Skip to main content
Current Research in Structural Biology logoLink to Current Research in Structural Biology
. 2024 Feb 29;7:100134. doi: 10.1016/j.crstbi.2024.100134

Molecular structural modeling and physical characteristics of anti-breast cancer drugs via some novel topological descriptors and regression models

Summeira Meharban a, Asad Ullah a,, Shahid Zaman b, Anila Hamraz a, Abdul Razaq c
PMCID: PMC10955308  PMID: 38516623

Abstract

Research is continuously being pursued to treat cancer patients and prevent the disease by developing new medicines. However, experimental drug design and development is a costly, time-consuming, and challenging process. Alternatively, computational and mathematical techniques play an important role in optimally achieving this goal. Among these mathematical techniques, topological indices (TIs) have many applications in the drugs used for the treatment of breast cancer. TIs can be utilized to forecast the effectiveness of drugs by providing molecular structure information and related properties of the drugs. In addition, these can assist in the design and discovery of new drugs by providing insights into the structure-property/structure-activity relationships. In this article, a Quantitative Structure Property Relationship (QSPR) analysis is carried out using some novel degree-based molecular descriptors and regression models to predict various properties (such as boiling point, melting point, enthalpy, flashpoint, molar refraction, molar volume, and polarizability) of 14 drugs used for the breast cancer treatment. The molecular structures of these drugs are topologically modeled through vertex and edge partitioning techniques of graph theory, and then linear regression models are developed to correlate the computed values with the experimental properties of the drugs to investigate the performance of TIs in predicting these properties. The results confirmed the potential of the considered topological indices as a tool for drug discovery and design in the field of breast cancer treatment.

Keywords: Drugs, Molecular structure, Topological indices, Graph theory, QSPR analysis

Graphical abstract

Image 1

Highlights

  • The molecular structures of some novel anti-breast cancer drugs are topologically modeled through vertex and edge partitioning techniques of graph theory.

  • Linear regression models are developed to correlate the theoretically computed values with the experimental properties of these drugs to investigate the performance of implemented topological indices in predicting these properties.

  • The obtained results confirmed the potential of the considered topological indices as a tool for drug discovery and design in the field of breast cancer treatment.

  • This work showed how the computed topological indices could contribute to the design of new pharmaceuticals by chemists and other individuals working in the pharmaceutical sector.

1. Introduction

One of the major causes of death in the world is cancer. Cancer is a broad term used to describe a group of diseases characterized by the uncontrolled growth and spread of abnormal cells in the body. These cells can invade nearby tissues and organs, disrupting their normal function, and can also metastasize, spreading to other parts of the body through the bloodstream or lymphatic system. Breast cancer specifically refers to cancer that develops in the cells of the breast tissue. It is the most common cancer among women globally. Breast cancer can manifest in different forms, including invasive ductal carcinoma (which starts in the milk ducts and spreads to nearby tissues), invasive lobular carcinoma (which originates in the lobules or milk-producing glands), and less common subtypes such as inflammatory breast cancer and triple-negative breast cancer (Figuerola and Avila, 2019; Kinteh et al., 2023; Waks and Winer, 2019). Risk factors for breast cancer include age, family history of the disease, genetic mutations (such as BRCA1 and BRCA2), hormonal factors (such as early menstruation, late menopause, and hormone replacement therapy), lifestyle factors (such as alcohol consumption, obesity, and physical inactivity), and exposure to ionizing radiation. Early detection through screening mammography, clinical breast exams, and breast self-exams, followed by prompt diagnosis and treatment, can significantly improve outcomes for individuals with breast cancer. Treatment options may include surgery, radiation therapy, chemotherapy, hormonal therapy, targeted therapy, or a combination of these approaches, depending on the type and stage of the cancer. (M. C. Shanmukha et al., 2022).

Over the past 20 years, research into breast cancer has significantly advanced our understanding of the condition and produced more effective, less harmful treatments. Early diagnosis at stages amenable to complete surgical resection and curative therapy has been made possible by increased public awareness and enhanced screening. As a result, survival rates for breast cancers have considerably increased, especially in younger women (Gao et al., 2016a). Major investment in breast cancer research and understanding has contributed to improvements in the detection and cure of breast cancer. Due in large part to variables like early discovery, frequent thorough screening, and a better knowledge of the disease, the breast cancer survival ratio has increased and the number of deaths related to this disease is constantly reducing (Kumar et al., 2015). Using preventive drugs or undergoing preventive surgery can lower the risk of breast cancer in people with a strong family background of the disease or who have been identified as having precancerous breasts.

Research is continuously being pursued to treat cancer patients and prevent the disease by developing new medicines. However, experimental drug design and development is a costly, time-consuming, and challenging process. Alternatively, computational and mathematical techniques play an important role in achieving this goal in an optimal way. Among these computational and mathematical techniques, topological indices (TIs) have many applications in the drugs used for the treatment of breast cancer. The TI is the outcome of a logical and mathematical process that converts the chemical information provided within a graphical representation of a molecule into a helpful component or the outcome of certain standardized experiments (Arockiaraj et al., 2023; Liu et al., 2022; Paul et al., 2023; Ullah et al., 2023a, Ullah et al., 2023b; Asad Ullah, Muhammad Qasim et al., 2022; Ullah et al., 2023; Asad Ullah, Shamsudin et al., 2022; A. Ullah et al., 2022a, Ullah et al., 2022b, Ullah et al., 2022c). It is noted that the word “helpful" has particular implications. It means that the number can provide further explanations for how to interpret molecular properties and/or that it can contribute to a model for the prediction of a particular interesting attribute of molecules (Arockiaraj et al., 2019; Hayat et al., 2023; Hayat et al., 2022; Hayat et al., 2023a, Hayat et al., 2023b; Yan et al., 2023; Zaman et al., 2023; Zaman et al., 2022). TIs can be utilized to forecast the effectiveness of drugs in cancer treatment by providing molecular structure information and related properties of the drugs (Bokhary et al., 2021; Gao et al., 2016b; M. Shanmukha et al., 2022). One can easily identify the most effective drugs for treatment through an in-depth investigation of degree-based TIs (M. Shanmukha et al., 2022). In addition, these can assist in the design and discovery of new drugs by providing insights into the structure-activity/structure-property relationships (Zhong et al., 2021).

In chemical graph theory, the molecular structure is modeled using a graph where vertices are atoms of the compound and edges are chemical bonds between atoms (Aslam et al., 2017b; Hakeem et al., 2023; Hosamani et al., 2017; Jahanbani et al., 2021; Siddiqui et al., 2022; Ullah et al., 2023; Yan et al., 2023; Yu et al., 2023; Zaman et al., 2023b; Zaman and Ullah, 2023; Zhang et al., 2023). A relatively new field called Cheminformatics combines mathematics, chemistry, and information science, it studies Quantitative structure property/activity relationship (QSPR/QSAR) that are used to calculate the biological activities and properties of different chemical compounds. TIs play an important role in QSPR/QSAR analysis in the fields of biological, chemical sciences, and engineering (Aslam et al., 2017b; Gutman et al., 2018). In QSAR modeling, the predictors consist of physico-chemical properties or theoretical molecular descriptors (Muhammad et al., 2018; Todeschini and Consonni, 2009; Xu et al., 2007), while the term QSPR models as response variable (Joudaki and Shafiei, 2020; Nantasenamat et al., 2009, 2010; Varmuza et al., 2013). Wiener (1947) gave the idea of a topological index during the investigation of the boiling point of paraffin and termed it a path number. After this, it was called as Wiener index. It is the first and most reputed topological index, both from an application as well as theoretical point of view, and is defined as the sum of the distance between all pairs of vertices in a graph G (Janoschek, 1987). Degree-based topological indices are commonly used and play a significant role in chemical graph theory, especially in chemistry. Gutman and Trinajstic established the earliest topological indices, the Zagreb type indices (Ali et al., 2020; Furtula et al., 2013; Gutman and Trinajstić, 1972; Kwun et al., 2018), which have been utilized to investigate molecular difficulty, boiling point, and chirality. Several researchers have investigated the QSPR and QSAR analysis of the molecular structures of drugs by leveraging degree based topological indices (Bokhary et al., 2021; Mondal et al., 2021; Rauf et al., 2022; Ullah et al., 2024; Zhong et al., 2021) in order to gain a deeper understanding of their behavior and physical properties. However, despite intensive studies, the molecular structural topology is still not well understood. Here, in order to better understand the molecular structural topology and behavior of the drug molecules, we developed specific novel neighborhood degree based descriptors through mathematical expressions. These descriptors provide a more detailed understanding of the topology of drug molecules. The definitions and details of these descriptors are presented below.

In the present study, we have represented the molecular structure of drugs by a simple, finite, and connected graph G(V,E) with V(G), E(G) defined as vertices and edges in G respectively (Randic, 1996). The distance of the shortest path between two vertices u and v in G is used to express the distance between them as d(u,v)=dG(u,v). The number of vertices of the graph adjacent to a given vertex v is the degree of that vertex and will be symbolized by ηG. Chemistry's valence concept and the concept of degree are closely related (Mc et al., 2020). To predict the physical characteristics of the drugs accurately, linear regression and QSPR modeling are used (Duchowicz et al., 2008; Hosamani et al., 2017).

The considered topological indices based on the vertex degree are as follows:

The modified neighborhood version of the forgotten topological index (Furtula and Gutman, 2015) is defined as,

FN*(G)=uvE(G)[ηG(u)2+ηG(v)2]. (1)

The neighborhood version of the second Zagreb index is describe by (Siddiqui et al., 2016)

M2*(G)=uvE(G)[ηG(u).ηG(v)]. (2)

The neighborhood version of the hyper Zagreb index is described as (Shirdel et al., 2013)

HMN(G)=uvE(G)[ηG(u)+ηG(v)]2. (3)

The neighborhood Zagreb index is defined as,

MN(G)=vV(G)[ηG(v)]2. (4)

The neighborhood version of the forgotten topological index, which is defined as,

FN(G)=vV(G)[ηG(v)]3. (5)

for further details about the above indices, see (Mondal et al., 2019).

2. Results and discussion

2.1. Computation of topological indices

The chemical structures of drugs used to treat breast cancer are subjected to some novel degree-based topological indices (Eqs. (1), (2), (3), (4), (5))). It is already established that the degree based topological indices are closely linked to the physical characteristics of the chemical compounds (Aslam et al., 2017; Mondal et al., 2019; Shao et al., 2018; Siddiqui et al., 2016). Here, we have represented the molecular structure of drugs by a simple, finite, and connected graph G(V,E) with V(G), E(G) defined as vertices and edges in G respectively (Randic, 1996). The number of vertices of the graph adjacent to a given vertex v is the degree of that vertex and will be symbolized by ηG and the term frequency is defined here as, the division of edge(vertex) set into partitions according to their sum of neighborhood degree. In this section, the molecular structures of 14 drugs [Abemaciclib (Verzenio), braxane, Anastrozole (Arimidex), Capecitabine (Xeloda), Cyclophosphamide, Everolimus (Afinitor), Exemestane (Aromasin), Fulvestrant (Faslodex), Ixabepilone (Ixempra), Letrozole (Femara), Megestrol Acetate, Methotrexate, Tamoxifen (Soltamox), and Thiotepa (Tepadina)] are taken to compute some novel topological indices. Fig. 1 shows the molecular structures of these medications. The constituents in the chemical structure are thought of as nodes/vertices of the graph, and the connections between them are as edges. Graph theory-based edge and vertex partitioning techniques are then used to model the molecular topology and to compute the frequency of edges and vertices, these frequencies are given in the form of tables in the relevant sections below. The topological indices are computed based on these frequency tables and Eqs. (1)–(5).

Theorem 1

Let G1 be the graph of abemaciclib, then the topological indices (Eqs. (1), (2), (3), (4), (5))) for G1 are given as follows:

  • 1.

    FN*(G1)= 8018

  • 2.

    M2*(G1)= 3613

  • 3.

    HMN(G1)= 15242

  • 4.

    MN(G1)= 2776

  • 5.

    FN(G1)= 21806

Fig. 1.

Fig. 1

Fig. 1

Molecular structures of anti-breast cancer drugs.

Proof. Let G1 be the graph of Abemaciclib with vertex set V and edge set E. Let ηv(G) represent degree of a vertex and Es,t represents the class of edges of G1 joining vertices of degrees s and t. Here, the edge(vertex) set is divided into partitions according to their sum of neighborhood degree, called the frequency, which is shown in below tables. Table i, Table ii show the vertex partition and edge partition respectively.

