Skip to main content
Molecules logoLink to Molecules
. 2024 Mar 20;29(6):1383. doi: 10.3390/molecules29061383

The Essential Oil Compositions of Ambrosia acanthicarpa Hook., Artemisia ludoviciana Nutt., and Gutierrezia sarothrae (Pursh) Britton & Rusby (Asteraceae) from the Owyhee Mountains of Idaho

Kathy Swor 1, Ambika Poudel 2, Prabodh Satyal 2, William N Setzer 2,3,*
Editor: Daniela Rigano
PMCID: PMC10976104  PMID: 38543021

Abstract

As part of our interest in the volatile phytoconstituents of aromatic plants of the Great Basin, we have obtained essential oils of Ambrosia acanthicarpa (three samples), Artemisia ludoviciana (12 samples), and Gutierrezia sarothrae (six samples) from the Owyhee Mountains of southwestern Idaho. Gas chromatographic analyses (GC-MS, GC-FID, and chiral GC-MS) were carried out on each essential oil sample. The essential oils of A. acanthicarpa were dominated by monoterpene hydrocarbons, including α-pinene (36.7–45.1%), myrcene (21.6–25.5%), and β-phellandrene (4.9–7.0%). Monoterpene hydrocarbons also dominated the essential oils of G. sarothrae, with β-pinene (0.5–18.4%), α-phellandrene (2.2–11.8%), limonene (1.4–25.4%), and (Z)-β-ocimene (18.8–39.4%) as major components. The essential oils of A. ludoviciana showed wide variation in composition, but the relatively abundant compounds were camphor (0.1–61.9%, average 14.1%), 1,8-cineole (0.1–50.8%, average 11.1%), (E)-nerolidol (0.0–41.0%, average 6.8%), and artemisia ketone (0.0–46.1%, average 5.1%). This is the first report on the essential oil composition of A. acanthicarpa and the first report on the enantiomeric distribution in an Ambrosia species. The essential oil compositions of A. ludoviciana and G. sarothrae showed wide variation in composition in this study and compared with previous studies, likely due to subspecies variation.

Keywords: ragweed, burweed, bur-sage, white sage, silver wormwood, broom snakeweed, gas chromatography, enantiomers

1. Introduction

Ambrosia acanthicarpa Hook. (bur ragweed, burweed, bur-sage) is an annual member of the Asteraceae. The leaves are deltoid to narrowly lanceolate, to 8 cm long and 6 cm wide, pinnately to tripinnately lobed, and both leaf surfaces are green and have a dense covering of short, matted hairs [1]. The stems are grayish-green, with stiff, bristly hairs (Figure 1). In the United States, the plant ranges from eastern Washington and Oregon, eastern and southern California, east to western North Dakota, South Dakota, Nebraska, and Kansas, and the panhandle of Texas [1].

Figure 1.

Figure 1

Ambrosia acanthicarpa. (A): Photograph of A. acanthicarpa (K. Swor). (B): Scan of pressed plant (W.N. Setzer).

Previous phytochemical investigations of A. acanthicarpa have revealed the plant to be a source of sesquiterpene lactones, including artemisiifolin, chamissonin, psilostachyin C, confertiflorin, deacetylconfertiflorin, and cumambrin B [2,3]. As far as we are aware, there have been no previous studies on the essential oil of this plant.

Artemisia ludoviciana Nutt. (white sage, silver wormwood, Asteraceae) is a perennial herb, 30–70 cm tall, with a sagebrush odor. The leaves are alternate, entire, or lobed, 3–11 cm long, and up to 1.5 cm wide, with a dense covering of short, matted hairs. The plant flowers from August through September, producing numerous nodding flower heads (Figure 2) [4,5]. The plant is highly polymorphic and there are several subordinate taxa. World Flora Online currently lists seven subspecies, including Artemisia ludoviciana subsp. albula (Wooton) D.D. Keck, Artemisia ludoviciana subsp. candicans (Rydb.) D.D. Keck, Artemisia ludoviciana subsp. incompta (Nutt.) D.D. Keck, Artemisia ludoviciana subsp. lindleyana (Besser) Lesica, Artemisia ludoviciana subsp. ludoviciana, Artemisia ludoviciana subsp. mexicana (Spreng.) D.D. Keck, and Artemisia ludoviciana subsp. redolens (A. Gray) D.D. Keck. [6]. Of these, A. ludoviciana subsp. ludoviciana [7], A. ludoviciana subsp. candicans [8], and A. ludoviciana subsp. incompta [9] are known to occur in Idaho. However, these subspecies are variable morphologically, intergrade between taxa, and recognition of the discreet taxa is therefore difficult and questionable. Artemisia ludoviciana is widespread throughout western North America, ranging from Ontario and Michigan, west to British Columbia, and south through Texas, Louisiana, California, and Mexico [4,5].

