine J. 2015;9(1):133–146. doi: 10.4184/asj.2015.9.1.133. Feb. Epub 2015/02/24. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Klezl Z., Majeed H., Bommireddy R., John J. Early results after vertebral body stenting for fractures of the anterior column of the thoracolumbar spine. Injury. 2011;42(10):1038–1042. doi: 10.1016/j.injury.2011.04.006. Oct. Epub 2011/05/11. [DOI] [PubMed] [Google Scholar]
  44. Knop C., Fabian H.F., Bastian L., Rosenthal H., Lange U., Zdichavsky M., et al. Fate of the transpedicular intervertebral bone graft after posterior stabilisation of thoracolumbar fractures. Eur. Spine J. 2002;11(3):251–257. doi: 10.1007/s00586-001-0360-z. Epub 2002/07/11, Jun. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Kocis J., Kelbl M., Kocis T., Navrat T. Percutaneous versus open pedicle screw fixation for treatment of type A thoracolumbar fractures. Eur. J. Trauma Emerg. Surg. 2020;46(1):147–152. doi: 10.1007/s00068-018-0998-4. Feb. Epub 2018/09/01. [DOI] [PubMed] [Google Scholar]
  46. Korovessis P., Baikousis A., Koureas G., Zacharatos S. Correlative analysis of the results of surgical treatment of thoracolumbar injuries with long Texas Scottish rite hospital construct: is the use of pedicle screws versus hooks advantageous in the lumbar spine? J. Spinal Disord. Tech. 2004;17(3):195–205. doi: 10.1097/00024720-200406000-00006. Jun. Epub 2004/05/29. [DOI] [PubMed] [Google Scholar]
  47. Korovessis P., Baikousis A., Zacharatos S., Petsinis G., Koureas G., Iliopoulos P. Combined anterior plus posterior stabilization versus posterior short-segment instrumentation and fusion for mid-lumbar (L2-L4) burst fractures. Spine. 2006;31(8):859–868. doi: 10.1097/01.brs.0000209251.65417.16. Apr 15. Epub 2006/04/20. [DOI] [PubMed] [Google Scholar]
  48. Korovessis P., Repantis T., Petsinis G., Iliopoulos P., Hadjipavlou A. Direct reduction of thoracolumbar burst fractures by means of balloon kyphoplasty with calcium phosphate and stabilization with pedicle-screw instrumentation and fusion. Spine. 2008;33(4):E100–E108. doi: 10.1097/BRS.0b013e3181646b07. Epub 2008/02/19. [DOI] [PubMed] [Google Scholar]
  49. Korovessis P., Hadjipavlou A., Repantis T. Minimal invasive short posterior instrumentation plus balloon kyphoplasty with calcium phosphate for burst and severe compression lumbar fractures. Spine. 2008;33(6):658–667. doi: 10.1097/BRS.0b013e318166e0bb. Epub 2008/03/18. [DOI] [PubMed] [Google Scholar]
  50. Korovessis P., Vardakastanis K., Repantis T., Vitsas V. Less invasive reduction and fusion of fresh A2 and A 3 traumatic L 1-L 4 fractures with a novel vertebral body augmentation implant and short pedicle screw fixation and fusion. Eur. J. Orthop. Surg. Traumatol. 2014;24(3):297–304. doi: 10.1007/s00590-013-1339-2. Apr. Epub 2013/10/31. [DOI] [PubMed] [Google Scholar]
  51. Korovessis P., Mpountogianni E., Syrimpeis V. Percutaneous pedicle screw fixation plus kyphoplasty for thoracolumbar fractures A2, A3 and B2. Eur. Spine J. 2017;26(5):1492–1498. doi: 10.1007/s00586-016-4743-6. May. Epub 2016/08/25. [DOI] [PubMed] [Google Scholar]
  52. Kreinest M., Schmahl D., Grutzner P.A., Matschke S. Radiological results and clinical patient outcome after implantation of a Hydraulic expandable vertebral body Replacement following traumatic vertebral fractures in the thoracic and lumbar spine: a 3-year follow-up. Spine. 2017;42(8):E482–E489. doi: 10.1097/BRS.0000000000001862. Apr 15. Epub 2017/04/12. [DOI] [PubMed] [Google Scholar]