  • 1.By using Eq. (1) and edge partitions given in Table ii we get,
    FN*(G)=uvE(G)[ηG(u)2+ηG(v)2].
    =uvE1[ηG(u)2+ηG(v)2]+uvE2[ηG(u)2+ηG(v)2]+uvE3[ηG(u)2+ηG(v)2]+uvE4[ηG(u)2+ηG(v)2]+uvE5[ηG(u)2+ηG(v)2]+uvE6[ηG(u)2+ηG(v)2]+uvE7[ηG(u)2+ηG(v)2]+uvE8[ηG(u)2+ηG(v)2]+uvE9[ηG(u)2+ηG(v)2]+uvE10[ηG(u)2+ηG(v)2]+uvE11[ηG(u)2+ηG(v)2]+uvE12[ηG(u)2+ηG(v)2]+uvE13[ηG(u)2+ηG(v)2]+uvE14[ηG(u)2+ηG(v)2]+uvE15[ηG(u)2+ηG(v)2]+uvE16[ηG(u)2+ηG(v)2]+uvE17[ηG(u)2+ηG(v)2]+uvE18[ηG(u)2+ηG(v)2]+uvE19[ηG(u)2+ηG(v)2]+uvE20[ηG(u)2+ηG(v)2]+uvE21[ηG(u)2+ηG(v)2]+uvE22[ηG(u)2+ηG(v)2]+uvE23[ηG(u)2+ηG(v)2]+uvE24[ηG(u)2+ηG(v)2]
    =[(3)2+(6)2](1)+[(3)2+(7)2](8)+[(4)2+(6)2](3)+[(4)2+(7)2](9)+[(4)2+(8)2](2)+[(4)2+(9)2](10)+[(4)2+(12)2](1)+[(6)2+(6)2](1)+[(6)2+(7)2](4)+[(6)2+(8)2](4)+[(6)2+(9)2](2)+[(6)2+(10)2](2)+[(7)2+(7)2](4)+[(7)2+(8)2](4)+[(7)2+(9)2](3)+[(7)2+(10)2](1)+[(7)2+(12)2](1)+[(8)2+(9)2](1)+[(8)2+(10)2](1)+[(8)2+(12)2](1)+[(9)2+(9)2](2)+[(9)2+(10)2](1)+[(9)2+(12)2](5)+[(10)2+(12)2](1)
    =8018
  • 2.
    By using Eq. (2) and edge partitions given in table ii we get,
    M2*(G)=uvE(G)[ηG(u).ηG(v)].
    =uvE1[ηG(u).ηG(v)]+uvE2[ηG(u).ηG(v)]+uvE3[ηG(u).ηG(v)]+uvE4[ηG(u).ηG(v)]+uvE5[ηG(u).ηG(v)]+uvE6[ηG(u).ηG(v)]+uvE7[ηG(u).ηG(v)]+uvE8[ηG(u).ηG(v)]+uvE9[ηG(u).ηG(v)]+uvE10[ηG(u).ηG(v)]+uvE11[ηG(u).ηG(v)]+uvE12[ηG(u).ηG(v)]+uvE13[ηG(u).ηG(v)]+uvE14[ηG(u).ηG(v)]+uvE15[ηG(u).ηG(v)]+uvE16[ηG(u).ηG(v)]+uvE17[ηG(u).ηG(v)]+uvE18[ηG(u).ηG(v)]+uvE19[ηG(u).ηG(v)]+uvE20[ηG(u).ηG(v)]+uvE21[ηG(u).ηG(v)]+uvE22[ηG(u).ηG(v)]+uvE23[ηG(u).ηG(v)]+uvE24[ηG(u).ηG(v)]
    =[(3).(6)](1)+[(3).(7)](8)+[(4).(6)](3)+[(4).(7)](9)+[(4).(8)](2)+[(4).(9)](10)+[(4).(12)](1)+[(6).(6)](1)+[(6).(7)](4)+[(6).(8)](4)+[(6).(9)](2)+[(6).(10)](2)+[(7).(7)](4)+[(7).(8)](4)+[(7).(9)](3)+[(7).(10)](1)+[(7).(12)](2)+[(8).(9)](1)+[(8).(10)](1)+[(8).(12)](1)[(9).(9)](2)+[(9).(10)](1)+[(9).(12)](5)+[(10).(12)](1)
    =3613
  • 3.
    By using Eq. (3) and the edge partitions given in Table ii we get
    HMN(G)=uvE(G)[ηG(u)+ηG(v)]2.
    =uvE1[ηG(u)+ηG(v)]2+uvE2[ηG(u)+ηG(v)]2+uvE3[ηG(u)+ηG(v)]2+uvE4[ηG(u)+ηG(v)]2+uvE5[ηG(u)+ηG(v)]2+uvE6[ηG(u)+ηG(v)]2+uvE7[ηG(u)+ηG(v)]2+uvE8[ηG(u)+ηG(v)]2+uvE9[ηG(u)+ηG(v)]2+uvE10[ηG(u)+ηG(v)]2+uvE11[ηG(u)+ηG(v)]2+uvE12[ηG(u)+ηG(v)]2+uvE13[ηG(u)+ηG(v)]2+uvE14[ηG(u)+ηG(v)]2+uvE15[ηG(u)+ηG(v)]2+uvE16[ηG(u)+ηG(v)]2+uvE17[ηG(u)+ηG(v)]2+uvE18[ηG(u)+ηG(v)]2+uvE19[ηG(u)+ηG(v)]2+uvE20[ηG(u)+ηG(v)]2+uvE21[ηG(u)+ηG(v)]2+uvE22[ηG(u)+ηG(v)]2+uvE23[ηG(u)+ηG(v)]2+uvE24[ηG(u)+ηG(v)]2
    =[(3+6)2](1)+[(3+7)2](8)+[(4+6)2](3)+[(4+7)2](9)+[(4+8)2](2)+[(4+9)2](10)+[(4+12)2](1)+[(6+6)2](1)+[(6+7)2](4)+[(6+8)2](4)+[(6+9)2](2)+[(6+10)2](2)+[(7+7)2](4)+[(7+8)2](4)+[(7+9)2](3)+[(7+10)2](1)+[(7+12)2](2)+[(8+9)2](1)+[(8+10)2](1)+[(8+12)2](1)+[(9+9)2](2)+[(9+10)2](1)+[(9+12)2](5)+[(10+12)2](1)
    =15244
  • 4.
    By using Eq. (4) and vertex partitions given in Table i we get
    MN(G)=vV(G)[ηG(v)]2.
    =vV1[ηG(v)]2+vV2[ηG(v)]2+vV3[ηG(v)]2+vV4[ηG(v)]2+vV5[ηG(v)]2+vV6[ηG(v)]2+vV7[ηG(v)]2+vV8[ηG(v)]2
    =[(3)2](9)+[(4)2](25)+[(6)2](7)+[(7)2](12)+[(8)2](4)+[(9)2](7)+[(10)2](2)+[(12)2]
    =2776
  • 5.
    By using Eq. (5) and vertex partitions given in Table i we get
    FN(G)=vV(G)[ηG(v)]3.
    =vV1[ηG(v)]3+vV2[ηG(v)]3+vV3[ηG(v)]3+vV4[ηG(v)]3+vV5[ηG(v)]3+vV6[ηG(v)]3+vV7[ηG(v)]3+vV8[ηG(v)]3
    =[(3)3](9)+[(4)3](25)+[(6)3](7)+[(7)3](12)+[(8)3](4)+[(9)3](7)+[(10)3](2)+[(12)3](3)
    =21806

Theorem 2

Let G2 be the graph of Abraxane, and then the topological indices (Eqs. (1), (2), (3), (4), (5))) for G2 are given as follows:

  • 1.

    FN*(G2)= 14744

  • 2.

    M2*(G2)= 6504

  • 3.

    HMN(G2)= 27752

  • 4.

    MN(G2)= 4996

  • 5.

    FN(G2)= 45064

Table i.

Vertex partition of Abemaciclib drug.

ηv(G) Frequency
3 9
4 25
6 7
7 12
8 4
9 7
10 2
12 3

Table ii.

Edge partition of Abemaciclib drug.

(s, t) Frequency
(3, 6) 1
(3, 7) 8
(4, 6) 3
(4, 7) 9
(4, 8) 2
(4, 9) 10
(4, 12) 1
(6, 6) 1
(6, 7) 4
(6, 8) 4
(6, 9) 2
(6, 10) 2
(7, 7) 4
(7, 8) 4
(7, 9) 3
(7, 10) 1
(7, 12) 2
(8, 9) 1
(8, 10) 1
(8, 12) 1
(9, 9) 2
(9, 10) 1
(9, 12) 5
(10, 12) 1

Proof. Let G2 be the graph of Abraxane with vertex set V and edge set E. Let ηv(G) represent the degree of a vertex and represent the class of edges of G2 joining vertices of degrees s and t. The following tables show the vertex partition and edge partition.