Figure 2.

Figure 2

Figure 2

Artemisia ludoviciana. (A): Photograph of A. ludoviciana, plant B1 (K. Swor). (B): Scan of pressed plant B1 (W.N. Setzer). (C): Photograph of A. ludoviciana, plant C1 (K. Swor). (D): Scan of pressed plant C1 (W.N. Setzer). (E): Photograph of A. ludoviciana, plant T1 (K. Swor). (F): Scan of pressed plant T1 (W.N. Setzer). (G): Photograph of A. ludoviciana, plant U1 (K. Swor). (H): Scan of pressed plant U1 (W.N. Setzer).

The plant is used in traditional herbal medicine throughout its range. In Mexico, the people use an infusion of the aerial parts of A. ludoviciana to treat diarrhea, parasitic diseases, painful conditions, and diabetes [10,11]. In the Great Basin of North America, the Paiute people used a decoction of A. ludoviciana as a bath for aching feet, as a poultice for rheumatism or other aches, to treat rashes and skin eruptions, and to relieve diarrhea, while the Shoshone took the plant for coughs, colds, and influenza, and to stop diarrhea [12].

Artemisia ludoviciana has proven to be a rich source of sesquiterpene lactones, including ludovicin-A, -B, -C, and -D [13], ludalbin [14], anthemidin [15], arteludovicinolide-A, -B, -C, and -D [16], douglanin, santamarin, arglanine, artemorin, chrysartemin B, armefolin, and ridentin [17]; flavonoids, including jaceosidin, tricin, hispidulin, chrysoeriol, apigenin, axillarin, eupafolin, selagin, luteolin [18], eupatilin, and jaceosidin [17]; and the spiroketals 2-(2-thienylidene)-1,6-dioxaspiro[4.5]dec-3-ene and 5-[[5-(1,6-dioxaspiro[4.5]dec-3-en-2-ylidenemethyl)-2-thienyl]-2-thienylmethyl]-2-furanbutanol [19]. There have been previous investigations on the essential oil composition of A. ludoviciana from different geographical locations, including Utah, USA [20], Huixquilucan, State of Mexico, Mexico [21], Alberta, Canada [22], Ozumba, State of Mexico, Mexico [23], South Dakota, USA [24], Istanbul, Türkiye (cultivated) [25], and Wyoming, USA [26].

Gutierrezia sarothrae (Pursh) Britton & Rusby (syn. Xanthocephalum sarothrae (Pursh) Shinners, broom snakeweed, Asteraceae) is an herbaceous shrub, 10–60 cm in height; stems are green to brown; leaves are alternate, lanceolate, sometimes filiform, green, up to 4–55 mm long, and 0.3–5 mm wide (Figure 3). The plant flowers July-November, producing numerous small, bright-yellow flowers [27,28,29]. Gutierrezia sarothrae ranges throughout western North America, from eastern Oregon and Washington, eastern and southern California east to the Great Plains, and from southern Alberta, Saskatchewan, and Manitoba, south into northern Mexico [27,30].

Figure 3.

Figure 3

Gutierrezia sarothrae. (A): Photograph of G. sarothrae (K. Swor). (B): Scan of pressed plant (W.N. Setzer).

Diterpenoids, including polyalthic acid, daniellic acid, nivenolide, and gutierrezial [31,32,33], and flavonoids, including apigenin, luteolin, calycopterin, jaceidin, sudachitin, and sarothrin [34], have been isolated and characterized from G. sarothrae extracts. The plant is an invasive weed and there have been several reports on the toxic effects of livestock grazing on G. sarothrae, causing abortions [30]. The abortifacient compounds in G. sarothrae are not known, but diterpene acids may be responsible [30]. There have been previous investigations of the essential oil composition of G. sarothrae from New Mexico and from Utah, USA [35,36,37].