  53. Lee J.K., Jang J.W., Kim T.W., Kim T.S., Kim S.H., Moon S.J. Percutaneous short-segment pedicle screw placement without fusion in the treatment of thoracolumbar burst fractures: is it effective?: comparative study with open short-segment pedicle screw fixation with posterolateral fusion. Acta Neurochir. 2013;155(12):2305–2312. doi: 10.1007/s00701-013-1859-x. Dec. ; discussion 12. Epub 2013/09/11. [DOI] [PubMed] [Google Scholar]
  54. Leferink V.J., Keizer H.J., Oosterhuis J.K., van der Sluis C.K., ten Duis H.J. Functional outcome in patients with thoracolumbar burst fractures treated with dorsal instrumentation and transpedicular cancellous bone grafting. Eur. Spine J. 2003;12(3):261–267. doi: 10.1007/s00586-002-0518-3. Jun. Epub 2003/06/12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Li K.C., Hsieh C.H., Lee C.Y., Chen T.H. Transpedicle body augmenter: a further step in treating burst fractures. Clin. Orthop. Relat. Res. 2005;(436):119–125. Jul. Epub 2005/07/05. [PubMed] [Google Scholar]
  56. Li X., Ma Y., Dong J., Zhou X.G., Li J. Retrospective analysis of treatment of thoracolumbar burst fracture using mono-segment pedicle instrumentation compared with short-segment pedicle instrumentation. Eur. Spine J. 2012;21(10):2034–2042. doi: 10.1007/s00586-012-2214-2. Oct. Epub 2012/03/08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Li Q., Yun C., Li S. Transpedicular bone grafting and pedicle screw fixation in injured vertebrae using a paraspinal approach for thoracolumbar fractures: a retrospective study. J. Orthop. Surg. Res. 2016;11(1):115. doi: 10.1186/s13018-016-0452-4. Epub 2016/10/19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Li K., Li Z., Ren X., Xu H., Zhang W., Luo D., et al. Effect of the percutaneous pedicle screw fixation at the fractured vertebra on the treatment of thoracolumbar fractures. Int. Orthop. 2016;40(6):1103–1110. doi: 10.1007/s00264-016-3156-9. Epub 2016/03/18. [DOI] [PubMed] [Google Scholar]
  59. Liang B., Huang G., Ding L., Kang L., Sha M., Ding Z. Early results of thoraco lumbar burst fracture treatment using selective corpectomy and rectangular cage reconstruction. Indian J. Orthop. 2017;51(1):43–48. doi: 10.4103/0019-5413.197524. Jan-Feb. Epub 2017/02/22. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Liu L., Gan Y., Zhou Q., Wang H., Dai F., Luo F., et al. Improved Monosegment pedicle instrumentation for treatment of thoracolumbar incomplete burst fractures. BioMed Res. Int. 2015;2015 doi: 10.1155/2015/357206. Epub 2015/06/23. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Lu J., Chen Y., Hu M., Sun C. Systematic review and meta-analysis of the effect of using percutaneous pedicle screw internal fixation for thoracolumbar fractures. Ann. Palliat. Med. 2022;11(1):250–259. doi: 10.21037/apm-21-3736. Jan. Epub 2022/02/12. [DOI] [PubMed] [Google Scholar]
  62. Lyu J., Chen K., Tang Z., Chen Y., Li M., Zhang Q. A comparison of three different surgical procedures in the treatment of type A thoracolumbar fractures: a randomized controlled trial. Int. Orthop. 2016;40(6):1233–1238. doi: 10.1007/s00264-016-3129-z. Jun. Epub 2016/02/26. [DOI] [PubMed] [Google Scholar]
  63. Maestretti G., Sutter P., Monnard E., Ciarpaglini R., Wahl P., Hoogewoud H., et al. A prospective study of percutaneous balloon kyphoplasty with calcium phosphate cement in traumatic vertebral fractures: 10-year results. Eur. Spine J. 2014;23(6):1354–1360. doi: 10.1007/s00586-014-3206-1. Jun. Epub 2014/02/11. [DOI] [PubMed] [Google Scholar]