  • 1.
    By using Eq. (1) and edge partitions given in Table iv we get,
    FN*(G)=uvE(G)[ηG(u)2+[ηG(v)2].
    =uvE1[ηG(u)2+ηG(v)2]+uvE2[ηG(u)2+ηG(v)2]+uvE3[ηG(u)2+ηG(v)2]+uvE4[ηG(u)2+ηG(v)2]+uvE5[ηG(u)2+ηG(v)2]+uvE6[ηG(u)2+ηG(v)2]+uvE7[ηG(u)2+ηG(v)2]+uvE8[ηG(u)2+ηG(v)2]+uvE9[ηG(u)2+ηG(v)2]+uvE10[ηG(u)2+ηG(v)2]+uvE11[ηG(u)2+ηG(v)2]+uvE12[ηG(u)2+ηG(v)2]uvE13[ηG(u)2+ηG(v)2]+uvE14[ηG(u)2+ηG(v)2]+uvE15[ηG(u)2+ηG(v)2]+uvE16[ηG(u)2+ηG(v)2]+uvE17[ηG(u)2+ηG(v)2]+uvE18[ηG(u)2+ηG(v)2]uvE19[ηG(u)2+ηG(v)2]+uvE20[ηG(u)2+ηG(v)2]+uvE21[ηG(u)2+ηG(v)2]+uvE22[ηG(u)2+ηG(v)2]+uvE23[ηG(u)2+ηG(v)2]+uvE24[ηG(u)2+ηG(v)2]+uvE25[ηG(u)2+ηG(v)2]+uvE26[ηG(u)2+ηG(v)2]+uvE27[ηG(u)2+ηG(v)2]+uvE28[ηG(u)2+ηG(v)2]+uvE29[ηG(u)2+ηG(v)2]+uvE30[ηG(u)2+ηG(v)2]+uvE31[ηG(u)2+ηG(v)2]+uvE32[ηG(u)2+ηG(v)2]+uvE33[ηG(u)2+ηG(v)2]+uvE34[ηG(u)2+ηG(v)2]uvE35[ηG(u)2+ηG(v)2]+uvE36[ηG(u)2+ηG(v)2]+uvE37[ηG(u)2+ηG(v)2]+uvE38[ηG(u)2+ηG(v)2]+uvE39[ηG(u)2+ηG(v)2]
    =[(2)2+(5)2](3)+[(3)2+(6)2](1)+[(3)2+(7)2](18)+[(3)2+(8)2](1)+[(4)2+(6)2](9)+[(4)2+(7)2](10)+[(4)2+(8)2](2)+[(4)2+(9)2](1)+[(4)2+(10)2](5)+[(4)2+(11)2](5)+[(4)2+(13)2](1)+[(5)2+(10)2](1)+[(5)2+(11)2](1)+[(5)2+(14)2](1)+[(6)2+(7)2](3)+[(6)2+(9)2](1)+[(6)2+(11)2](1)+[(7)2+(7)2](15)+[(7)2+(8)2](1)+[(7)2+(9)2](6)+[(7)2+(10)2](3)+[(7)2+(11)2](2)+[(7)2+(14)2](1)+[(7)2+(15)2](3)+[(8)2+(8)2](1)+[(8)2+(11)2](2)+[(8)2+(14)2](1)+[(9)2+(9)2](1)+[(9)2+(11)2](1)+[(9)2+(15)2](1)+[(10)2+(11)2](5)+[(10)2+(14)2](1)+[(11)2+(11)2](2)+[(11)2+(13)2](1)+[(11)2+(14)2](2)+[(11)2+(15)2](1)+[(13)2+(14)2](1)+[(13)2+(15)2]
    =14744
  • 2.
    By using Eq. (2) and edge partitions given in Table iv we get,
    M2*(G)=uvE(G)[ηG(u).ηG(v)].
    =uvE1[ηG(u).ηG(v)]+uvE2[ηG(u).ηG(v)]+uvE3[ηG(u).ηG(v)]+uvE4[ηG(u).ηG(v)]+uvE5[ηG(u).ηG(v)]+uvE6[ηG(u).ηG(v)]+uvE7[ηG(u).ηG(v)]+uvE8[ηG(u).ηG(v)]+uvE9[ηG(u).ηG(v)]+uvE10[ηG(u).ηG(v)]+uvE11[ηG(u).ηG(v)]+uvE12[ηG(u).ηG(v)]+uvE13[ηG(u).ηG(v)]+uvE14[ηG(u).ηG(v)]+uvE15[ηG(u).ηG(v)]+uvE16[ηG(u).ηG(v)]+uvE17[ηG(u).ηG(v)]+uvE18[ηG(u).ηG(v)]+uvE19[ηG(u).ηG(v)]+uvE20[ηG(u).ηG(v)]+uvE21[ηG(u).ηG(v)]+uvE22[ηG(u).ηG(v)]+uvE23[ηG(u).ηG(v)]+uvE24[ηG(u).ηG(v)]+uvE25[ηG(u).ηG(v)]+uvE26[ηG(u).ηG(v)]+uvE27[ηG(u).ηG(v)]+uvE28[ηG(u).ηG(v)]+uvE29[ηG(u).ηG(v)]+uvE30[ηG(u).ηG(v)]+uvE31[ηG(u).ηG(v)]+uvE32[ηG(u).ηG(v)]+uvE33[ηG(u).ηG(v)]+uvE34[ηG(u).ηG(v)]+uvE35[ηG(u).ηG(v)]+uvE36[ηG(u).ηG(v)]+uvE37[ηG(u).ηG(v)]+uvE38[ηG(u).ηG(v)]+uvE39[ηG(u).ηG(v)]
    =[(2).(5)](3)+[(3).(6)](1)+[(3).(7)](18)+[(3).(8)](1)+[(4).(9)](1)+[(4).(10)](5)+[(4).(11)](5)+[(4).(13)](1)+[(5).(10)](1)+[(5).(11)](1)+[(5).(14)](1)+[(6).(7)](3)+[(6).(9)](1)+[(6).(11)](1)+[(7).(7)](15)+[(7).(8)](1)+[(7).(9)](6)+[(7).(10)](3)+[(7).(11)](2)+[(7).(14)](1)+[(7).(15)](3)+[(8).(8)](1)+[(8).(11)](2)+[(8).(14)](1)+[(9).(9)](1)+[(9).(11)](1)+[(9).(15)](1)+[(10).(11)](5)+[(10).(14)](1)+[(11).(11)](2)+[(11).(13)](1)+[(11).(14)](2)+[(11).(15)](1)+[(13).(14)](1)+[(13).(15)](1)
    =6504
  • 3.
    By using Eq. (3) and the edge partitions given in Table iv we get
    HMN(G)=uvE(G)[ηG(u)+ηG(v)]2.
    =uvE1[ηG(u)+ηG(v)]2+uvE2[ηG(u)+ηG(v)]2+uvE3[ηG(u)+ηG(v)]2+uvE4[ηG(u)+ηG(v)]2+uvE5[ηG(u)+ηG(v)]2+uvE6[ηG(u)+ηG(v)]2+uvE7[ηG(u)+ηG(v)]2+uvE8[ηG(u)+ηG(v)]2+uvE9[ηG(u)+ηG(v)]2+uvE10[ηG(u)+ηG(v)]2+uvE11[ηG(u)+ηG(v)]2+uvE12[ηG(u)+ηG(v)]2+uvE13[ηG(u)+ηG(v)]2+uvE14[ηG(u)+ηG(v)]2+uvE15[ηG(u)+ηG(v)]2+uvE16[ηG(u)+ηG(v)]2+uvE17[ηG(u)+ηG(v)]2+uvE18[ηG(u)+ηG(v)]2+uvE19[ηG(u)+ηG(v)]2+uvE20[ηG(u)+ηG(v)]2+uvE21[ηG(u)+ηG(v)]2+uvE22[ηG(u)+ηG(v)]2+uvE23[ηG(u)+ηG(v)]2+uvE24[ηG(u)+ηG(v)]2+uvE25[ηG(u)+ηG(v)]2+uvE26[ηG(u)+ηG(v)]2+uvE27[ηG(u)+ηG(v)]2+uvE28[ηG(u)+ηG(v)]2+uvE29[ηG(u)+ηG(v)]2+uvE30[ηG(u)+ηG(v)]2+uvE31[ηG(u)+ηG(v)]2+uvE32[ηG(u)+ηG(v)]2+uvE33[ηG(u)+ηG(v)]2+uvE34[ηG(u)+ηG(v)]2+uvE35[ηG(u)+ηG(v)]2+uvE36[ηG(u)+ηG(v)]2+uvE37[ηG(u)+ηG(v)]2+uvE38[ηG(u)+ηG(v)]2+uvE39[ηG(u)+ηG(v)]2
    =[(2+5)2](3)+[(3+6)2](1)+[(3+7)2](18)+[(3+8)2](1)+[(3+9)2](1)+[(4+6)2](9)+[(4+7)2](10)+[(4+8)2](2)+[(4+9)2](1)+[(4+10)2](5)+[(4+11)2](5)+[(41+3)2](1)+[(5+10)2](1)+[(5+11)2](1)+[(5+14)2](1)+[(6+7)2](3)+[(6+9)2](1)+[(6+11)2](1)+[(7+7)2](15)+[(7+8)2](1)+[(7+9)2](6)+[(7+10)2](3)+[(7+11)2](2)+[(7+14)2](1)+[(7+15)2](3)+[(8+8)2](1)+[(8+11)2](2)+[(8+14)2](1)+[(9+9)2](1)+[(9+11)2](1)+[(9+15)2](1)+[(10+11)2](5)+[(10+14)2](1)+[(11+11)2](2)+[(11+13)2](1)+[(11+14)2](2)+[(11+15)2](2)+[(13+14)2](1)+[(13+15)2](1)
    =27752
  • 4
    By using Eq. (4) and vertex partitions given in Table iii we get
    MN(G)=vV(G)[ηG(v)]2.
    =vV1[ηG(v)]2+vV2[ηG(v)]2+vV3[ηG(v)]2+vV4[ηG(v)]2+vV5[ηG(v)]2+vV6[ηG(v)]2+vV7[ηG(v)]2+vV8[ηG(v)]2+vV9[ηG(v)]2+vV10[ηG(v)]2+vV11[ηG(v)]2+vV12[ηG(v)]2+vV13[ηG(v)]2
    =[(2)2](3)+[(3)2](21)+[(4)2](33)+[(5)2](3)+[(6)2](4)+[(7)2](26)+[(8)2](3)+[(9)2](4)+[(10)2](4)+[(11)2](7)+[(13)2](1)+[(14)2](2)+[(15)2](2)
    =4996
  • 5.
    By using Eq. (5) and vertex partitions given in Table iii we get
    FN(G)=vV(G)[ηG(v)]3.
    =vV1[ηG(v)]3+vV2[ηG(v)]3+vV3[ηG(v)]3+vV4[ηG(v)]3+vV5[ηG(v)]3+vV6[ηG(v)]3+vV7[ηG(v)]3+vV8[ηG(v)]3+vV9[ηG(v)]3+vV10[ηG(v)]3+vV11[ηG(v)]3+vV12[ηG(v)]3+vV13[ηG(v)]3
    =[(2)3](3)+[(3)3](21)+[(4)3](33)+[(5)3](3)+[(6)3](4)+[(7)3](26)+[(8)3](3)+[(9)3](4)+[(10)3](4)+[(11)3](7)+[(13)3](1)+[(14)3](2)+[(15)3](2)
    =45064

Theorem 3

LetG3be the graph of Anastrozole, then the topological indices (Eqs. (1), (2), (3), (4), (5))) for G3 are given as follows:

  • 1.

    FN*(G1)= 4680

  • 2.

    M2*(G1)= 2046

  • 3.

    HMN(G1)= 8772

  • 4.

    MN(G1)= 1586

  • 5.

    FN(G1)= 13106

Table iv.

Edge partition of an Abraxane drug.

(s, t) Frequency
(2, 5) 3
(3, 6) 1
(3, 7) 18
(3, 8) 1
(3, 9) 1
(4, 6) 9
(4, 7) 10
(4, 8) 2
(4, 9) 1
(4, 10) 5
(4, 11) 5
(4, 13) 1
(5, 10) 1
(5, 11) 1
(5, 14) 1
(6, 7) 3
(6, 9) 1
(6, 11) 1
(7, 7) 15
(7, 8) 1
(7, 9) 6
(7, 10) 3
(7, 11) 2
(7,14) 1
(7, 15) 3
(8, 8) 1
(8, 11) 2
(8, 14) 1
(9, 9) 1
(9, 11) 1
(9, 15) 1
(10, 11) 5
(10, 14) 1
(11, 11) 2
(11, 13) 1
(11, 14) 2
(11, 15) 1
(13, 14) 1
(13, 15) 1

Table iii.

Vertex partition of Abraxane drug.

ηv(G) Frequency
2 3
3 21
4 33
5 3
6 4
7 26
8 3
9 4
10 4
11 7
13 1
14 2
15 2

Proof. Let G3 be the graph of Anastrozole with vertex set V and edge set E. Let ηv(G) represent degree of a vertex and EEs,t represents the class of edges of G3 joining vertices of degrees s and t. The following tables show the vertex partition and edge partition