As part of our ongoing efforts to obtain and characterize essential oils from the Asteraceae of the Great Basin [38], the purpose of this study is to obtain and chemically characterize the essential oils of A. acanthicarpa, A. ludoviciana, and G. sarothrae from southwestern Idaho. Although there have been previous investigations on the essential oils of A. ludoviciana and G. sarothrae, this present study is focused on the species from southwestern Idaho and also includes enantioselective gas chromatographic analyses to determine the enantiomeric distributions of chiral terpenoid constituents in these essential oils.

2. Results and Discussion

2.1. Ambrosia acanthicarpa

Hydrodistillation of the aerial parts of A. acanthicarpa yielded salmon-colored essential oils with a fish-like odor in yields of 4.36–5.01%. Gas chromatographic analysis led to identification of 135 components representing 97.6–98.0% of the total compositions (Table 1). Monoterpene hydrocarbons dominated the essential oils with α-pinene (36.7–45.1%), myrcene (21.6–25.5%), and β-phellandrene (4.9–7.0%) as the major components.

Table 1.

Chemical composition (percent of total) of the essential oil from the aerial parts of Ambrosia acanthicarpa from southwestern Idaho.

RIcalc RIdb Compounds A.a. #1 A.a. #2 A.a. #3
842 840 1,2,5,5-Tetramethyl-1,3-cyclopentadiene 0.1 - -
851 849 (2E)-Hexenal 0.1 0.1 tr
902 902 Santolina triene 1.7 0.5 0.8
923 923 Tricyclene 0.1 tr 0.1
925 925 α-Thujene 0.2 0.2 0.3
933 933 α-Pinene 36.7 38.2 45.1
949 950 Camphene 0.7 0.4 0.6
972 972 Sabinene 2.3 2.7 2.7
977 978 β-Pinene 0.8 0.9 0.9
984 984 6-Methylhept-5-en-2-one tr tr 0.1
989 989 Myrcene 22.4 25.5 21.6
991 996 3,3-Dimethyl-6-methylenecyclohexene 0.1 - -
994 994 Yomogi alcohol tr tr tr
1002 1002 Isobutyl 2-methylbutyrate tr tr tr
1005 1004 p-Mentha-1(7),8-diene 0.7 0.8 0.6
1007 1006 α-Phellandrene 0.1 0.3 0.2
1009 1008 δ-3-Carene tr tr tr
1017 1017 α-Terpinene tr tr tr
1025 1025 p-Cymene 0.1 0.1 0.1
1029 1030 Limonene 3.2 4.7 3.0
1031 1031 β-Phellandrene 5.7 7.0 4.9
1032 1032 1,8-Cineole 0.2 0.3 0.2
1035 1034 (Z)-β-Ocimene 0.1 0.1 0.1
1045 1045 (E)-β-Ocimene 0.6 0.5 0.8
1050 1047 Santolina epoxide 0.1 tr tr
1053 1053 Isobutyl angelate 0.1 tr tr
1057 1057 γ-Terpinene 0.1 0.1 0.1
1070 1069 cis-Sabinene hydrate 0.1 0.1 0.1
1072 1072 p-Cresol tr tr tr
1078 1079 Artemisia alcohol tr tr tr
1084 1086 Terpinolene 0.1 0.1 0.1
1090 1093 Isobutyl tiglate 0.1 tr tr
1099 1101 Linalool 0.1 tr tr
1101 1103 Filifolone 0.3 tr 0.1
1102 1103 Isoamyl 2-methylbutyrate tr 0.1 tr
1108 1107 2,6-Dimethylphenol 0.9 - 0.2
1108 1109 2-Methylbutyl isovalerate - 0.1 -
1112 1113 (E)-4,8-Dimethylnona-1,3,7-triene - tr tr
1122 1122 Chrysanthenone 1.6 0.1 0.5
1127 1125 α-Campholenal 0.1 tr tr
1138 1138 epi-Photocitral A - - tr
1141 1141 trans-Pinocarveol tr tr -
1146 1145 trans-Verbenol 0.1 tr tr
1148 1148 trans-Chrysanthemol 0.1 tr 0.1
1149 1149 Isobutyl hexanoate - tr -
1152 1151 Citronellal 0.5 0.1 0.1
1154 1155 cis-Chrysenthemol 0.2 0.1 0.2
1157 1150 2-Methylbutyl angelate 0.1 0.1 0.1
1163 1165 Lavandulol 0.7 0.2 0.3
1170 1167 2-exo-Acetoxydihydrocamphene tr tr -
1173 1170 Borneol 2.2 0.6 0.5
1177 1179 iso-Geranial tr 0.1 0.1
1180 1180 Terpinen-4-ol 0.1 0.2 0.1