  64. Maior T., Ungureanu G., Kakucs C., Berce C., Petrushev B., Florian I.S. Influence of gender on Health-related quality of Life and Disability at 1 Year after surgery for thoracolumbar burst fractures. Global Spine J. 2018;8(3):237–243. doi: 10.1177/2192568217710854. May. Epub 2018/05/26. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Manson N., El-Mughayyar D., Bigney E., Richardson E., Abraham E. Instrumentation removal following minimally invasive posterior percutaneous pedicle screw-rod stabilization (PercStab) of thoracolumbar fractures is not Always required. Adv Orthop. 2020;2020 doi: 10.1155/2020/7949216. Epub 2020/08/18. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Marre B., Ballesteros V., Martinez C., Zamorano J.J., Ilabaca F., Munjin M., et al. Thoracic spine fractures: injury profile and outcomes of a surgically treated cohort. Eur. Spine J. 2011;20(9):1427–1433. doi: 10.1007/s00586-011-1698-5. Sep. Epub 2011/01/29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Masuda T., Miyamoto K., Wakahara K., Matsumoto K., Hioki A., Shimokawa T., et al. Clinical outcomes of surgical treatments for traumatic spinal injuries due to Snowboarding. Asian Spine J. 2015;9(1):90–98. doi: 10.4184/asj.2015.9.1.90. Feb. Epub 2015/02/24. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. McAnany S.J., Overley S.C., Kim J.S., Baird E.O., Qureshi S.A., Anderson P.A. Open versus minimally invasive fixation techniques for thoracolumbar trauma: a meta-analysis. Global Spine J. 2016;6(2):186–194. doi: 10.1055/s-0035-1554777. Mar. Epub 2016/03/05. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Modi H.N., Chung K.J., Seo I.W., Yoon H.S., Hwang J.H., Kim H.K., et al. Two levels above and one level below pedicle screw fixation for the treatment of unstable thoracolumbar fracture with partial or intact neurology. J. Orthop. Surg. Res. 2009;4:28. doi: 10.1186/1749-799X-4-28. Jul 27. Epub 2009/07/29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Okten A.I., Gezercan Y., Ozsoy K.M., Ates T., Menekse G., Aslan A., et al. Results of treatment of unstable thoracolumbar burst fractures using pedicle instrumentation with and without fracture-level screws. Acta Neurochir. 2015;157(5):831–836. doi: 10.1007/s00701-015-2383-y. May. Epub 2015/03/12. [DOI] [PubMed] [Google Scholar]
  71. Oskouian R.J., Jr., Shaffrey C.I., Whitehill R., Sansur C.A., Pouratian N., Kanter A.S., et al. Anterior stabilization of three-column thoracolumbar spinal trauma. J. Neurosurg. Spine. 2006;5(1):18–25. doi: 10.3171/spi.2006.5.1.18. Jul. Epub 2006/07/21. [DOI] [PubMed] [Google Scholar]
  72. Padalkar P., Mehta V. Bi-pedicle fixation of affected vertebra in thoracolumbar burst fracture. J. Clin. Diagn. Res. 2017;11(4):RC04–RC7. doi: 10.7860/JCDR/2017/17599.9714. Apr. Epub 2017/06/03. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Payer M. Unstable burst fractures of the thoraco-lumbar junction: treatment by posterior bisegmental correction/fixation and staged anterior corpectomy and titanium cage implantation. Acta Neurochir. 2006;148(3):299–306. doi: 10.1007/s00701-005-0681-5. Mar. discussion Epub 2005/11/29. [DOI] [PubMed] [Google Scholar]
  74. Phan K., Rao P.J., Mobbs R.J. Percutaneous versus open pedicle screw fixation for treatment of thoracolumbar fractures: systematic review and meta-analysis of comparative studies. Clin. Neurol. Neurosurg. 2015;135:85–92. doi: 10.1016/j.clineuro.2015.05.016. Aug. Epub 2015/06/09. [DOI] [PubMed] [Google Scholar]