  • 1.By using Eq. (1) and edge partitions given in Table vi we get,
    FN*(G)=uvE(G)[ηG(u)2+[ηG(v)2].=uvE1[ηG(u)2+ηG(v)2]+uvE2[ηG(u)2+ηG(v)2]+uvE3[ηG(u)2+ηG(v)2]+uvE4[ηG(u)2+ηG(v)2]+uvE5[ηG(u)2+ηG(v)2]+uvE6[ηG(u)2+ηG(v)2]+uvE7[ηG(u)2+ηG(v)2]+uvE8[ηG(u)2+ηG(v)2]+uvE9[ηG(u)2+ηG(v)2]+uvE10[ηG(u)2+ηG(v)2]+uvE11[ηG(u)2+ηG(v)2]+uvE12[ηG(u)2+ηG(v)2]+uvE13[ηG(u)2+ηG(v)2]+uvE14[ηG(u)2+ηG(v)2]+uvE15[ηG(u)2+ηG(v)2
    =[(2)2+(5)2](2)+[(3)2+(5)2](1)+[(3)2+(6)2](1)+[(3)2+(7)2](3)+[(4)2+(7)2](12)+[(4)2+(8)2](2)+[(5)2+(6)2](2)+[(5)2+(13)2](2)+[(6)2+(6)2](1)+[(6)2+(9)2](2)+[(7)2+(10)2](6)+[(7)2+(13)2](4)+[(8)2+(9)2](1)+[(8)2+(10)2](1)+[(10)2+(3)2](2)
    =4531
  • 2.
    By using Eq. (2) and edge partitions given in Table vi we get,
    M2*(G)=uvE(G)[ηG(u).ηG(v)].
    =uvE1[ηG(u).ηG(v)]+uvE2[ηG(u).ηG(v)]+uvE3[ηG(u).ηG(v)]+uvE4[ηG(u).ηG(v)]+uvE5[ηG(u).ηG(v)]+uvE6[ηG(u).ηG(v)]+uvE7[ηG(u).ηG(v)]+uvE8[ηG(u).ηG(v)]+uvE9[ηG(u).ηG(v)]+uvE10[ηG(u).ηG(v)]+uvE11[ηG(u).ηG(v)]+uvE12[ηG(u).ηG(v)]+uvE13[ηG(u).ηG(v)]+uvE14[ηG(u).ηG(v)]+uvE15[ηG(u).ηG(v)]
    =[(2).(5)](2)+[(3).(5)](1)+[(3).(6)](1)+[(3).(7)](3)+[(4).(7)](12)+[(4).(8)](2)+[(5).(6)](2)+[(5).(13)](2)+[(6).(6)](1)+[(6).(9)](2)+[(7).(10)](6)+[(7).(13)](4)+[(8).(9)](1)+[(8).(10)](1)+[(10).(3)](2)
    =1976
  • 3.
    By using Eq. (3) and edge partitions given in Table vi we get
    HMN(G)=uvE(G)[ηG(u)+ηG(v)]2.
    =uvE1[ηG(u)+ηG(v)]2+uvE2[ηG(u)+ηG(v)]2+uvE3[ηG(u)+ηG(v)]2+uvE4[ηG(u)+ηG(v)]2+uvE5[ηG(u)+ηG(v)]2+uvE6[ηG(u)+ηG(v)]2+uvE7[ηG(u)+ηG(v)]2+uvE8[ηG(u)+ηG(v)]2+uvE9[ηG(u)+ηG(v)]2+uvE10[ηG(u)+ηG(v)]2+uvE11[ηG(u)+ηG(v)]2+uvE12[ηG(u)+ηG(v)]2+uvE13[ηG(u)+ηG(v)]2+uvE14[ηG(u)+ηG(v)]2+uvE15[ηG(u)+ηG(v)]2
    =[(2+5)2](2)+[(3+5)2](1)+[(3+6)2](1)+[(4+7)2](12)+[(4+8)2](2)+[(5+6)2](2)+[(5+13)2](2)+[(6+6)2](1)+[(6+9)2](2)+[(7+10)2](6)+[(7+13)2](4)+[(8+9)2](1)+[(8+10)2](1)+[(10+13)2](2)
    =8483
  • 4.
    By using Eq. (4) and vertex partitions given in Table v we get
    MN(G)=vV(G)[ηG(v)]2.
    =vV1[ηG(v)]2+vV2[ηG(v)]2+vV3[ηG(v)]2+vV4[ηG(v)]2+vV5[ηG(v)]2+vV6[ηG(v)]2+vV7[ηG(v)]2+vV8[ηG(v)]2+vV9[ηG(v)]2+vV10[ηG(v)]2
    =[(2)2](2)+[(3)2](5)+[(4)2](14)+[(5)2](3)+[(6)2](3)+[(7)2](7)+[(8)2](1)+[(9)2](1)+[(10)2](3)+[(13)2](2)
    =1586
  • 5.
    By using Eq. (5) and vertex partitions given in Table v we get
    FN(G)=vV(G)[ηG(v)]3.
    =vV1[ηG(v)]3+vV2[ηG(v)]3+vV3[ηG(v)]3+vV4[ηG(v)]3+vV5[ηG(v)]3+vV6[ηG(v)]3+vV7[ηG(v)]3+vV8[ηG(v)]3+vV9[ηG(v)]3+vV10[ηG(v)]3
    =[(2)3](2)+[(3)3](5)+[(4)3](14)+[(5)3](3)+[(6)3](3)+[(7)3](7)+[(8)3](1)+[(9)3](1)+[(10)3](3)+[(13)3](2)
    =13106

Theorem 4

Let G4 be the graph of Capecitabine, then the topological indices (Eqs. (1), (2), (3), (4), (5))) for G4 are given as follows:

  • 1.

    FN*(G1)= 5603

  • 2.

    M2*(G1)= 2429

  • 3.

    HMN(G1)= 10461

  • 4.MN(G1) = 1860

  • 5.FN(G1) = 14844

Table vi.

Edge partition of an Anastrozole drug.

(s, t) Frequency
(2, 5) 2
(3, 5) 1
(3, 6) 1
(3, 7) 3
(4, 7) 12
(4, 8) 2
(5, 6) 2
(5, 13) 2
(6, 6) 1
(6, 9) 2
(7, 10) 5
(7, 13) 4
(8, 9) 1
(8, 10) 1
(10, 13) 2

Table v.

Vertex partition of an Anastrozole drug.

ηv(G) Frequency
2 2
3 5
4 14
5 3
6 3
7 7
8 1
9 1
10 3
13 2

Proof. Let G4 be the graph of Capecitabine with vertex set V and edge set E. Let ηv(G) represent the degree of a vertex and Es,t represents the class of edges of G4 joining vertices of degrees s and t. The following tables show the vertex partition and edge partition

  • 1.By using Eq. (1) and edge partitions given in Table viii we get,
    FN*(G)=uvE(G)[ηG(u)2+ηG(v)2].
    =uvE1[ηG(u)2+ηG(v)2]+uvE2[ηG(u)2+ηG(v)2]+uvE3[ηG(u)2+ηG(v)2]+uvE4[ηG(u)2+ηG(v)2]+uvE5[ηG(u)2+ηG(v)2+uvE6[ηG(u)2+ηG(v)2]+uvE7[ηG(u)2+ηG(v)2]+uvE8[ηG(u)2+ηG(v)2]+uvE9[ηG(u)2+ηG(v)2]+uvE10[ηG(u)2+ηG(v)2+uvE11[ηG(u)2+ηG(v)2]+uvE12[ηG(u)2+ηG(v)2]+uvE13[ηG(u)2+ηG(v)2]+uvE14[ηG(u)2+ηG(v)2]+uvE15[ηG(u)2+ηG(v)2]+uvE16[ηG(u)2+ηG(v)2]+uvE17[ηG(u)2+ηG(v)2]+uvE18[ηG(u)2+ηG(v)2]+uvE19[ηG(u)2+ηG(v)2]+uvE20[ηG(u)2+ηG(v)2]+uvE21[ηG(u)2+ηG(v)2]+uvE22[ηG(u)2+ηG(v)2]
    =[(2)2+(5)2](1)+[(3)2+(6)2](2)+[(3)2+(7)2](3)+[(4)2+(5)2](1)]+[(4)2+(7)2](6)+[(4)2+(8)2](2)+[(4)2+(10)2](8)+[(4)2+(3)2](11)+[(5)2+(11)2](2)]+[(6)2+(6)2](1)+[(6)2+(7)2](2)+[(6)2+(8)2](1)+[(6)2+(10)2](1)+[(7)2+(7)2](1)]+[(7)2+(8)2](2)+[(7)2+(10)2](2)+[(7)2+(11)2](1)+[(8)2+(10)2](2)+[(8)2+(11)2](1)]+[(10)2+(10)2](3)+[(10)2+(11)2](1)]+[(11)2+(11)2](2)
    =5603
  • 2.By using Eq. (2) and edge partitions given in Table viii we get,
    M2*(G)=uvE(G)[ηG(u).ηG(v)].
    =uvE1[ηG(u).ηG(v)]+uvE2[ηG(u).ηG(v)]+uvE3[ηG(u).ηG(v)]+uvE4[ηG(u).ηG(v)]+uvE5[ηG(u).ηG(v)]+uvE6[ηG(u).ηG(v)]+uvE7[ηG(u).ηG(v)]+uvE8[ηG(u).ηG(v)]+uvE9[ηG(u).ηG(v)]+uvE10[ηG(u).ηG(v)]+uvE11[ηG(u).ηG(v)]+uvE12[ηG(u).ηG(v)]+uvE13[ηG(u).ηG(v)]+uvE14[ηG(u).ηG(v)]+uvE15[ηG(u).ηG(v)]+uvE16[ηG(u).ηG(v)]+uvE17[ηG(u).ηG(v)]+uvE18[ηG(u).ηG(v)]+uvE19[ηG(u).ηG(v)]+uvE20[ηG(u).ηG(v)]+uvE21[ηG(u).ηG(v)]+uvE22[ηG(u).ηG(v)]=[(2).(5)](1)+[(3).(6)](2)+[(3).(7)](3)+[(4).(5)](1)+[(4).(7)](6)+[(4).(8)](2)+[(4).(10)](8)+[(4).(11)](3)+[(5).(11)](2)+[(6).(6)](1)+[(6).(7)](2)+[(6).(8)](1)+[(6).(10)](1)+[(7).(7)](1)+[(7).(8)](2)+[(7).(10)](2)+[(7).(11)](1)+[(8).(10)](2)+[(8).(11)](1)+[(10).(10)](3)+[(10).(11)](1)+[(11).(11)](2)
    =2429
  • 3.By using Eq. (3) and the edge partitions given in Table viii we get
    HMN(G)=uvE(G)[ηG(u)+ηG(v)]2.
    =uvE1[ηG(u)+ηG(v)]2+uvE2[ηG(u)+ηG(v)]2+uvE3[ηG(u)+ηG(v)]2+uvE4[ηG(u)+ηG(v)]2+uvE5[ηG(u)+ηG(v)]2+uvE6[ηG(u)+ηG(v)]2+uvE7[ηG(u)+ηG(v)]2+uvE8[ηG(u)+ηG(v)]2+uvE9[ηG(u)+ηG(v)]2+uvE10[ηG(u)+ηG(v)]2+uvE11[ηG(u)+ηG(v)]2+uvE12[ηG(u)+ηG(v)]2+uvE13[ηG(u)+ηG(v)]2+uvE14[ηG(u)+ηG(v)]2+uvE15[ηG(u)+ηG(v)]2+uvE16[ηG(u)+ηG(v)]2+uvE17[ηG(u)+ηG(v)]2+uvE18[ηG(u)+ηG(v)]2+uvE19[ηG(u)+ηG(v)]2+uvE20[ηG(u)+ηG(v)]2+uvE21[ηG(u)+ηG(v)]2+uvE22[ηG(u)+ηG(v)]2
    =[(2+5)2](1)+[(3+6)2](2)+[(3+7)2](3)+[(4+5)2](1)+[(4+7)2](6)+[(4+8)2](2)+[(4+10)2](8)+[(4+11)2](3)+[(5+11)2](2)+[(6+6)2](1)+[(6+7)2](2)+[(6+8)2](1)+[(6+10)2](1)+[(7+7)2](1)+[(7+8)2](2)+[(7+10)2](2)+[(7+11)2](1)+[(8+10)2](2)+[(8+11)2](1)+[(10+10)2](3)+[(10+11)2](1)+[(11+11)2](2)
    =10461
  • 4.
    By using Eq. (4) and vertex partitions given in Table vii we get
    MN(G)=vV(G)[ηG(v)]2.
    =vV1[ηG(v)]2+vV2[ηG(v)]2+vV3[ηG(v)]2+vV4[ηG(v)]2+vV5[ηG(v)]2+vV6[ηG(v)]2+vV7[ηG(v)]2+vV8[ηG(v)]2+vV9[ηG(v)]2
    =[(2)2](1)+[(3)2](5)+[(4)2](19)+[(5)2](2)+[(6)2](3)+[(7)2](6)+[(8)2](3)+[(10)2](5)+[(11)2](3)
    =1860
  • 5.
    By using Eq. (5) and vertex partitions given in Table vii we get
    FN(G)=vV(G)[ηG(v)]3.
    =vV1[ηG(v)]3+vV2[ηG(v)]3+vV3[ηG(v)]3+vV4[ηG(v)]3+vV5[ηG(v)]3+vV6[ηG(v)]3+vV7[ηG(v)]3+vV8[ηG(v)]3+vV9[ηG(v)]3
    =[(2)3](1)+[(3)3](5)+[(4)3](19)+[(5)3](2)+[(6)3](3)+[(7)3](6)+[(8)3](3)+[(10)3](5)+[(11)3](3)
    =14844

Theorem 5

Let G5 be the graph of Cyclophosphamide, then the topological indices (Eqs. (1), (2), (3), (4), (5))) for G5 are given as follows:

  • 1.

    FN*(G1)= 3428

  • 2.

    M2*(G1)= 1509

  • 3.

    HMN(G1)= 6446

  • 4.

    MN(G1)= 1156

  • 5.

    FN(G1)=9198

Table viii.

Edge partition of a Capecitabine drug.

(s, t) Frequency
(2, 5) 1
(3, 6) 2
(3, 7) 3
(4, 5) 1
(4, 7) 6
(4, 8) 2
(4, 10) 8
(4, 11) 3
(5, 11) 2
(6, 6) 1
(6, 7) 2
(6, 8) 1
(6, 10) 1
(7, 7) 1
(7, 8) 2
(7, 10) 2
(7, 11) 1
(8, 10) 2
(8, 11) 1
(10, 10) 3
(10, 11) 1
(11, 11) 2

Table vii.

Vertex partition of a Capecitabine drug.