1190 1193 3-(2-Hydroxy-3-methyl-3-butenyl)-2,2-dimethyloxirane 0.1 tr tr
1193 1195 2-Methylbutyl tiglate 0.1 tr tr
1195 1195 α-Terpineol 0.2 0.1 0.1
1215 1217 Coumaran - tr -
1228 1229 Thymyl methyl ether - tr 0.1
1238 1238 Neral 0.3 0.1 0.2
1249 1249 Geraniol 0.4 tr -
1252 1252 Isoamyl hexanoate 0.1 0.1 -
1265 1266 cis-Chrysanthenyl acetate tr tr tr
1268 1268 Geranial 0.3 0.1 0.2
1270 1270 iso-Piperitenone 0.1 - tr
1276 1266 Chrysanthemyl acetate tr tr 0.1
1282 1284 Lavandulyl acetate tr tr tr
1285 1286 Cogeijerene 0.7 1.3 0.6
1309 1309 4-Vinylguaicol 0.5 0.4 0.1
1311 1310 (Z)-Patchenol tr - -
1317 1316 Filifolide A tr - -
1323 1325 Silphiperfol-5-ene - - 0.2
1330 1330 Bicycloelemene - 0.1 0.1
1345 1349 7-epi-Silphiperfol-5-ene 0.1 tr 0.2
1348 1350 Citronellyl acetate tr tr -
1351 1356 Eugenol 0.1 tr tr
1372 1369 Lavandulyl propionate 0.1 tr 0.1
1374 1375 α-Copaene 0.1 0.1 0.1
1377 1378 Geranyl acetate 0.1 tr tr
1380 1382 Modheph-2-ene 0.4 0.2 0.3
1385 1384 Methyl (E)-cinnamate - tr -
1386 1387 β-Cubebene tr 0.2 0.2
1387 1385 α-Isocomene 0.4 0.2 0.2
1388 1390 trans-β-Elemene tr tr tr
1392 1392 (Z)-Jasmone - tr 0.1
1393 1392 2-Ethylidene-6-methyl-3,5-heptadienal 0.8 tr 0.2
1399 1403 Methyl eugenol 0.1 - -
1404 1406 α-Gurjunene tr 0.1 0.1
1410 1411 β-Isocomene 0.2 0.1 0.2
1413 1415 Lavandulyl isobutyrate 0.1 tr 0.1
1417 1417 (E)-β-Caryophyllene 0.6 0.5 0.4
1430 1432 trans-α-Bergamotene 0.1 tr tr
1447 1447 Geranylacetone 0.1 tr 0.1
1451 1452 (E)-β-Farnesene 0.1 0.1 0.2
1455 1454 α-Humulene 0.1 0.2 0.1
1457 1448 Neryl propionate 0.1 tr tr
1468 1468 Geranyl propionate 0.1 tr tr
1472 1475 Selina-4,11-diene 0.1 0.1 tr
1474 1475 γ-Muurolene - - tr
1480 1480 Germacrene D 1.3 2.0 1.5
1483 1483 trans-β-Bergamotene 0.1 0.1 0.1
1488 1489 β-Selinene 0.1 0.1 0.1
1489 1489 (Z,E)-α-Farnesene - 0.4 0.4
1491 1490 γ-Amorphene - 0.1 -
1494 1497 Bicyclogermacrene 0.3 1.1 1.2
1497 1497 α-Muurolene tr 0.1 tr
1500 1501 Lavandulyl isovalerate 0.6 0.3 0.5
1502 1504 (E,E)-α-Farnesene 0.3 0.7 0.8
1506 1508 β-Bisabolene 2.5 2.5 3.4
1508 1511 β-Curcumene tr tr tr
1512 1512 γ-Cadinene - 0.1 tr
1512 1511 Sesquicineole 0.1 - 0.1
1516 1518 δ-Cadinene 0.1 0.3 0.1
1518 1518 Javanol isomer II - - 0.1
1522 1520 (E,Z)-Matricaria ester - 0.2 -
1526 1527 (Z,E)-Matricaria ester 0.1 0.2 tr
1550 1550 Geranyl butyrate 0.2 0.2 0.1
1556 1555 7-epi-cis-Sesquisabinene hydrate 0.1 - -
1557 1560 (E)-Nerolidol 0.1 - -
1569 1572 Citronellyl isovalerate 0.1 - -
1572 1570 Neryl 2-methylbutyrate 0.1 - -
1579 1574 Germacra-1(10),5-dien-4β-ol 0.2 0.2 0.2
1584 1587 Caryophyllene oxide 0.2 0.1 0.1
1598 1596 Geranyl 2-methylbutyrate 0.2 0.1 0.1
1624 1625 Junenol 0.1 - -
1644 1643 τ-Cadinol 0.2 0.3 0.2
1653 1652 Geranyl pentanoate tr - -
1657 1655 α-Cadinol 0.1 0.3 0.1
1661 1661 neo-Intermedeol 0.1 0.1 0.1
1671 1671 β-Bisabolol 0.6 0.2 0.4
1687 1688 α-Bisabolol - 0.1 -
1716 1716 Citronellyl hexanoate 0.1 - -
1727 1730 δ-Dodecalactone 0.1 - -
1749 1748 Geranyl hexanoate 0.2 0.1 -
1763 1762 cis-Lanceol - tr tr
1840 1841 Phytone - 0.1 tr
Monoterpene hydrocarbons 75.5 82.2 81.7
Oxygenated monoterpenoids 10.4 2.5 3.8
Sesquiterpene hydrocarbons 6.9 9.3 9.7
Oxygenated sesquiterpenoids 1.9 1.2 1.2
Benzenoid aromatics 1.5 0.4 0.4
Others 1.7 2.0 0.9
Total identified 98.0 97.6 97.7