  75. Pishnamaz M., Oikonomidis S., Knobe M., Horst K., Pape H.C., Kobbe P. Open versus percutaneous stabilization of thoracolumbar spine fractures: a short-term functional and radiological follow-up. Acta Chir. Orthop. Traumatol. Cech. 2015;82(4):274–281. Epub 2015/10/31. [PubMed] [Google Scholar]
  76. Pneumaticos S.G., Triantafyllopoulos G.K., Giannoudis P.V. Advances made in the treatment of thoracolumbar fractures: current trends and future directions. Injury. 2013;44(6):703–712. doi: 10.1016/j.injury.2012.12.005. Jun. Epub 2013/01/05. [DOI] [PubMed] [Google Scholar]
  77. Podet A.G., Morrow K.D., Robichaux J.M., Shields J.A., DiGiorgio A.M., Tender G.C. Minimally invasive lateral corpectomy for thoracolumbar traumatic burst fractures. Neurosurg. Focus. 2020;49(3):E12. doi: 10.3171/2020.6.FOCUS20366. Sep. Epub 2020/09/02. [DOI] [PubMed] [Google Scholar]
  78. Proietti L., Scaramuzzo L., Schiro G.R., Sessa S., D'Aurizio G., Tamburrelli F.C. Posterior percutaneous reduction and fixation of thoraco-lumbar burst fractures. Orthop Traumatol Surg Res. 2014;100(5):455–460. doi: 10.1016/j.otsr.2014.06.003. Sep. Epub 2014/08/12. [DOI] [PubMed] [Google Scholar]
  79. Sadiqi S., Lehr A.M., Post M.W., Dvorak M.F., Kandziora F., Rajasekaran S., et al. Development of the AOSpine Patient Reported Outcome Spine Trauma (AOSpine PROST): a universal disease-specific outcome instrument for individuals with traumatic spinal column injury. Eur. Spine J. 2017;26(5):1550–1557. doi: 10.1007/s00586-017-5032-8. May. Epub 2017/03/21. [DOI] [PubMed] [Google Scholar]
  80. Sadiqi S., Dvorak M.F., Vaccaro A.R., Schroeder G.D., Post M.W., Benneker L.M., et al. Reliability and validity of the English version of the AOSpine PROST (patient reported outcome spine trauma) Spine. 2020;45(17):E1111–E1118. doi: 10.1097/BRS.0000000000003514. Sep 1. Epub 2020/05/02. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Sadiqi S., Post M.W., Hosman A.J., Dvorak M.F., Chapman J.R., Benneker L.M., et al. Reliability, validity and responsiveness of the Dutch version of the AOSpine PROST (patient reported outcome spine trauma) Eur. Spine J. 2021;30(9):2631–2644. doi: 10.1007/s00586-020-06554-w. Sep. Epub 2020/08/21. [DOI] [PubMed] [Google Scholar]
  82. Saget M., Teyssedou S., Prebet R., Vendeuvre T., Gayet L.E., Pries P. Acrylic kyphoplasty in recent nonosteoporotic fractures of the thoracolumbar junction: a prospective clinical and 3D radiologic study of 54 patients. J. Spinal Disord. Tech. 2014;27(6):E226–E233. doi: 10.1097/BSD.0b013e31829a3785. Aug. Epub 2013/06/05. [DOI] [PubMed] [Google Scholar]
  83. Sanli I., Spoor A., Muijs S.P.J., Oner F.C. Less invasive surgery is feasible in the management of traumatic thoracolumbar fractures in Isolated and polytrauma injury. Int J Spine Surg. 2019;13(6):561–567. doi: 10.14444/6078. Dec. Epub 2020/01/24. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Schmelzer-Schmied N., Cartens C., Meeder P.J., Dafonseca K. Comparison of kyphoplasty with use of a calcium phosphate cement and non-operative therapy in patients with traumatic non-osteoporotic vertebral fractures. Eur. Spine J. 2009;18(5):624–629. doi: 10.1007/s00586-008-0880-x. May. Epub 2009/01/24. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Schmid R., Lindtner R.A., Lill M., Blauth M., Krappinger D., Kammerlander C. Combined posteroanterior fusion versus transforaminal lumbar interbody fusion (TLIF) in thoracolumbar burst fractures. Injury. 2012;43(4):475–479. doi: 10.1016/j.injury.2011.12.011. Apr. Epub 2012/01/10. [DOI] [PubMed] [Google Scholar]
