Abstract
Air temperature is a climatic factor that affects the incidence of dengue, with effects varying according to time and space. We investigated the relationship between minimum air temperature and dengue incidence in Minas Gerais, Brazil, and evaluated the influence of socioeconomic and geographic variables on this relationship. This is a time series study with analysis conducted in three distinct stages: modeling using a distributed lag non-linear model, meta-analysis of models obtained, and meta-regression with geographic and socioeconomic data. Minimum temperature was a protective factor at extreme cold temperatures (RR = 0.65; 95%CI: 0.56-0.76) and moderate cold temperatures (RR = 0.71; 95%CI: 0.64-0.79), and a risk factor at moderate hot temperatures (RR = 1.15; 95%CI: 1.07-1.24), but not at extreme hot temperatures (RR = 1.1; 95%CI: 0.99-1.22). Heterogeneity of the models was high (I2 = 60%), which was also observed in meta-regression. Moderate and extreme cold temperatures have a protective effect, while moderate hot temperatures increase the risk. However, minimum air temperature does not explain the variability in the region, not even with the other variables in meta-regression.
Keywords: Dengue, Climate, Time Factors, Temperature
Resumo
A temperatura do ar é um fator climático que afeta a incidência da dengue, com efeitos variando conforme o tempo e o espaço. Investigamos a relação entre a temperatura mínima do ar e a incidência da doença em Minas Gerais, Brasil, e avaliamos a influência de variáveis socioeconômicas e geográficas nessa relação, calculando-se o risco relativo (RR). Este é um estudo de série temporal com análise conduzida em três etapas distintas: modelagem por uso de distributed lag non-linear model (modelos não-lineares distributivos com defasagem), metanálise dos modelos obtidos e metarregressão com dados geográficos e socioeconômicos. A temperatura mínima foi um fator de proteção quando em temperaturas frias extremas (RR = 0,65; IC95%: 0,56-0,76) e moderadas (RR = 0,71; IC95%: 0,64-0,79) e fator de risco em temperaturas de calor moderado (RR = 1,15; IC95%: 1,07-1,24), mas não em extremo (RR = 1,1; IC95%: 0,99-1,22). A heterogeneidade dos modelos foi elevada (I2 = 60%) e essa medida não foi alterada em metarregressão. Temperaturas frias moderadas e extremas causam efeito protetivo, enquanto moderadas quentes aumentam o risco. No entanto, a temperatura mínima do ar não explica nem a variabilidade da região, nem mesmo com as outras variáveis em metarregressão.
Palavras-chave: Dengue, Clima, Fatores de Tempo, Temperatura
Resumen
La temperatura del aire es un factor climático que afecta la incidencia del dengue, con efectos que varían según el tiempo y el territorio. Investigamos la relación entre la temperatura mínima del aire y la incidencia de la enfermedad en Minas Gerais, Brasil, y evaluamos la influencia de variables socioeconómicas y geográficas en esta relación. Se trata de un estudio de serie temporal cuyo análisis se realiza en tres etapas distintas: modelación mediante el uso de distributed lag non-linear model (modelos distributivos no lineales con retraso), metaanálisis de los modelos obtenidos y metarregresión con datos geográficos y socioeconómicos. La temperatura mínima fue un factor de protección ante temperaturas extremadamente frías (RR = 0,65; IC95%: 0,56-0,76) y moderadas (RR = 0,71; IC95%: 0,64-0,79) y factor de riesgo en temperaturas de calor moderado (RR = 1,15; IC95%: 1,07-1,24), pero no en extremo (RR = 1,1; IC95%: 0,99-1,22). La heterogeneidad de los modelos fue alta (I2 = 60%), y esta medida no se modificó en la metarregresión. Las temperaturas frías moderadas y extremas tienen un efecto protector, mientras que las temperaturas moderadamente altas aumentan el riesgo. Sin embargo, la temperatura mínima del aire no explica la variabilidad de la región, ni siquiera con las demás variables en metarregresión.