RIcalc = Retention index determined with respect to a homologous series of n-alkanes on a ZB-5ms column. RIdb = Reference retention index from the databases. A.a. = Ambrosia acanthicarpa. tr = trace (<0.05%). - = not detected.

Although there have been no previous investigations of A. acanthicarpa essential oil compositions, there have been several reports on chemical compositions of other Ambrosia essential oils. Cicció and Chaverri have examined Ambrosia cumanensis Kunth from Costa Rica and have summarized the major components in Ambrosia essential oils published prior to 2015 [39]. A summary of the major components of Ambrosia essential oils published since 2015 is shown in Table 2. Ambrosia essential oils are typically dominated by sesquiterpene hydrocarbons and/or oxygenated monoterpenoids, in contrast to A. acanthicarpa, which was dominated by monoterpene hydrocarbons.

Table 2.

Major components of Ambrosia essential oils from the literature.

Ambrosia Species Geographical Location Major Components (>5%) Ref.
Ambrosia arborescens Mill. Cuzco, Peru β-Acoradiene (15.3%), chrysanthenone (11.3%), germacrene D (7.6%), shyobunol (6.7%), β-cadinene (6.2%) [40]
Ambrosia artemisiifolia L. Bor, Serbia Germacrene D (25.3%), limonene (21.6%), α-pinene (15.7%) [41]
Ambrosia artemisiifolia L. Xinyuan, China Germacrene D (32.9%), β-pinene (15.1%), limonene (9.9%) [42]
Ambrosia confertiflora DC. North-central Israel Chrysanthenone (25.0%), cis-chrysanthenol (17.7%), germacrene D (12.3%), (E)-β-caryophyllene (11.1%), (E)-β-ocimene (6.9%) [43]
Ambrosia cumanensis Kunth San Rafael, Costa Rica Bicyclogermacrene (14.7–23.4%), germacrene D (10.1–16.9%), α-pinene (7.8–12.8%), chrysanthenone (6.2–8.7%), β-pinene (4.5–6.7%), limonene (3.5–5.8%) [39]
Ambrosia grayi (A. Nelson) Shinners Cultivated, Ramat Yishay, Israel Myrcene (17.9%), germacrene D (17.8%), unidentified (15.4%), limonene (14.2%), borneol (11.3%), (E)-β-caryophyllene (10.8%) [43]
Ambrosia peruviana Willd. (syn. Ambrosia cumanensis Kunth) Los Operadores, Ecuador γ-Curcumene (52.0%), chrysanthenone (5.6%), ar-curcumene (5.1%) [44]
Ambrosia tenuifolia Spreng. Ness-Zionia, Israel Myrcene (32.8%), (2E)-hexenal (13.3%), germacrene D (7.2%), (E)-β-ocimene (5.4%) [43]
Ambrosia trifida L. Despotovo, Serbia Limonene (20.7%), bornyl acetate (15.0%), borneol (14.7%), germacrene D (11.6%) [45]