ηv(G) Frequency
2 1
3 5
4 19
5 2
6 3
7 6
8 3
10 5
11 3

Proof. Let G5 be the graph of Cyclophosphamide with vertex set Vv and edge set Ev. Let ηvv(G) represent the degree of a vertex and represent the class of edges of G5 joining vertices of degrees s and t. The following tables show the vertex partition and edge partition

  • 1.By using Eq. (1) and edge partitions given in Table x we get,
    FN*(G)=uvE(G)[ηG(u)2+ηG(v)2].
    =uvE1[ηG(u)2+ηG(v)2]+uvE2[ηG(u)2+ηG(v)2]+uvE3[ηG(u)2+ηG(v)2]+uvE4[ηG(u)2+ηG(v)2]+uvE5[ηG(u)2+ηG(v)2]+uvE6[ηG(u)2+ηG(v)2]+uvE7[ηG(u)2+ηG(v)2]+uvE8[ηG(u)2+ηG(v)2]+uvE9[ηG(u)2+ηG(v)2]+uvE10[ηG(u)2+ηG(v)2]+uvE11[ηG(u)2+ηG(v)2]+uvE12[ηG(u)2+ηG(v)2]
    =[(3)2+(9)2](1)+[(4)2+(7)2](6)+[(4)2+(8)2](2)+[(4)2+(9)2](7)]+[(4)2+(10)2](2)+[(7)2+(9)2](2)+[(8)2+(8)2](1)+[(8)2+(9)2](1)+[(8)2+(10)2](1)+[(9)2+(9)2](2)]+[(9)2+(12)2]
    =3428
  • 2.
    By using Eq. (2) and edge partitions given in Table x we get,
    M2*(G)=uvE(G)[ηG(u).ηG(v)].
    =uvE1[ηG(u).ηG(v)]+uvE2[ηG(u).ηG(v)]+uvE3[ηG(u).ηG(v)]+uvE4[ηG(u).ηG(v)]+uvE5[ηG(u).ηG(v)]+uvE6[ηG(u).ηG(v)]+uvE7[ηG(u).ηG(v)]+uvE8[ηG(u).ηG(v)]+uvE9[ηG(u).ηG(v)]+uvE10[ηG(u).ηG(v)]+uvE11[ηG(u).ηG(v)]+uvE12[ηG(u).ηG(v)]
    =[(3).(9)](1)+[(4).(7)](6)+[(4).(8)](2)+[(4).(9)](7)+[(4).(10)](2)+[(7).(9)](2)+[(8).(8)](1)+[(8).(9)](1)+[(8).(10)](1)+[(9).(9)](2)+[(9).(10)](1)+[(9).(12)](3)
    =1509
  • 3.
    By using Eq. (3) and the edge partitions given in Table X we get
    HMN(G)=uvE(G)[ηG(u)+ηG(v)]2.
    =uvE1[ηG(u)+ηG(v)]2+uvE2[ηG(u)+ηG(v)]2+uvE3[ηG(u)+ηG(v)]2+uvE4[ηG(u)+ηG(v)]2+uvE5[ηG(u)+ηG(v)]2+uvE6[ηG(u)+ηG(v)]2+uvE7[ηG(u)+ηG(v)]2+uvE8[ηG(u)+ηG(v)]2+uvE9[ηG(u)+ηG(v)]2+uvE10[ηG(u)+ηG(v)]2+uvE11[ηG(u)+ηG(v)]2+uvE12[ηG(u)+ηG(v)]2
    =[(3+9)2](1)+[(4+7)2](6)+[(4+8)2](2)+[(4+9)2](7)+[(4+10)2](2)+[(7+9)2](2)+[(8+8)2](1)+[(8+9)2](1)+[(8+10)2](1)+[(9+9)2](2)+[(9+10)2](1)+[(9+12)2](3)
    =6446
  • 4.
    By using Eq. (4) and vertex partitions given in table ix we get
    MN(G)=vV(G)[ηG(v)]2.
    =vV1[ηG(v)]2+vV2[ηG(v)]2+vV3[ηG(v)]2+vV4[ηG(v)]2+vV5[ηG(v)]2+vV6[ηG(v)]2+vV7[ηG(v)]2
    =[(3)2](1)+[(4)2](17)+[(7)2](2)+[(8)2](2)+[(9)2](5)+[(10)2](1)+[(12)2](1)
    =1156
  • 5.
    By using Eq. (5) and vertex partitions given in table ix we get
    FN(G)=vV(G)[ηG(v)]3.
    =vV1[ηG(v)]3+vV2[ηG(v)]3+vV3[ηG(v)]3+vV4[ηG(v)]3+vV5[ηG(v)]3+vV6[ηG(v)]3+vV7[ηG(v)]3
    =[(3)3](1)+[(4)3](17)+[(7)3](2)+[(82](2)+[(92](5)+[(102](1)+[(122](1)
    =9198

Table x.

Edge partition of Cyclophosphamide drug.

(s, t) Frequency
(3, 9) 1
(4, 7) 6
(4, 8) 2
(4, 9) 7
(4, 10) 2
(7, 9) 2
(8, 8) 1
(8, 9) 1
(8, 10) 1
(9, 9) 2
(9, 10) 1
(9, 12) 3

Table ix.

Vertex partition of Cyclophosphamide drug.

ηv(G) Frequency
3 1
4 17
7 2
8 2
9 5
10 1
12 1

The topological indices of other drugs are obtained using similar computational techniques as those used in Theorems 1 - 5 above. The computed values of the topological indices for all 14 drugs are given in Table 1.

Table 1.

Numerical values of the computed TIs for 14 considered drugs.

Name of Drugs MN(G) FN(G) FN*(G) M2*(G) HMN(G)
Abemaciclib 2776 21806 8018 3613 15244
Abraxane 4996 45064 14744 6504 27752
Anastrozole 1586 13106 4680 2046 8772
Capecitabine 1860 14844 5603 2429 10461
Cyclophosphamide 1156 9198 3428 1509 6446
Everolimus 6311 54001 19419 8436 36291
Exemestane 2395 22927 2779 3215 13819
Fulvestrant 4117 38481 13830 5907 25644
Ixabepilone 2922 28760 10377 4469 19315
Letrozole 1180 8748 3308 1515 6338
Megestrol Acetate 2751 25673 7811 3388 14587
Methotrexate 1814 12688 5026 2276 9578
Tamoxifen 2069 15293 5762 2617 10996
Thiotepa 1226 11390 3848 1723 7294

2.2. Quantitative structure-property relationship analysis

2.2.1. Regression models

Five topological indices are applied to model seven physical properties (boiling point (BP), melting point (MP), enthalpy of vaporization (E), flashpoint (F), molar refractivity (MR), molar volume (MV), and polarizability (P)) of the 14 anti-breast cancer drugs shown in Fig. 1. The experimental physical properties of these drugs are presented in Table 2 below. A simple linear regression model was used to correlate the computed values of topological indices with the experimental physical properties of drugs.

p=A+b[TI] (6)

Here, A = constant, b = regression coefficient, TI = topological index, p = physical property.

Table 2.

Physical properties of drugs.

Name of drugs BP (°C at 760 mmHg) MP (°C) Enthalpy (kJmol−1) Flash point (°C) MR MV (cm3) P
10-24 (cm3)
Abemaciclib 689.3 101 370.7 140.4 382.3 55.7
Abraxane 957.1 146 532.6 219.3 610.6 86.9
Anastrozole 469.7 81.5 73.2 237.9 90 270.3 35.7
Capecitabine 517 115.5 82.3 240.5 32.6
Cyclophosphamide 336.1 51 57.9 157.1 58.1 195.7 23
Everolimus 998.7 998.7 165.1 557.8 257.7 811.2 102.2
Exemestane 453.7 155.13 71.3 169 85.8 260.6 34
Fulvestrant 674.8 105 104.1 361.9 154 505.1 61.1
Ixabepilone 697.8 107.3 375.8 140.1 451.6 55.5
Letrozole 563.5 181 84.7 294.6 87.1 234.5 34.5
Megestrol Acetate 507.1 214 77.7 218.5 106.4 333.4 42.2
Methotrexate 192 119 295.7 47.2
Tamoxifen 482.3 96 74.7 140 118.9 118.9 47.1
Thiotepa 270.2 51.5 50.8 117.2 49.1 125.8 19.5

For seven physical characteristics and five degree based topological indices of the molecular structure of fourteen medicines, constant (A) and regression coefficient (b) are computed using the SPSS tool. The following regression models are constructed for the specified degree based topological indices by using Eq. (6).

  • 1.

    Regression model for modified neighborhood version of Forgotten topological index (FN*)

BoilingPoint=290.227+0.037[FN*(G)]
MeltingPoint=79.851+0.0413[FN*(G)]
Enthalpy=39.482+0.0033[FN*(G)]
FlashPoint=95.358+0.0243[FN*(G)]
MolarRefraction=37.990+0.0108[FN*(G)]
MolarVolume=65.428+0.0360[FN*(G)]
Polarizability=15.047+0.0042[FN*(G)]
  • 2.

    Regression model for neighborhood version of second Zagreb index

M2*(G)
BoilingPoint=257.017+0.0902[M2*(G)]
MeltingPoint=123.529+0.1026[M2*(G)]
Enthalpy=38.783+0.0144[M2*(G)]
FlashPoint=76.127+0.058[M2*[M2*(G)]
MolarRefraction=28.842+0.026[M2*(G)]
MolarVolume=33.042+0.0880[M2*(G)]
Polarizability=11.420+0.0104[M2*(G)]
  • 3.

    Regression model for Neighborhood version of Hyper Zagreb Index HMN(G) .

BoilingPoint=261.120+0.0208[HMN(G)]
MeltingPoint=117.725+0.023[HMN(G)]
Enthalpy=41.739+0.0031[HMN(G)]
FlashPoint=78.877+0.0134[HMN(G)]
MolarRefraction=30.172+0.0060[HMN(G)]
MolarVolume=36.142+0.0203[HMN(G)
Polarizability=11.948+0.0023[HMN(G)]
  • 4.

    Regression model for Neighborhood Zagreb index MN(G) .

BoilingPoint=249.20+0.123[MN(G)]
MeltingPoint=147.315+0.145[MN(G)]
Enthalpy=37.718+0.0197[MN(G)]
FlashPoint=73.612+0.791[MN(G)]
MolarRefraction=25.462+0.0363[MN(G)]
MolarVolume=27.063+0.119[MN(G)]
Polarizability=10.080+0.014[MN(G)
  • 5.

    Regression model for the neighborhood version of the Forgotten Topological index (FN(G) .

BoilingPoint=272.116+0.0131[FN(G)]
MeltingPoint=106.954+0.0150[FN(G)]
Enthalpy=40.969+0.002[FN(G)]
FlashPoint=85.222+0.0085[FFN(G)]
MolarRefraction=34.803+0.0037[FN(G)]
MolarVolume=48.980+0.0128[FN(G)]
Polarizability=13.785+0.0015[FN(G)]

Table 3 lists the correlation coefficients for each topological index and the seven physical properties. Fig. 2 depicts the relationship between the drug's topological index and the correlation coefficient of its physicochemical attributes like boiling point, melting point, enthalpy, flashpoint, molar refraction, molar volume, and polarizability.

Table 3.

The correlation coefficients of the experimental physical properties and computed TI values of drugs.

Topological index Correlation coefficients of BP Correlation coefficients
of MP
Correlation coefficients of enthalpy Correlation coefficients of FP Correlation coefficients
of MR
Correlation coefficients
of MV
Correlation coefficients
of P
FN*(G) 0.90 0.79 0.93 0.88 0.94 0.94 0.94
M2*(G) 0.90 0.82 0.93 0.87 0.94 0.95 0.94
HMN(G) 0.90 0.81 0.92 0.86 0.94 0.95 0.94
MN(G) 0.91 0.84 0.93 0.86 0.95 0.95 0.95
FN(G) 0.88 0.79 0.91 0.85 0.92 0.94 0.92
Fig. 2.

Fig. 2

Correlation coefficients of physical properties and Topological indices (TIs).