  86. Schnake K.J., Blattert T.R., Hahn P., Franck A., Hartmann F., Ullrich B., et al. Classification of osteoporotic thoracolumbar spine fractures: Recommendations of the spine Section of the German Society for Orthopaedics and trauma (DGOU) Global Spine J. 2018;8(2 Suppl. l):46S. doi: 10.1177/2192568217717972. Sep. -9S. Epub 2018/09/14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Scholz M., Kandziora F., Tschauder T., Kremer M., Pingel A. Prospective randomized controlled comparison of posterior vs. posterior-anterior stabilization of thoracolumbar incomplete cranial burst fractures in neurological intact patients: the RASPUTHINE pilot study. Eur. Spine J. 2018;27(12):3016–3024. doi: 10.1007/s00586-017-5356-4. Dec. Epub 2017/10/27. [DOI] [PubMed] [Google Scholar]
  88. Schulz C., Kunz U., Mauer U.M., Mathieu R. Percutaneous vertebral augmentation with polyethylene mesh and allograft bone for traumatic thoracolumbar fractures. Adv Orthop. 2015;2015 doi: 10.1155/2015/412607. Epub 2015/02/18. [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. Shao R.X., Zhou H., Peng L., Pan H., Yue J., Hu Q.F. Clinical efficacy and outcome of intelligently inflatable reduction in conjunction with percutaneous pedicle screw fixation for treating thoracolumbar burst fractures. J. Int. Med. Res. 2020;48(3) doi: 10.1177/0300060520903658. Mar. Epub 2020/03/27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Shin S.R., Lee S.S., Kim J.H., Jung J.H., Lee S.K., Lee G.J., et al. Thoracolumbar burst fractures in patients with neurological deficit: anterior approach versus posterior percutaneous fixation with laminotomy. J. Clin. Neurosci. 2020;75:11–18. doi: 10.1016/j.jocn.2020.03.046. May. Epub 2020/04/07. [DOI] [PubMed] [Google Scholar]
  91. Siebenga J., Leferink V.J., Segers M.J., Elzinga M.J., Bakker F.C., Haarman H.J., et al. Treatment of traumatic thoracolumbar spine fractures: a multicenter prospective randomized study of operative versus nonsurgical treatment. Spine. 2006;31(25):2881–2890. doi: 10.1097/01.brs.0000247804.91869.1e. Epub 2006/12/02, Dec 1. [DOI] [PubMed] [Google Scholar]
  92. Smith W.D., Dakwar E., Le T.V., Christian G., Serrano S., Uribe J.S. Minimally invasive surgery for traumatic spinal pathologies: a mini-open, lateral approach in the thoracic and lumbar spine. Spine. 2010;35(26 Suppl. l):S338–S346. doi: 10.1097/BRS.0b013e3182023113. Dec 15. Epub 2011/01/05. [DOI] [PubMed] [Google Scholar]
  93. Spiegl U., Hauck S., Merkel P., Buhren V., Gonschorek O. Six-year outcome of thoracoscopic ventral spondylodesis after unstable incomplete cranial burst fractures of the thoracolumbar junction: ventral versus dorso-ventral strategy. Int. Orthop. 2013;37(6):1113–1120. doi: 10.1007/s00264-013-1879-4. Epub 2013/04/16, Jun. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Sun X.Y., Zhang X.N., Hai Y. Percutaneous versus traditional and paraspinal posterior open approaches for treatment of thoracolumbar fractures without neurologic deficit: a meta-analysis. Eur. Spine J. 2017;26(5):1418–1431. doi: 10.1007/s00586-016-4818-4. May. Epub 2016/10/21. [DOI] [PubMed] [Google Scholar]