Enantioselective GC-MS was carried out on the three A. acanthicarpa samples (Table 3). The (−)-enantiomers were dominant for α-thujene (73.8–77.9%), α-pinene (99.3–99.4%), camphene (93.5–95.8%), β-pinene (86.5–87.9%), (E)-β-caryophyllene (100%), and germacrene D (93.5–100.0%). (+)-β-Phellandrene (97.0–98.2%), and (+)-δ-cadinene were the predominant enantiomers. Sabinene and limonene occurred in virtually racemic mixtures. Only one peak was observed for α-phellandrene (samples #2 and #3), but the RI is consistent with (+)-α-phellandrene. Likewise, only one peak was observed for lavandulol and the RI is consistent with (−)-lavandulol. One peak was observed for borneol, but the RI (1337) was in between (−)-borneol (1335) and (+)-borneol (1340), so the enantiomer cannot be assigned. Only one peak was observed for β-bisabolene, but the RI is consistent with the (+)-enantiomer. As far as we are aware, there have been no previous investigations on the enantiomeric distribution of essential oil components of Ambrosia species.

Table 3.

Enantiomeric distribution of chiral terpenoids in the essential oil from the aerial parts of Ambrosia acanthicarpa.

Compounds RIdb RIcalc A.a. #1 A.a. #2 A.a.#3
(+)-α-Thujene 950 951 22.3 22.1 26.2
(−)-α-Thujene 951 952 77.7 77.9 73.8
(−)-α-Pinene 976 971 99.3 99.4 99.4
(+)-α-Pinene 982 981 0.7 0.6 0.6
(−)-Camphene 998 1001 95.8 93.5 95.3
(+)-Camphene 1005 1005 4.2 6.5 4.7
(+)-Sabinene 1021 1021 53.7 48.3 48.2
(−)-Sabinene 1030 1029 46.3 51.7 51.8
(+)-β-Pinene 1027 1027 13.5 12.4 12.1
(−)-β-Pinene 1031 1032 86.5 87.6 87.9
(−)-α-Phellandrene 1050 - - 0.0 0.0
(+)-α-Phellandrene 1053 1053 - 100.0 100.0
(−)-Limonene 1073 1074 60.4 50.2 56.9
(+)-Limonene 1081 1081 39.6 49.8 43.1
(−)-β-Phellandrene 1083 1084 2.0 1.8 3.0
(+)-β-Phellandrene 1089 1087 98.0 98.2 97.0
(−)-Lavandulol 1314 1316 100.0 100.0 100.0
(−)-Borneol 1335 1337 100.0 100.0 100.0
(+)-Borneol 1340
(−)-α-Terpineol 1347 1347 86.7 - -
(+)-α-Terpineol 1356 1356 13.3 - -
(−)-(E)-β-Caryophyllene 1461 1461 100.0 100.0 100.0
(+)-Germacrene D 1519 1519 0.0 6.5 0.0
(−)-Germacrene D 1522 1522 100.0 93.5 100.0
(+)-β-Bisabolene 1546 1546 100.0 100.0 100.0
(−)-β-Bisabolene 1549 no 0.0 0.0 0.0
(−)-δ-Cadinene 1563 no - 0.0 0.0
(+)-δ-Cadinene 1576 1576 - 100.0 100.0

RIdb = Retention index from our in-house database. RIcalc = Calculated retention index based on a homologous series of n-alkanes on a Restek B-Dex 325 capillary column. A.a. = Ambrosia acanthicarpa. no = not observed. - = compound not detected.