2.2.2. Evaluation of statistical parameters

This section uses QSPR modeling to analyze the correlation between the physiochemical features of various breast cancer drugs such as Abemaciclib (Verzenio), Abraxane, Anastrozole (Arimidex), Capecitabine (Xeloda), Cyclophosphamide, Everolimus (Afinitor), Exemestane (Aromasin), Fulvestrant (Faslodex), Ixabepilone (Ixempra), Letrozole (Femara), Megestrol Acetate, Methotrexate, Tamoxifen (Soltamox), and Thiotepa (Tepadina), and their computed degree based TIs. Such as N is a sample size, A is Y-intercept or constant, b is slope, r is the correlation coefficient, r2 is the ratio of the dependent variable change that a linear regression model explains. We believe the correlation coefficient to be one where the theoretical and experimental calculations are closer (indicated by bolded font in tables). This form of test can help relate and determine model improvement. It must be noted that the value of p is less than 0.05 and the value of r is even more than 0.6. Consequently, it depicts that all the properties are significant. The statistical variables involved in QSPR models of TIs are presented in Table 4, Table 5, Table 6, Table 7, Table 8. The term “standard error estimate” refers to the amount of variance for an observation observed around the determined regression line. It is described in Table 9 and assesses the degree of prediction accuracy produced around the calculated regression line.

Table 4.

Statistical Parameters for the linear QSPR model for (FN*(G). The bold font indicates the maximum correlation value.

Physical property N A b r r2 F P
Boiling point 13 290.227 0.037 0.898 0.806 45.765 0.000
Melting point 11 −79.851 0.041 0.794 0.631 15.404 0.393
Enthalpy 12 39.483 0.003 0.926 0.857 59.766 0.000
Flash point 12 95.358 0.024 0.885 0.783 36.014 0.035
Molar Refraction 14 37.990 0.011 0.940 0.884 91.649 0.002
Molar Volume 14 65.429 0.036 0.952 0.891 98.544 0.073
Polarizability 14 15.047 0.004 0.938 0.880 87.944 0.004
Table 5.

Statistical parameters for the linear QSPR model for M2*(G). The bold font indicates the highest correlation value.

Physical property N A b r r2 F P
Boiling point 13 257.017 0.090 0.899 0.809 46.604 0.001
Melting point 11 −123.529 0.103 0.816 0.665 17.875 0.212
Enthalpy 12 38.784 0.014 0.928 0.862 62.362 0.001
Flash point 12 76.128 0.058 0.867 0.751 30.143 0.126
Molar Refraction 14 28.842 0.026 0.941 0.884 91.326 0.024
Molar Volume 14 33.042 0.088 0.952 0.907 116.658 0.340
Polarizability 14 11.421 0.010 0.940 0.884 91.531 0.024
Table 6.

Statistical parameters used for the linear QSPR model for HMN(G). The bold font indicates the highest correlation value.

Physical property N A b r r2 F P
Boiling point 13 261.120 0.021 0.896 0.802 44.597 0.001
Melting point 11 −117.725 0.024 0.811 0.657 17.258 0.234
Enthalpy 12 41.740 0.003 0.925 0.855 59.005 0.001
Flash point 12 78.877 0.013 0.863 0.746 29.300 0.116
Molar Refraction 14 30.173 0.006 0.936 0.876 84.539 0.022
Molar Volume 14 36.143 0.020 0.952 0.906 116.081 0.296
Polarizability 14 11.948 0.002 0.936 0.876 84.722 0.022
Table 7.

Statistical parameters used for the linear QSPR model for MN(G). The bold font indicates the highest correlation value.

Physical property N A b r r2 F P
Boiling point 13 249.201 0.124 0.906 0.821 50.432 0.001
Melting point 11 −147.316 0.146 0.842 0.710 22.006 0.128
Enthalpy 12 37.718 0.020 0.934 0.872 68.104 0.001
Flash point 12 73.612 0.079 0.865 0.748 29.615 0.144
Molar Refraction 14 25.462 0.036 0.953 0.908 118.362 0.028
Molar Volume 14 27.063 0.120 0.949 0.789 44.827 0.083
Polarizability 14 10.080 0.014 0.953 0.908 118.698 0.028
Table 8.

Statistical parameters used for the linear QSPR model for FN(G). The bold font indicates the highest correlation value.

Physical property N A b r r2 F P
Boiling point 13 272.117 0.013 0.881 0.776 38.118 0.001
Melting point 11 −106.954 0.015 0.793 0.629 15.257 0.290
Enthalpy 12 40.970 0.002 0.908 0.825 47.216 0.001
Flash point 12 85.222 0.009 0.847 0.717 25.362 0.106
Molar Refraction 14 34.803 0.004 0.916 0.839 62.472 0.019
Molar Volume 14 48.980 0.013 0.941 0.885 91.952 0.198
Polarizability 14 13.785 0.002 0.916 0.839 62.558 0.019
Table 9.

Standard error of estimate.

Topological index Std. error of the estimate for boiling point Std. error of the estimate for melting point Std. error of the estimate for enthalpy Std. error of the estimate for flash point Std. error of the estimate for molar refraction Std. error of the estimate for molar volume Std. error of the estimate for Polarizability
FN*(G) 98.84 172.44 13.60 72.50 21.09 66.31 8.35
M2*(G) 98.12 164.32 13.36 77.63 20.72 61.47 8.21
HMN(G) 99.87 166.24 13.68 78.45 21.44 61.61 8.49
MN(G) 95.01 152.98 12.86 78.14 18.45 63.37 7.31
FN(G) 106.25 172.96 15.02 82.71 24.41 68.38 9.67

2.2.3. Comparison

In this section, the evaluation of experimental values and calculated values from our regression models are performed. The physical characteristics of the practical and theoretically computed values of the models are also compared, and the results are presented in Table 10, Table 11, Table 12, Table 13, Table 14, Table 15, Table 16.

Table 10.

Comparison of experimental and calculated values for boiling point from linear regression models.

Name of drugs The boiling point of drugs Boiling point computed
from regression
model for MN(G)
Boiling point computed
from regression
model for FN(G)
Boiling point computed
from regression
model for FN*(G)
Boiling point computed
from regression
model for MN*(G)
Boiling point computed
from regression
model for HMN(G)
Abemaciclib 689.3 ± 65.0 ○C at 760 mmHg 593.025 559.754 587.736 583.155 578.285
Abraxane 957.1 ± 65.0 ○C at 760 mmHg 867.985 866.545 837.304 844.119 838.525
Anastrozole 469.7 ± 55.0 ○C at 760 mmHg 445.636 444.995 463.879 441.705 443.629
Capecitabine 517 ○C at 760 mmHg 479.573 467.920 498.127 476.278 478.770
Cyclophosphamide 336.1 ± 52.0 ○C at 760 mmHg 392.378 393.445 417.423 393.231 395.235
Everolimus 998.7 ± 75.0 ○C at 760 mmHg 1030.856 984.431 1010.771 1018.516 1016.186
Exemestane 453.7 ± 45.0 ○C at 760 mmHg 545.836 574.541 393.342 547.228 548.636
Fulvestrant 674.8 ± 55.0 ○C at 760 mmHg 759.116 779.710 803.390 790.229 794.666
Ixabepilone 697.8 ± 55.0 ○C at 760 mmHg 611.108 651.483 675.267 660.424 662.985
Letrozole 563.5 ± 60.0 ○C at 760 mmHg 395.351 387.509 412.971 393.773 392.988
Megestrol Acetate 507.1 ± 50.0 ○C at 760 mmHg 589.929 610.763 580.055 562.845 564.615
Tamoxifen 482.3 ± 33.0 ○C at 760 mmHg 505.459 473.843 504.027 493.248 489.901
Thiotepa 270.2 ± 23.0 ○C at 760 mmHg 401.048 422.359 433.008 412.549 412.878
Table 11.

Comparison of experimental and calculated values for melting point from linear regression models.

Name of drugs The melting point of drugs Melting point computed
from regression
model for MN(G)
Melting point computed
from regression
model for FN(G)
Melting point computed
from regression
model for FN*(G)
Melting point computed
from regression
model for MN*(G)
Melting point computed
from regression
model for HMN(G)
Anastrozole 81.5 84.115 90.944 113.544 86.559 88.767
Capecitabine 115.5 124.098 117.187 151.686 125.887 128.526
Cyclophosphamide 51 21.369 31.934 61.806 31.419 34.013
Everolimus 998.7 773.592 708.451 722.615 742.700 736.562
Exemestane 155.13 202.165 239.239 34.987 206.595 207.573
Fulvestrant 105 453.442 474.101 491.656 483.016 485.933
Letrozole 181 24.871 25.139 56.848 32.035 31.471
Megestrol Acetate 214 254.113 280.703 242.928 224.359 225.652
Methotrexate 192 117.385 84.632 127.842 110.176 107.740
Tamoxifen 96 154.595 123.967 158.256 145.191 141.120
Thiotepa 51.5 31.584 65.033 79.162 53.393 53.975
Table 12.

Comparison of experimental and calculated values for enthalpy from regression models.

Name of drugs Enthalpy of drugs Enthalpy computed
from regression
model for MN(G)
Enthalpy computed
from regression
model for FN(G)
Enthalpy computed
from regression
model for FN*(G)
Enthalpy computed
from regression
model for MN*(G)
Enthalpy computed
from regression
model for HMN(G)
Abemaciclib 101.0 ± 3.0 kJ/mol 92.532 87.046 66.141 90.910 89.946
Abraxane 146.0 ± 3.0 kJ/mol 136.367 136.189 88.503 132.619 129.500
Anastrozole 73.2 ± 3.0 kJ/mol 69.035 68.663 55.043 68.302 69.479
Cyclophosphamide 57.9 ± 3.0 kJ/mol 60.544 60.405 50.880 60.555 62.124
Everolimus 165.1 ± 6.0 kJ/mol 162.333 155.073 104.046 160.493 156.503
Exemestane 71.3 ± 3.0 kJ/mol 85.009 89.414 48.722 85.168 85.440
Fulvestrant 104.1 ± 3.0 kJ/mol 119.011 122.280 85.464 124.006 122.834
Ixabepilone 107.3 ± 3.0 kJ/mol 95.415 101.739 73.984 103.260 102.820
Letrozole 84.7 ± 3.0 kJ/mol 61.018 59.454 50.481 60.641 61.782
Megestrol Acetate 77.7 ± 3.0 kJ/mol 92.038 95.216 65.452 87.664 87.868
Tamoxifen 74.7 ± 3.0 kJ/mol 78.572 73.284 58.640 76.540 76.512
Thiotepa 50.8 ± 3.0 kJ/mol 61.926 65.037 52.276 63.642 64.805
Table 13.

Comparison of experimental and calculated values for flash point from regression models.

Name of drugs The flash point of drugs Flash point computed
from regression
model for MN(G)
Flash point computed
from regression
model for FN(G)
Flash point computed
from regression
model for FN*(G)
Flash point computed
from regression
model for MN*(G)
Flash point computed
from regression
model for HMN(G)
Abemaciclib 370.7 ± 34.3 ○C 293.284 271.139 290.793 286.721 283.709
Abraxane 532.6 ± 34.3 ○C 468.959 469.435 454.736 455.231 451.778
Anastrozole 237.9 ± 31.5 ○C 199.116 196.963 209.431 195.384 196.746
Cyclophosphamide 157.1 ± 30.7 ○C 165.089 163.644 178.914 164.084 165.491
Everolimus 557.8 ± 37.1 ○C 573.018 545.631 568.687 567.843 566.515
Exemestane 169.0 ± 25.7 ○C 263.135 280.696 163.095 263.523 264.562
Fulvestrant 361.9 ± 31.5 ○C 399.401 413.308 432.458 420.433 423.453
Ixabepilone 375.8 ± 31.5 ○C 304.838 330.428 348.293 336.616 338.411
Letrozole 294.6 ± 32.9 ○C 166.989 159.807 175.989 164.434 164.040
Megestrol Acetate 218.5 ± 30.2 ○C 291.306 304.108 285.748 273.607 274.881
Tamoxifen 140.0 ± 27.7 ○C 237.337 215.609 235.804 228.667 226.629
Thiotepa 117.2 ± 22.6 ○C 170.629 182.333 189.152 176.557 176.886
Table 14.

Comparison of actual and calculated values for molar refraction(MR) from regression models.