Palabras-clave: Dengue, Clima, Factores de Tiempo, Temperatura
Referências
- 1.Brady OJ, Hay SI. The global expansion of dengue how mosquitoes enabled the first pandemic arbovirus. Annu Rev Entomol. 2020;65:191–208. doi: 10.1146/annurev-ento-011019-024918. [DOI] [PubMed] [Google Scholar]
- 2.Guzman MG, Gubler DJ, Izquierdo A, Martinez E, Halstead SB. Dengue infection. Nat Rev Dis Primers. 2016;2:16055–16055. doi: 10.1038/nrdp.2016.55. [DOI] [PubMed] [Google Scholar]
- 3.Teixeira MG, Siqueira JB, Jr., Ferreira GLC, Bricks L, Joint G. Epidemiological trends of dengue disease in Brazil (2000-2010): a systematic literature search and analysis. PLoS Negl Trop Dis. 2013;7:e2520. doi: 10.1371/journal.pntd.0002520. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Antonio FJ, Itami AS, de Picoli S, Teixeira JJV, Mendes RS. Spatial patterns of dengue cases in Brazil. PLoS One. 2017;12:e0180715. doi: 10.1371/journal.pone.0180715. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Barcellos C, Lowe R. Expansion of the dengue transmission area in Brazil the role of climate and cities. Trop Med Int Health. 2014;19:159–168. doi: 10.1111/tmi.12227. [DOI] [PubMed] [Google Scholar]
- 6.Martins FB, Gonzaga G, Dos Santos DF, Reboita MS. Classificação climática de Köppen e de Thornthwaite para Minas Gerais: cenário atual e projeções futuras. Revista Brasileira de Climatologia. 2018;Edição especial:129–156. [Google Scholar]
- 7.Ávila LF, Mello CR, Yanagi SNM, Sacramento OB., Neto Tendências de temperaturas mínimas e máximas do ar no Estado de Minas Gerais. Pesquisa Agropecuária Brasileira. 2014;49:247–256. [Google Scholar]
- 8.Departamento de Informática do SUS Tabnet. [29/Nov/2022]. https://datasus.saude.gov.br/
- 9.Bavia L, Melanda FN, de Arruda TB, Mosimann ALP, Silveira GF, Aoki MN. Epidemiological study on dengue in southern Brazil under the perspective of climate and poverty. Sci Rep. 2020;10:2127–2127. doi: 10.1038/s41598-020-58542-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Lowe R, Lee SA, O'Reilly KM, Brady OJ, Bastos L, Carrasco-Escobar G, et al. Combined effects of hydrometeorological hazards and urbanisation on dengue risk in Brazil: a spatiotemporal modelling study. Lancet Planet Health. 2021;5:e209–e219. doi: 10.1016/S2542-5196(20)30292-8. [DOI] [PubMed] [Google Scholar]
- 11.Gui H, Gwee S, Koh J, Pang J. Weather factors associated with reduced risk of dengue transmission in an urbanized tropical city. Int J Environ Res Public Health. 2021;19:339–339. doi: 10.3390/ijerph19010339. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Morin CW, Comrie AC, Ernst K. Climate and dengue transmission evidence and implications. Environ Health Perspect. 2013;121:1264–1272. doi: 10.1289/ehp.1306556. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Lowe R, Gasparrini A, Van Meerbeeck CJ, Lippi CA, Mahon R, Trotman AR. Nonlinear and delayed impacts of climate on dengue risk in Barbados a modelling study. PLoS Med. 2018;15:e1002613. doi: 10.1371/journal.pmed.1002613. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Meng H, Xiao J, Liu T, Zhu Z, Gong D, Kang M. The impacts of precipitation patterns on dengue epidemics in Guangzhou city. Int J Biometeorol. 2021;65:1929–1937. doi: 10.1007/s00484-021-02149-2. [DOI] [PubMed] [Google Scholar]
- 15.Naish S, Dale P, Mackenzie JS, McBride J, Mengersen K, Tong S. Climate change and dengue a critical and systematic review of quantitative modelling approaches. BMC Infect Dis. 2014;14:167–167. doi: 10.1186/1471-2334-14-167. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Instituto Brasileiro de Geografia e Estatística Minas Gerais. [29/Nov/2022]. https://www.ibge.gov.br/cidades-e-estados/mg/
- 17.Brasil Lei nº 12.527, de 18 de novembro de 2011. Regula o acesso a informações previsto no inciso XXXIII do art. 5º, no inciso II do § 3º do art. 37 e no § 2º do art. 216 da Constituição Federal; altera a Lei nº 8.112, de 11 de dezembro de 1990; revoga a Lei nº 11.111, de 5 de maio de 2005, e dispositivos da Lei nº 8.159, de 8 de janeiro de 1991; e dá outras providências. Diário Oficial da União. 2011 Nov 18;
- 18.Copernicus Climate Change Service Agrometeorological indicators from 1979 up to 2019 derived from reanalysis. [29/Nov/2022]. https://cds.climate.copernicus.eu/doi/10.24381/cds.6c68c9bb .