  95. Tan T., Rutges J., Marion T., Gonzalvo A., Mathew J., Fitzgerald M., et al. Anterior versus posterior approach in traumatic thoracolumbar burst fractures deemed for surgical management: systematic review and meta-analysis. J. Clin. Neurosci. 2019;70:189–197. doi: 10.1016/j.jocn.2019.07.083. Dec. Epub 2019/08/23. [DOI] [PubMed] [Google Scholar]
  96. Tandon V., Mallepally A.R., Peddaballe A.R., Marathe N., Chhabra H.S. Mini-open thoracoscopic-assisted spinal thoracotomy for traumatic injuries: a technical note. Surg. Neurol. Int. 2020;11:265. doi: 10.25259/SNI_435_2020. Epub 2020/10/08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  97. Teyssedou S., Saget M., Prebet R., Leclercq N., Vendeuvre T., Pries P. Evaluation of percutaneous surgery in the treatment of thoracolumbar fractures. Preliminary results of a prospective study on 65 patients. Orthop Traumatol Surg Res. 2012;98(1):39–47. doi: 10.1016/j.otsr.2011.08.009. Feb. Epub 2012/01/03. [DOI] [PubMed] [Google Scholar]
  98. Thomas K.C., Bailey C.S., Dvorak M.F., Kwon B., Fisher C. Comparison of operative and nonoperative treatment for thoracolumbar burst fractures in patients without neurological deficit: a systematic review. J. Neurosurg. Spine. 2006;4(5):351–358. doi: 10.3171/spi.2006.4.5.351. May. Epub 2006/05/18. [DOI] [PubMed] [Google Scholar]
  99. Trungu S., Forcato S., Bruzzaniti P., Fraschetti F., Miscusi M., Cimatti M., et al. Minimally invasive surgery for the treatment of traumatic Monosegmental thoracolumbar burst fractures: clinical and radiologic outcomes of 144 patients with a 6-year follow-up comparing two groups with or without intermediate screw. Clin Spine Surg. 2019;32(4):E171–E176. doi: 10.1097/BSD.0000000000000791. May. Epub 2019/05/03. [DOI] [PubMed] [Google Scholar]
  100. Vaccaro A.R., Lim M.R., Hurlbert R.J., Lehman R.A.J., Harrop J., Fisher D.C., et al. Surgical decision making for unstable thoracolumbar spine injuries: results of a consensus Panel review by the spine trauma study group. Clinical Spine Surgery. 2006;19(1):1–10. doi: 10.1097/01.bsd.0000180080.59559.45. [DOI] [PubMed] [Google Scholar]
  101. Vaccaro A.R., Oner C., Kepler C.K., Dvorak M., Schnake K., Bellabarba C., et al. AOSpine thoracolumbar spine injury classification system: fracture description, neurological status, and key modifiers. Spine. 2013;38(23):2028–2037. doi: 10.1097/BRS.0b013e3182a8a381. Nov 1. Epub 2013/08/24. [DOI] [PubMed] [Google Scholar]
  102. Vaccaro A.R., Schroeder G.D., Kepler C.K., Cumhur Oner F., Vialle L.R., Kandziora F., et al. The surgical algorithm for the AOSpine thoracolumbar spine injury classification system. Eur. Spine J. 2016;25(4):1087–1094. doi: 10.1007/s00586-015-3982-2. Apr. Epub 2015/05/09. [DOI] [PubMed] [Google Scholar]
  103. Van Herck B., Leirs G., Van Loon J. Transpedicular bone grafting as a supplement to posterior pedicle screw instrumentation in thoracolumbar burst fractures. Acta Orthop. Belg. 2009;75(6):815–821. Dec. Epub 2010/02/20. [PubMed] [Google Scholar]
  104. Vanek P., Bradac O., Konopkova R., de Lacy P., Lacman J., Benes V. Treatment of thoracolumbar trauma by short-segment percutaneous transpedicular screw instrumentation: prospective comparative study with a minimum 2-year follow-up. J. Neurosurg. Spine. 2014;20(2):150–156. doi: 10.3171/2013.11.SPINE13479. Feb. Epub 2013/12/24. [DOI] [PubMed] [Google Scholar]
  105. Verlaan J.J., Diekerhof C.H., Buskens E., van der Tweel I., Verbout A.J., Dhert W.J., et al. Surgical treatment of traumatic fractures of the thoracic and lumbar spine: a systematic review of the literature on techniques, complications, and outcome. Spine. 2004;29(7):803–814. doi: 10.1097/01.brs.0000116990.31984.a9. Apr 1. Epub 2004/04/17. [DOI] [PubMed] [Google Scholar]