Name of drugs Molar refraction of drugs Molar refraction
computed
from regression
model for MN(G)
Molar refraction computed
from regression
model for FN(G)
Molar refraction computed
from regression
model for FN*(G)
Molar refraction computed
from regression
model for MN*(G)
Molar refraction computed
from regression
model for HMN(G)
Abemaciclib 140.4 ± 0.5 cm3 126.444 117.492 124.813 123.769 122.394
Abraxane 219.3 ± 0.4 cm3 207.201 205.687 197.646 199.726 198.064
Anastrozole 90.0 ± 0.5 cm3 83.156 84.502 88.668 82.598 83.241
Capecitabine 82.3 ± 0.5 cm3 93.123 91.092 98.662 92.661 93.458
Cyclophosphamide 58.1 ± 0.4 cm3 67.514 69.682 75.110 68.489 69.169
Everolimus 257.7 ± 0.4 cm3 255.037 239.577 248.270 250.487 249.722
Exemestane 85.8 ± 0.4 cm3 112.585 121.743 68.083 113.312 113.773
Fulvestrant 154.0 ± 0.3 cm3 175.226 180.725 187.749 184.041 185.311
Ixabepilone 140.1 ± 0.3 cm3 131.756 143.862 150.358 146.259 147.022
Letrozole 87.1 ± 0.5 cm3 68.387 67.976 73.811 68.647 68.516
Megestrol Acetate 106.4 ± 0.4 cm3 125.535 132.156 122.572 117.857 118.419
Methotrexate 119.0 ± 0.3 cm3 91.450 82.916 92.414 88.641 88.117
Tamoxifen 118.9 ± 0.3 cm3 100.726 92.795 100.384 97.600 96.695
Thiotepa 49.1 ± 0.4 cm3 70.060 77.994 79.658 74.112 74.299
Table 15.

Comparison of experimental and calculated values for molar volume from the regression models.

Name of drugs Molar volume of drugs Molar volume computed
from regression
model for MN(G)
Molar volume computed
from regression
model for FN(G)
Molar volume computed
from regression
model for FN*(G)
Molar volume computed
from regression
model for MN*(G)
Molar volume computed
from regression
model for HMN(G)
Abemaciclib 382.3 ± 7.0 cm3 360.051 330.071 354.771 351.326 346.722
Abraxane 610.6 ± 5.0 cm3 626.346 629.879 597.490 606.006 601.559
Anastrozole 270.3 ± 7.0 cm3 217.308 217.923 234.314 213.283 214.862
Capecitabine 240.5 ± 7.0 cm3 250.175 240.327 267.622 247.023 249.274
Cyclophosphamide 195.7 ± 5.0 cm3 165.728 167.547 189.134 165.976 167.473
Everolimus 811.2 ± 5.0 cm3 784.084 745.081 766.195 776.204 775.531
Exemestane 260.6 ± 5.0 cm3 314.349 344.521 165.713 316.265 317.689
Fulvestrant 505.1 ± 3.0 cm3 520.908 545.020 564.507 553.414 558.610
Ixabepilone 451.6 ± 3.0 cm3 377.564 419.712 439.900 426.735 429.664
Letrozole 234.5 ± 7.0 cm3 168.607 161.747 184.803 166.505 165.272
Megestrol Acetate 333.4 ± 5.0 cm3 357.053 379.919 347.301 331.505 333.336
Methotrexate 295.7 ± 3.0 cm3 244.657 212.535 246.800 233.545 231.284
Tamoxifen 118.9 ± 0.3 cm3 275.245 246.115 273.360 263.585 260.174
Thiotepa 125.8 ± 5.0 cm3 174.125 195.803 204.290 184.829 184.750
Table 16.

Comparison of experimental and calculated values for polarizability from the regression models.

Name of drugs Polarizability of drugs polarizability
computed
from regression
model for MN(G)
polarizability
computed
from regression
model for FN(G)
polarizability
computed
from regression
model for FN*(G)
polarizability
computed
from regression
model for MN*(G)
polarizability
computed
from regression
model for HMN(G)
Abemaciclib 55.7 ± 0.5 10–24cm3 50.128 46.578 49.482 49.067 48.522
Abraxane 86.9 ± 0.5 10–24cm3 82.155 81.554 78.367 79.191 78.532
Anastrozole 35.7 ± 0.5 10–24cm3 32.961 33.495 35.146 32.740 32.994
Capecitabine 32.6 ± 0.5 10–24cm3 36.914 36.108 39.110 36.730 37.047
Cyclophosphamide 23.0 ± 0.5 10–24cm3 26.757 27.618 29.769 27.144 27.414
Everolimus 102.2 ± 0.510–24cm3 101.126 94.994 98.444 99.322 99.019
Exemestane 34.0 ± 0.5 10–24cm3 44.632 48.264 26.982 44.920 45.103
Fulvestrant 61.1 ± 0.5 10–24cm3 69.474 71.655 74.442 72.970 73.474
Ixabepilone 55.5 ± 0.5 10–24cm3 52.235 57.036 59.613 57.987 58.289
Letrozole 34.5 ± 0.5 10–24cm3 27.104 26.941 29.254 27.207 27.155
Megestrol Acetate 42.2 ± 0.5 10–24cm3 49.768 52.393 48.593 46.723 46.946
Methotrexate 47.2 ± 0.5 10–24cm3 36.250 32.866 36.632 35.136 34.928
Tamoxifen 47.1 ± 0.5 10–24cm3 39.929 36.784 39.793 38.689 38.330
Thiotepa 19.5 ± 0.5 10–24cm3 27.767 30.914 31.573 29.374 29.448

The detailed QSPR analysis results show that, as per the horizontal analysis of correlation coefficients for the physical properties, the neighborhood Zagreb index provides the highest correlation coefficient for molar refraction and polarizability as r=0.953. Additionally, it exhibits a high correlation of r=0.90 with boiling point. The neighborhood version of the Forgotten Topological index gives a maximum correlation for molar volume that is r=0.941. Modified Neighborhood Version of the Forgotten Topological index (FN*(G)) and Neighborhood Version of the Second Zagreb Index (M2*(G), along with HMN(G) yields a substantial correlation coefficient of r=0.95 with molar volume. These results confirmed the potential of the considered topological indices as a tool for drug discovery and design in the field of breast cancer treatment. This work showed how the topological indices calculated in this article could contribute to the design of new pharmaceuticals by chemists and other individuals working in the pharmaceutical sector. Different formulations of these medications may be utilized to treat various disorders; this would depend on the range of TIs that were calculated for this work.

3. Conclusion

In this article, a Quantitative Structure Property Relationship (QSPR) analysis is carried out using some novel degree-based topological indices and regression models to predict various physical properties (such as boiling point, melting point, enthalpy, flash point, molar refraction, molar volume, and polarizability) of 14 drugs used for the breast cancer treatment. The molecular structures of these drugs are topologically modeled through vertex and edge partitioning techniques of graph theory, and then a linear regression model is developed to correlate the computed values with the experimental properties of the drugs to investigate the performance of TIs in predicting these properties. The detailed QSPR analysis results show that, as per the horizontal analysis of correlation coefficients for the physical properties, the neighborhood Zagreb index provides the highest correlation coefficient for molar refraction and polarizability as r=0.953. Additionally, it exhibits a high correlation of r=0.90 with boiling point. The neighborhood version of the Forgotten Topological index gives a maximum correlation for molar volume, that is r=0.941. Modified Neighborhood Version of the Forgotten Topological index (FN*(G)) and Neighborhood Version of the Second Zagreb Index (M2*(G), along with HMN(G) yields a substantial correlation coefficient of r=0.95 with molar volume. These results confirmed the potential of the considered topological indices as a tool for drug discovery and design in the field of breast cancer treatment. This work showed how the topological indices calculated in this article could contribute to the design of new pharmaceuticals by chemists and other individuals working in the pharmaceutical sector. Different formulations of these medications may be utilized to treat various disorders; this would depend on the range of TIs that were calculated for this work. It will be simple for the analyst to create new pharmaceuticals based on the combinations of positively maximum correlated drugs, now that we have constituted the correlation coefficient for various topological indices. The relationship concerning topological indices and the physical properties of multiple drugs used in the cure or prevention of a specific disease can be constructed like this.

Ethical approval

Not applicable.

Funding

The authors Asad Ullah, Summeira Meharban, and Anila Humraz gratefully acknowledge the financial support from the Higher Education Commission of Pakistan (Grant No. 20-11682/NRPU/R&D/HEC/2020) to conduct this study.

Availability of data and materials

All data generated or analyzed during this study are included in this article.

CRediT authorship contribution statement

Summeira Meharban: Conceptualization, Methodology, Software, Formal analysis, Investigation, Validation, Data curation, Visualization, Writing – original draft. Asad Ullah: Conceptualization, Methodology, Formal analysis, Validation, Writing – original draft, Writing – review & editing, Supervision, Project administration, Resources, Funding acquisition. Shahid Zaman: Conceptualization, Methodology, Formal analysis, Writing – review & editing. Anila Hamraz: Methodology, Software, Validation. Abdul Razaq: Validation, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Handling Editor: Dr A Wlodawer

Data availability

All data generated or analyzed during this study are included in this article.