- 19.Instituto Brasileiro de Geografia e Estatística Downloads. [29/Nov/2022]. https://www.ibge.gov.br/estatisticas/downloads-estatisticas.html .
- 20.Ordoñez-Sierra G, Sarmiento-Senior D, Jaramillo Gomez JF, Giraldo P, Porras Ramírez A, Olano VA. Multilevel analysis of social, climatic and entomological factors that influenced dengue occurrence in three municipalities in Colombia. One Health. 2021;12:100234–100234. doi: 10.1016/j.onehlt.2021.100234. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Morgan J, Strode C, Salcedo-Sora JE. Climatic and socio-economic factors supporting the co-circulation of dengue, Zika and chikungunya in three different ecosystems in Colombia. PLoS Negl Trop Dis. 2021;15:e0009259. doi: 10.1371/journal.pntd.0009259. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Stewart-Ibarra AM, Lowe R. Climate and non-climate drivers of dengue epidemics in southern coastal Ecuador. Am J Trop Med Hyg. 2013;88:971–981. doi: 10.4269/ajtmh.12-0478. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Chowell G, Torre CA, Munayco-Escate C, Suárez-Ognio L, López-Cruz R, Hyman JM. Spatial and temporal dynamics of dengue fever in Peru 1994-2006. Epidemiol Infect. 2008;136:1667–1677. doi: 10.1017/S0950268808000290. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Gasparrini A, Armstrong B, Kenward MG. Multivariate meta-analysis for non-linear and other multi-parameter associations. Stat Med. 2012;31:3821–3839. doi: 10.1002/sim.5471. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Borenstein M, Hedges LV, Higgins JPT, Rothstein HR. A basic introduction to fixed-effect and random-effects models for meta-analysis. Res Synth Methods. 2010;1:97–111. doi: 10.1002/jrsm.12. [DOI] [PubMed] [Google Scholar]
- 26.Dettori JR, Norvell DC, Chapman JR. Fixed-effect vs random-effects models for meta-analysis 3 points to consider. Global Spine J. 2022;12:1624–1626. doi: 10.1177/21925682221110527. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21:1539–1558. doi: 10.1002/sim.1186. [DOI] [PubMed] [Google Scholar]
- 28.Gasparrini A, Armstrong B. Reducing and meta-analysing estimates from distributed lag non-linear models. BMC Med Res Methodol. 2013;13:1–1. doi: 10.1186/1471-2288-13-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Carrington LB, Armijos MV, Lambrechts L, Barker CM, Scott TW. Effects of fluctuating daily temperatures at critical thermal extremes on Aedes aegypti life-history traits. PLoS One. 2013;8:e58824. doi: 10.1371/journal.pone.0058824. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Reinhold JM, Lazzari CR, Lahondère C. Effects of the environmental temperature on and mosquitoes a review. Insects. 2018;9:158–158. doi: 10.3390/insects9040158. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Padmanabha H, Correa F, Legros M, Nijhout HF, Lord C, Lounibos LP. An eco-physiological model of the impact of temperature on Aedes aegypti life history traits. J Insect Physiol. 2012;58:1597–1608. doi: 10.1016/j.jinsphys.2012.09.015. [DOI] [PubMed] [Google Scholar]
- 32.Chan M, Johansson MA. The incubation periods of dengue viruses. PLoS One. 2012;7:e50972. doi: 10.1371/journal.pone.0050972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Gasparrini A, Armstrong B, Kenward MG. Distributed lag non-linear models. Stat Med. 2010;29:2224–2234. doi: 10.1002/sim.3940. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34.Webb BW, Nobilis F. Long-term perspective on the nature of the air-water temperature relationship a case study. Hydrol Process. 1997;11:137–147. [Google Scholar]