  106. Verlaan J.J., Dhert W.J., Verbout A.J., Oner F.C. Balloon vertebroplasty in combination with pedicle screw instrumentation: a novel technique to treat thoracic and lumbar burst fractures. Spine. 2005;30(3):E73–E79. doi: 10.1097/01.brs.0000152162.64015.fb. Feb 1. Epub 2005/02/01. [DOI] [PubMed] [Google Scholar]
  107. Verlaan J.J., Somers I., Dhert W.J., Oner F.C. Clinical and radiological results 6 years after treatment of traumatic thoracolumbar burst fractures with pedicle screw instrumentation and balloon assisted endplate reduction. Spine J. 2015;15(6):1172–1178. doi: 10.1016/j.spinee.2013.11.044. Jun 1. Epub 2013/12/11. [DOI] [PubMed] [Google Scholar]
  108. Wang J., Wu H., Ding X., Liu Y. Treatment of thoracolumbar vertebrate fracture by transpedicular morselized bone grafting in vertebrae for spinal fusion and pedicle screw fixation. J Huazhong Univ Sci Technolog Med Sci. 2008;28(3):322–326. doi: 10.1007/s11596-008-0321-4. Epub 2008/06/20. [DOI] [PubMed] [Google Scholar]
  109. Wang X.Y., Dai L.Y., Xu H.Z., Chi Y.L. Kyphosis recurrence after posterior short-segment fixation in thoracolumbar burst fractures. J. Neurosurg. Spine. 2008;8(3):246–254. doi: 10.3171/SPI/2008/8/3/246. Epub 2008/03/04. [DOI] [PubMed] [Google Scholar]
  110. Wang J., Zhou Y., Zhang Z.F., Li C.Q., Zheng W.J., Liu J. Radiological study on disc degeneration of thoracolumbar burst fractures treated by percutaneous pedicle screw fixation. Eur. Spine J. 2013;22(3):489–494. doi: 10.1007/s00586-012-2462-1. Mar. Epub 2012/08/15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  111. Wang L., Li J., Wang H., Yang Q., Lv D., Zhang W., et al. Posterior short segment pedicle screw fixation and TLIF for the treatment of unstable thoracolumbar/lumbar fracture. BMC Musculoskelet Disord. 2014;15:40. doi: 10.1186/1471-2474-15-40. Epub 2014/02/13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  112. Wang X.B., Yang M., Li J., Xiong G.Z., Lu C., Lu G.H. Thoracolumbar fracture dislocations treated by posterior reduction, interbody fusion and segmental instrumentation. Indian J. Orthop. 2014;48(6):568–573. doi: 10.4103/0019-5413.144219. Epub 2014/11/19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  113. Wang B., Fan Y., Dong J., Wang H., Wang F., Liu Z., et al. A retrospective study comparing percutaneous and open pedicle screw fixation for thoracolumbar fractures with spinal injuries. Medicine (Baltim.) 2017;96(38) doi: 10.1097/MD.0000000000008104. Sep. Epub 2017/09/21. [DOI] [PMC free article] [PubMed] [Google Scholar]
  114. Waterloo S., Ahmed L.A., Center J.R., Eisman J.A., Morseth B., Nguyen N.D., et al. Prevalence of vertebral fractures in women and men in the population-based Tromso Study. BMC Musculoskelet Disord. 2012;13(3) doi: 10.1186/1471-2474-13-3. Jan 17. Epub 2012/01/19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  115. Wood K.B., Bohn D., Mehbod A. Anterior versus posterior treatment of stable thoracolumbar burst fractures without neurologic deficit: a prospective, randomized study. J. Spinal Disord. Tech. 2005;18(Suppl. l):S15–S23. doi: 10.1097/01.bsd.0000132287.65702.8a. Feb. Epub 2005/02/09. [DOI] [PubMed] [Google Scholar]