2.2. Artemisia ludoviciana

Essential oils from the aerial parts of A. ludoviciana were obtained from 12 individual plants in yields ranging from 0.580% to 3.306% (average yield 2.17%). Gas chromatographic analysis of the 12 A. ludoviciana essential oil samples (GC-FID, GC-MS) led to identification of 232 compounds accounting for 79.2–99.0% of the total compositions (Table 4). Although the essential oils were qualitatively similar, there were large quantitative differences in the compositions. The compounds found in relatively abundant concentrations were camphor (0.1–61.9%, average 14.1%), 1,8-cineole (0.1–50.8%, average 11.1%), (E)-nerolidol (0.0–41.0%, average 6.8%), artemisia ketone (0.0–46.1%, average 5.1%), linalool (0.1–19.9%, average 4.1%), and santolina triene (trace-18.8%, average 4.0%). There were also several unidentified components with relatively high concentrations. The mass spectra of the major unidentified compounds are available as supplementary material (Supplementary Figure S1).

Table 4.

Chemical composition (percent of total) of the essential oil from the aerial parts of Artemisia ludoviciana from the Owyhee Mountains of Idaho.

RIcalc RIdb Compounds A.l. B1 A.l. B2 A.l. B3 A.l. C1 A.l. C2 A.l. T1 A.l. T2 A.l. T3 A.l. U1 A.l. U2 A.l. U3 A.l. U4
872 872 2-Methylbutyl acetate 0.2 0.1 0.2 0.6 0.8 0.3 0.1 0.7 0.4 0.3 1.1 0.9
902 902 Santolina triene 5.1 tr 0.1 18.8 12.1 0.2 1.9 0.1 tr 9.0 0.1 0.5
913 913 Isobutyl isobutyrate 0.3 0.1 tr 0.1 0.1 0.1 0.2 0.1 0.5 0.1 0.4 -
921 922 Artemisia triene tr - tr - - 0.1 0.2 - - 0.1 - 0.2
922 923 Tricyclene - 0.4 - - 0.2 0.1 0.4 - 0.6 - - -
924 925 α-Thujene tr 0.2 tr 0.1 0.5 tr tr 0.1 0.1 - 0.1 -
932 933 α-Pinene 0.1 3.2 0.1 0.2 0.7 0.7 2.9 0.9 0.6 0.1 0.4 1.3
936 935 Ethyl tiglate - - - - - - - - 0.1 0.1 - -
947 945 4-Methyl pent-2-enolide - 0.1 0.1 0.9 - - - 4.6 0.1 2.9 4.9 0.3
948 950 Camphene 0.1 6.1 0.1 - 1.7 2.2 8.0 - 7.5 - - 0.1
962 964 Benzaldehyde tr tr 0.1 tr tr tr - 0.1 tr - tr tr
969 968 Isoamyl propionate 0.2 0.2 tr 0.5 0.2 tr 0.1 tr 0.3 - 0.2 tr
971 971 Sabinene - 1.1 tr - - 0.5 tr 0.8 0.5 - 0.5 0.1
971 971 Artemiseole 4.0 - - 11.4 11.2 - 3.0 - - 4.5 - -
977 978 β-Pinene 0.2 1.4 0.2 0.2 0.3 0.6 0.9 0.6 0.4 0.1 0.3 tr
984 984 6-Methyl-5-hepten-2-one 0.1 - 0.1 - - - - 0.1 0.1 - 0.1 -
987 989 Myrcene - 0.1 - tr tr tr - tr tr - 0.1 -
989 990 Dehydro-1,8-cineole - 0.3 - 0.1 - 0.3 0.1 0.8 0.3 - 0.4 -
989 989 trans-Dehydroxylinalool oxide tr - - - 0.2 - - - 0.1 - - -
990 990 trans-Dehydrolinalool oxide - - - - - - - - - - 0.3 0.1
990 --- (E)-2,6-Dimethyl-3,5-heptadien-2-ol 0.1 - tr - - - - - - - - 0.1