References

  1. Ali P., Kirmani S.A.K., Al Rugaie O., Azam F. Degree-based topological indices and polynomials of hyaluronic acid-curcumin conjugates. Saudi Pharmaceut. J. 2020;28(9):1093–1100. doi: 10.1016/j.jsps.2020.07.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arockiaraj M., Klavzar S., Clement J., Mushtaq S., Balasubramanian K. Edge distance-based topological indices of strength-weighted graphs and their application to coronoid systems, carbon nanocones and SiO(2) nanostructures. Mol Inform. 2019;38(11–12) doi: 10.1002/minf.201900039. [DOI] [PubMed] [Google Scholar]
  3. Arockiaraj M., Paul D., Clement J., Tigga S., Jacob K., Balasubramanian K. Novel molecular hybrid geometric-harmonic-Zagreb degree based descriptors and their efficacy in QSPR studies of polycyclic aromatic hydrocarbons. SAR QSAR Environ. Res. 2023;34(7):569–589. doi: 10.1080/1062936X.2023.2239149. [DOI] [PubMed] [Google Scholar]
  4. Aslam A., Ahmad S., Gao W. On certain topological indices of boron triangular nanotubes. Z. Naturforsch. 2017;72(8):711–716. [Google Scholar]
  5. Aslam A., Bashir Y., Ahmad S., Gao W. On topological indices of certain dendrimer structures. Z. Naturforsch. 2017;72(6):559–566. [Google Scholar]
  6. Bokhary S.A.U.H., Adnan, Siddiqui M.K., Cancan M. On topological indices and QSPR analysis of drugs used for the treatment of breast cancer. Polycycl. Aromat. Comp. 2021;42(9):6233–6253. doi: 10.1080/10406638.2021.1977353. [DOI] [Google Scholar]
  7. Duchowicz P.R., Talevi A., Bruno-Blanch L.E., Castro E.A. New QSPR study for the prediction of aqueous solubility of drug-like compounds. Bioorg. Med. Chem. 2008;16(17):7944–7955. doi: 10.1016/j.bmc.2008.07.067. [DOI] [PubMed] [Google Scholar]
  8. Figuerola B., Avila C. The phylum bryozoa as a promising source of anticancer drugs. Mar. Drugs. 2019;17(8) doi: 10.3390/md17080477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Furtula B., Gutman I. A forgotten topological index. J. Math. Chem. 2015;53(4):1184–1190. doi: 10.1007/s10910-015-0480-z. [DOI] [Google Scholar]
  10. Furtula B., Gutman I., Dehmer M. On structure-sensitivity of degree-based topological indices. Appl. Math. Comput. 2013;219(17):8973–8978. doi: 10.1016/j.amc.2013.03.072. [DOI] [Google Scholar]
  11. Gao W., Wang W., Farahani M.R. Topological indices study of molecular structure in anticancer drugs. J. Chem. 2016 doi: 10.1155/2016/3216327. 2016. [DOI] [Google Scholar]
  12. Gao W., Wang W., Farahani M.R. Topological indices study of molecular structure in anticancer drugs. J. Chem. 2016:1–8. doi: 10.1155/2016/3216327. 2016. [DOI] [Google Scholar]
  13. Gutman I., Furtula B., Katanić V. Randić index and information. AKCE International Journal of Graphs and Combinatorics. 2018;15(3):307–312. [Google Scholar]
  14. Gutman I., Trinajstić N. Graph theory and molecular orbitals. Total φ-electron energy of alternant hydrocarbons. Chem. Phys. Lett. 1972;17(4):535–538. doi: 10.1016/0009-2614(72)85099-1. [DOI] [Google Scholar]
  15. Hakeem A., Ullah A., Zaman S. Computation of some important degree-based topological indices for γ- graphyne and Zigzag graphyne nanoribbon. Mol. Phys. 2023 doi: 10.1080/00268976.2023.2211403. [DOI] [Google Scholar]
  16. Hayat S., Khan M.A., Khan A., Jamil H., Malik M.Y.H. Extremal hyper-Zagreb index of trees of given segments with applications to regression modeling in QSPR studies. Alex. Eng. J. 2023;80:259–268. doi: 10.1016/j.aej.2023.08.051. [DOI] [Google Scholar]
  17. Hayat S., Khan S., Khan A., Liu J.-B. Valency-based molecular descriptors for measuring the π-electronic energy of lower polycyclic aromatic hydrocarbons. Polycycl. Aromat. Comp. 2022;42(4):1113–1129. doi: 10.1080/10406638.2020.1768414. [DOI] [Google Scholar]
  18. Hayat S., Suhaili N., Jamil H. Statistical significance of valency-based topological descriptors for correlating thermodynamic properties of benzenoid hydrocarbons with applications. Computational and Theoretical Chemistry. 2023;1227 doi: 10.1016/j.comptc.2023.114259. [DOI] [Google Scholar]
  19. Hosamani S., Perigidad D., Jamagoud S., Maled Y., Gavade S. QSPR analysis of certain degree based topological indices. Journal of Statistics Applications & Probability. 2017;6(2):361–371. [Google Scholar]
  20. Jahanbani A., Shao Z., Sheikholeslami S.M. Calculating degree based multiplicative topological indices of Hyaluronic Acid-Paclitaxel conjugates' molecular structure in cancer treatment. J. Biomol. Struct. Dyn. 2021;39(14):5304–5313. doi: 10.1080/07391102.2020.1800512. [DOI] [PubMed] [Google Scholar]
  21. Janoschek R. In: Gutman und Von I., Polansky O.E., editors. vol. 35. Springer-Verlag; Berlin - Heidelberg - New York - Tokyo: 1987. pp. 34–41. (Mathematik um Konstitutionsformeln: Mathematical Concepts in Organic Chemistry). 1986. 28 Abb., X, 212 S., DM 128,-. ISBN 3-540-16235-6. Nachrichten aus Chemie, Technik und Laboratorium. 1. [DOI] [Google Scholar]
  22. Joudaki D., Shafiei F. QSPR models to predict thermodynamic properties of cycloalkanes using molecular descriptors and GA-MLR method. Curr. Comput. Aided Drug Des. 2020;16(1):6–16. doi: 10.2174/1573409915666190227230744. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kinteh B., Kinteh S.L.S., Jammeh A., Touray E., Barrow A. Breast cancer screening: knowledge, attitudes, and practices among female university students in the Gambia. BioMed Res. Int. 2023;2023 doi: 10.1155/2023/9239431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kumar S., Ahmad M.K., Waseem M., Pandey A.K. Drug targets for cancer treatment: an overview. Med chem. 2015;5(3):115–123. [Google Scholar]
  25. Kwun Y.C., Ali A., Nazeer W., Ahmad Chaudhary M., Kang S.M. M-polynomials and degree-based topological indices of triangular, hourglass, and jagged-rectangle benzenoid systems. J. Chem. 2018 doi: 10.1155/2018/8213950. 2018. [DOI] [Google Scholar]
  26. Liu J.-B., Iqbal H., Shahzad K. Topological properties of concealed non-kekulean benzenoid hydrocarbon. Polycycl. Aromat. Comp. 2022;43(2):1776–1787. doi: 10.1080/10406638.2022.2039230. [DOI] [Google Scholar]
  27. Mc S., B N.S., A K.N. Predicting physico-chemical properties of octane isomers using QSPR approach. Malaya J. Matematik. 2020;8:104–116. doi: 10.26637/MJM0801/0018. [DOI] [Google Scholar]
  28. Mondal S., De N., Pal A. Onsome new neighbourhood degree based indices. Acta Chem. Iasi. 2019;27(1):31–46. doi: 10.2478/achi-2019-0003. [DOI] [Google Scholar]
  29. Mondal S., De N., Pal A., Gao W. Molecular descriptors of some chemicals that prevent COVID-19. Curr. Org. Synth. 2021;18(8):729–741. doi: 10.2174/1570179417666201208114509. [DOI] [PubMed] [Google Scholar]
  30. Muhammad U., Uzairu A., Ebuka Arthur D. Review on: Quantitative structure activity relationship (QSAR) modeling. J. Anal. Pharm. Res. 2018;7(2):240. [Google Scholar]
  31. Nantasenamat C., Isarankura-Na-Ayudhya C., Naenna T., Prachayasittikul V. 2009. A Practical Overview of Quantitative Structure-Activity Relationship. [Google Scholar]
  32. Nantasenamat C., Isarankura-Na-Ayudhya C., Prachayasittikul V. Advances in computational methods to predict the biological activity of compounds. Expet Opin. Drug Discov. 2010;5(7):633–654. doi: 10.1517/17460441.2010.492827. [DOI] [PubMed] [Google Scholar]
  33. Paul D., Arockiaraj M., Jacob K., Clement J. Multiplicative versus scalar multiplicative degree based descriptors in QSAR/QSPR studies and their comparative analysis in entropy measures. The European Physical Journal Plus. 2023;138(4):323. doi: 10.1140/epjp/s13360-023-03920-7. [DOI] [Google Scholar]
  34. Randic M. Quantitative structure-property relationship. Boiling points of planar benzenoids. New J. Chem. 1996;20:1001–1009. [Google Scholar]
  35. Rauf A., Naeem M., Rahman J., Saleem A.V. QSPR study of ve-degree based end vertice edge entropy indices with physio-chemical properties of breast cancer drugs. Polycycl. Aromat. Comp. 2022:1–14. doi: 10.1080/10406638.2022.2086272. [DOI] [Google Scholar]
  36. Shanmukha M., Usha A., Praveen B., Douhadji A. Degree-based molecular descriptors and QSPR analysis of breast cancer drugs. J. Math. 2022;2022:1–13. [Google Scholar]
  37. Shanmukha M.C., Usha A., Praveen B.M., Douhadji A. Degree-based molecular descriptors and QSPR analysis of breast cancer drugs. J. Math. 2022;2022 doi: 10.1155/2022/5880011. [DOI] [Google Scholar]
  38. Shao Z., Siddiqui M.K., Muhammad M.H. Computing Zagreb indices and Zagreb polynomials for symmetrical nanotubes. Symmetry. 2018;10(7):244. [Google Scholar]
  39. Shirdel G., Rezapour H., Sayadi A. 2013. The Hyper-Zagreb Index of Graph Operations. [Google Scholar]
  40. Siddiqui M.K., Imran M., Ahmad A. On Zagreb indices, Zagreb polynomials of some nanostar dendrimers. Appl. Math. Comput. 2016;280:132–139. [Google Scholar]
  41. Siddiqui M.K., Javed S., Khalid S., Amin N., Hussain M. On network construction and module detection for molecular graph of titanium dioxide. J. Biomol. Struct. Dyn. 2022:1–13. doi: 10.1080/07391102.2022.2155703. [DOI] [PubMed] [Google Scholar]
  42. Todeschini R., Consonni V. 2009. Molecular Descriptors for Chemoinformatics. [Google Scholar]
  43. Ullah A., Bano Z., Zaman S. Computational aspects of two important biochemical networks with respect to some novel molecular descriptors. J. Biomol. Struct. Dyn. 2023:1–15. doi: 10.1080/07391102.2023.2195944. [DOI] [PubMed] [Google Scholar]
  44. Ullah A., Jabeen S., Zaman S., Hamraz A., Meherban S. Predictive potential of K-Banhatti and Zagreb type molecular descriptors in structure–property relationship analysis of some novel drug molecules. J. Chin. Chem. Soc. 2024 doi: 10.1002/jccs.202300450. n/a(n/a) [DOI] [Google Scholar]
  45. Ullah A., Qasim M., Zaman S., Khan A. Computational and comparative aspects of two carbon nanosheets with respect to some novel topological indices. Ain Shams Eng. J. 2022;13(4) doi: 10.1016/j.asej.2021.101672. [DOI] [Google Scholar]
  46. Ullah A., Shamsudin, Zaman S., Hamraz A. Zagreb connection topological descriptors and structural property of the triangular chain structures. Phys. Scripta. 2023;98(2) doi: 10.1088/1402-4896/acb327. [DOI] [Google Scholar]
  47. Ullah A., Shamsudin, Zaman S., Hamraz A., Saeedi G., Caceres J.O. Network-based modeling of the molecular topology of fuchsine acid dye with respect to some irregular molecular descriptors. J. Chem. 2022;2022:1–8. doi: 10.1155/2022/8131276. [DOI] [Google Scholar]
  48. Ullah A., Zeb A., Zaman S. A new perspective on the modeling and topological characterization of H-Naphtalenic nanosheets with applications. J. Mol. Model. 2022;28(8):211. doi: 10.1007/s00894-022-05201-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Varmuza K., Filzmoser P., Dehmer M. Multivariate linear QSPR/QSAR models: rigorous evaluation of variable selection for PLS. Comput. Struct. Biotechnol. J. 2013;5(6) doi: 10.5936/csbj.201302007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Waks A.G., Winer E.P. Breast cancer treatment: a review. JAMA. 2019;321(3):288–300. doi: 10.1001/jama.2018.19323. [DOI] [PubMed] [Google Scholar]
  51. Wiener H. Structural determination of paraffin boiling points. J. Am. Chem. Soc. 1947;69(1):17–20. doi: 10.1021/ja01193a005. [DOI] [PubMed] [Google Scholar]
  52. Xu H.-Y., Zou J.-W., Yu Q.-S., Wang Y.-H., Zhang J.-Y., Jin H.-X. QSPR/QSAR models for prediction of the physicochemical properties and biological activity of polybrominated diphenyl ethers. Chemosphere. 2007;66:1998–2010. doi: 10.1016/j.chemosphere.2006.07.072. [DOI] [PubMed] [Google Scholar]
  53. Yan T., Kosar Z., Aslam A., Zaman S., Ullah A. Spectral techniques and mathematical aspects of K4 chain graph. Phys. Scripta. 2023;98(4) doi: 10.1088/1402-4896/acc4f0. [DOI] [Google Scholar]
  54. Yu X., Zaman S., Ullah A., Saeedi G., Zhang X. Matrix analysis of hexagonal model and its applications in global mean-first-passage time of random walks. IEEE Access. 2023;11:10045–10052. doi: 10.1109/access.2023.3240468. [DOI] [Google Scholar]
  55. Zaman S., Jalani M., Ullah A., Ahmad W., Saeedi G. Mathematical analysis and molecular descriptors of two novel metal–organic models with chemical applications. Sci. Rep. 2023;13(1):5314. doi: 10.1038/s41598-023-32347-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Zaman S., Jalani M., Ullah A., Ali M., Shahzadi T. On the topological descriptors and structural analysis of cerium oxide nanostructures. Chem. Pap. 2023;77(5):2917–2922. doi: 10.1007/s11696-023-02675-w. [DOI] [Google Scholar]
  57. Zaman S., Jalani M., Ullah A., Saeedi G., Guardo E. Structural analysis and topological characterization of sudoku nanosheet. J. Math. 2022;2022:1–10. doi: 10.1155/2022/5915740. [DOI] [Google Scholar]
  58. Zaman S., Ullah A. Kemeny's constant and global mean first passage time of random walks on octagonal cell network. 2023. Mathematical Methods in the Applied Sciences, n/a(n/a) [DOI]
  59. Zhang X., Aslam A., Saeed S., Razzaque A., Kanwal S. Investigation for metallic crystals through chemical invariants, QSPR and fuzzy-TOPSIS. J. Biomol. Struct. Dyn. 2023:1–12. doi: 10.1080/07391102.2023.2209656. [DOI] [PubMed] [Google Scholar]
  60. Zhong J.-F., Rauf A., Naeem M., Rahman J., Aslam A. Quantitative structure-property relationships (QSPR) of valency based topological indices with Covid-19 drugs and application. J Arabian Journal of Chemistry. 2021;14(7) [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

All data generated or analyzed during this study are included in this article.

All data generated or analyzed during this study are included in this article.


Articles from Current Research in Structural Biology are provided here courtesy of Elsevier

RESOURCES