- 35.Ramadona AL, Lazuardi L, Hii YL, Holmner Å, Kusnanto H, Rocklöv J. Prediction of dengue outbreaks based on disease surveillance and meteorological data. PLoS One. 2016;11:e0152688. doi: 10.1371/journal.pone.0152688. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Xu HY, Fu X, Lee LKH, Ma S, Goh KT, Wong J. Statistical modeling reveals the effect of absolute humidity on dengue in Singapore. PLoS Negl Trop Dis. 2014;8:e2805. doi: 10.1371/journal.pntd.0002805. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37.Johansen IC, Castro MC, Alves LC, Carmo RL. Population mobility, demographic, and environmental characteristics of dengue fever epidemics in a major city in Southeastern Brazil, 2007-2015. Cad Saúde Pública. 2021;37:e00079620. doi: 10.1590/0102-311X00079620. [DOI] [PubMed] [Google Scholar]
- 38.Matysiak A, Roess A. Interrelationship between climatic, ecologic, social, and cultural determinants affecting dengue emergence and transmission in Puerto Rico and their implications for zika response. J Trop Med. 2017;2017:8947067–8947067. doi: 10.1155/2017/8947067. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.He C, Kim H, Hashizume M, Lee W, Honda Y, Kim SE. The effects of night-time warming on mortality burden under future climate change scenarios a modelling study. Lancet Planet Health. 2022;6:e648–e657. doi: 10.1016/S2542-5196(22)00139-5. [DOI] [PubMed] [Google Scholar]
- 40.Siqueira JB, Junior, Massad E, Lobao-Neto A, Kastner R, Oliver L, Gallagher E. Epidemiology and costs of dengue in Brazil a systematic literature review. Int J Infect Dis. 2022;122:521–528. doi: 10.1016/j.ijid.2022.06.050. [DOI] [PubMed] [Google Scholar]
- 41.Jain R, Sontisirikit S, Iamsirithaworn S, Prendinger H. Prediction of dengue outbreaks based on disease surveillance, meteorological and socio-economic data. BMC Infect Dis. 2019;19:272–272. doi: 10.1186/s12879-019-3874-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42.Aleixo R, Kon F, Rocha R, Camargo MS, De Camargo RY. Predicting dengue outbreaks with explainable machine learning. [20/Out/2023]. https://ieeexplore.ieee.org/document/9826002 .
- 43.Sylvestre E, Joachim C, Cécilia-Joseph E, Bouzillé G, Campillo-Gimenez B, Cuggia M. Data-driven methods for dengue prediction and surveillance using real-world and big data a systematic review. PLoS Negl Trop Dis. 2022;16:e0010056. doi: 10.1371/journal.pntd.0010056. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44.Teich V, Arinelli R, Fahham L. Aedes aegypti e sociedade o impacto econômico das arboviroses no Brasil. J Bras Econ Saúde. 2017;9:267–276. [Google Scholar]
- 45.Castro MC, Wilson ME, Bloom DE. Disease and economic burdens of dengue. Lancet Infect Dis. 2017;17:e70–e78. doi: 10.1016/S1473-3099(16)30545-X. [DOI] [PubMed] [Google Scholar]
- 46.Barbosa JR, Barrado JCS, Zara ALSA, Siqueira JB. Avaliação da qualidade dos dados, valor preditivo positivo, oportunidade e representatividade do sistema de vigilância epidemiológica da dengue no Brasil, 2005 a 2009. Epidemiol Serv Saúde. 2015;24:49–58. [Google Scholar]
- 47.Marques CA, Siqueira MM, Portugal FB. Assessment of the lack of completeness of compulsory dengue fever notifications registered by a small municipality in Brazil. Ciênc Saúde Colet. 2020;25:891–900. doi: 10.1590/1413-81232020253.16162018. [DOI] [PubMed] [Google Scholar]
- 48.Assis VC, Amaral MPH, Mendonça AE. Análise da qualidade das notificações de dengue informadas no sistema de informação de agravos de notificação, na epidemia de 2010, em uma cidade polo da Zona da Mata de estado de Minas Gerais. Rev APS. 2014;17:429–437. [Google Scholar]
- 49.de Azevedo TS, Lorenz C, Chiaravalloti-Neto F. Spatiotemporal evolution of dengue outbreaks in Brazil. Trans R Soc Trop Med Hyg. 2020;114:593–602. doi: 10.1093/trstmh/traa030. [DOI] [PubMed] [Google Scholar]