  116. Wu H., Zhao D.X., Jiang R., Zhou X.Y. Surgical treatment of Denis type B thoracolumbar burst fracture with neurological deficiency by paraspinal approach. Braz. J. Med. Biol. Res. 2016;49(11) doi: 10.1590/1414-431X20165599. Epub 2016/11/10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  117. Xiong W., Li F., Zhang F., Huo X., Chen A. Single-stage operation for traumatic thoracolumbar fractures with severe dislocation via a posterior approach alone: a case series. Turk Neurosurg. 2013;23(2):170–178. doi: 10.5137/1019-5149.JTN.5782-12.2. Epub 2013/04/03. [DOI] [PubMed] [Google Scholar]
  118. Xu G.J., Li Z.J., Ma J.X., Zhang T., Fu X., Ma X.L. Anterior versus posterior approach for treatment of thoracolumbar burst fractures: a meta-analysis. Eur. Spine J. 2013;22(10):2176–2183. doi: 10.1007/s00586-013-2987-y. Oct. Epub 2013/09/10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  119. Yaldiz C., Asil K., Ozkal B., Ceylan D., Kacira T. Thoracolumbar burst fractures requiring instrumented fusion: should reducted bone fragments be removed? A retrospective study. Neurol. Neurochir. Pol. 2015;49(6):358–366. doi: 10.1016/j.pjnns.2015.08.005. Epub 2015/12/15. [DOI] [PubMed] [Google Scholar]
  120. Yang X., Song Y., Liu L., Liu H., Zeng J., Pei F. Anterior reconstruction with nano-hydroxyapatite/polyamide-66 cage after thoracic and lumbar corpectomy. Orthopedics. 2012;35(1):e66–e73. doi: 10.3928/01477447-20111122-10. Jan 16. Epub 2012/01/11. [DOI] [PubMed] [Google Scholar]
  121. Yi L., Jingping B., Gele J., Baoleri X., Taixiang W. Operative versus non-operative treatment for thoracolumbar burst fractures without neurological deficit. Cochrane Database Syst. Rev. 2006;(4) doi: 10.1002/14651858.CD005079.pub2. Oct 18. Epub 2006/10/21. [DOI] [PubMed] [Google Scholar]
  122. Yue J.J., Sossan A., Selgrath C., Deutsch L.S., Wilkens K., Testaiuti M., et al. The treatment of unstable thoracic spine fractures with transpedicular screw instrumentation: a 3-year consecutive series. Spine. 2002;27(24):2782–2787. doi: 10.1097/00007632-200212150-00008. Dec 15. Epub 2002/12/18. [DOI] [PubMed] [Google Scholar]
  123. Yung A.W., Thng P.L. Radiological outcome of short segment posterior stabilisation and fusion in thoracolumbar spine acute fracture. Ann Acad Med Singap. 2011;40(3):140–144. Mar. Epub 2011/05/24. [PubMed] [Google Scholar]
  124. Zhang W., Li H., Zhou Y., Wang J., Chu T., Zheng W., et al. Minimally invasive posterior decompression combined with percutaneous pedicle screw fixation for the treatment of thoracolumbar fractures with neurological deficits: a prospective randomized study versus traditional open posterior surgery. Spine. 2016;41(Suppl. 19) doi: 10.1097/BRS.0000000000001814. Oct. B23-B9. Epub 2016/09/23. [DOI] [PubMed] [Google Scholar]
  125. Zhang B., Zhou F., Wang L., Wang H., Jiang J., Guo Q., et al. A new decompression technique for upper lumbar fracture with neurologic deficit-comparison with traditional open posterior surgery. BMC Musculoskelet Disord. 2019;20(1):580. doi: 10.1186/s12891-019-2897-1. Dec 1. Epub 2019/12/04. [DOI] [PMC free article] [PubMed] [Google Scholar]
  126. Zou W., Xiao J., Zhang Y., Du Y., Zhou C. [Percutaneous pedicle screw fixation and minimally invasive decompression in the same incision for type A3 thoracolumbar burst fracture] Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2017;31(7):830–836. doi: 10.7507/1002-1892.201702089. Jul 15. Epub 2018/05/26. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Brain & Spine are provided here courtesy of Elsevier

RESOURCES