994 994 Yomogi alcohol 0.2 - 1.0 0.3 0.2 8.5 tr - - - - 12.7
1000 --- Unidentified (RI 1000) - - - - - - - 1.8 - 1.0 0.5 -
1002 1003 Isobutyl 2-methylbutyrate 0.3 0.1 tr 0.1 tr 0.1 0.1 0.1 0.4 - tr -
1005 1005 cis-Dehydroxylinalool oxide 0.1 - - - 0.1 - - - - - - -
1005 1005 (3Z)-Hexenyl acetate - tr - - - - - - - - - -
1006 1006 α-Phellandrene - - - - - - 0.1 0.3 0.2 - - -
1006 1006 cis-Dehydrolinalool oxide - - - - - - - 0.2 0.2 - 0.3 0.1
1006 1005 Isobutyl isovalerate 0.2 tr - tr - tr - - 0.1 - - -
1009 --- Unidentified (RI 1009) - - - - - - - 1.2 - 0.7 0.7 -
1010 1009 δ-3-Carene - - - - - - - tr tr - - -
1011 1012 Isoamyl isobutyrate - tr - tr - - - - - - - -
1014 1015 2-Methylbutyl isobutyrate 0.6 0.4 0.1 0.3 0.3 0.4 0.5 0.3 0.8 0.2 0.9 0.1
1016 --- Unidentified (RI 1016) - - - - - - - 1.5 - 0.9 0.4 -
1017 1017 α-Terpinene tr 0.5 - 0.1 0.2 0.4 0.3 1.4 0.8 0.1 0.7 tr
1022 1022 Ethyl 3-methylbut-3-enyl carbonate - - - - - - - tr - - 0.1 -
1025 1025 p-Cymene - 0.2 - tr 0.1 0.4 0.5 0.7 0.2 0.1 0.5 tr
1027 1026 2-Acetyl-3-methylfuran - 0.1 - - - 0.2 - - - - - -
1028 1030 Limonene - 0.8 - 0.1 0.7 23.7 0.4 0.2 0.2 0.1 0.2 tr
1030 1031 β-Phellandrene - - - - - - 0.2 0.9 0.6 tr 0.3 -
1030 1031 Santolina alcohol - - 0.1 tr tr - - - - - - 0.1
1032 1032 1,8-Cineole 1.1 26.0 0.7 6.7 3.9 0.1 4.6 50.8 21.8 2.5 20.9 2.0
1034 1034 (Z)-β-Ocimene - - - 0.2 - - - - - - - -
1037 1035 Lavender lactone 0.1 0.1 0.2 0.2 0.1 - - 0.1 0.1 tr 1.1 0.3
1039 1040 Butyl 2-methylbutyrate - tr - - - - - tr tr - - -
1045 1045 Phenylacetaldehyde 0.3 0.1 0.1 - - tr tr 0.1 0.1 0.2 0.2 0.2
1045 1045 (E)-β-Ocimene - - - 0.1 - - - - - - - -
1049 1047 Santolina epoxide 1.9 - - 4.7 6.2 - 0.3 0.4 - 1.2 - -
1049 1049 cis-Arbusculone - 0.2 tr 0.2 - - - tr - - 1.1 -
1050 1051 2,3,6-Trimethylhepta-1,5-diene 0.1 - 0.2 - - - - tr - - - -
1053 1053 Bergamal - - - - - - - - - 0.1 - -
1053 1050 Prenyl isobutyrate - tr - - - - - - - - - -
1057 1056 Artemisia ketone - - 14.5 - - 0.8 - 0.2 - - - 46.1
1057 1057 γ-Terpinene tr 0.9 - 0.3 0.4 0.7 0.4 1.7 0.9 0.1 0.8 -
1061 1059 Verbenone - - - - - - - - - 0.2 - -
1068 1068 trans-Arbusculone - 0.2 - 0.6 - - - - - - 1.5 -
1069 1067 cis-Linalool oxide (furanoid) 0.5 - 0.2 - 1.0 - - 0.1 0.1 - - 0.3
1069 1070 4-Nonanone - - - - - - - - - 0.2 - -
1069 1069 cis-Sabinene hydrate - 0.8 - - - 6.7 - tr tr - - -
1071 1072 α-Santolina alcohol 0.2 - - 0.5 0.4 - 0.2 0.5 - 1.0 0.4 -
1078 1079 Artemisia alcohol - - 3.6 0.2 0.1 0.3 - - - - - 7.7
1084 1086 Terpinolene - 0.2 - 0.1 0.1 0.2 0.1 0.4 0.3 0.1 0.3 -
1085 1086 trans-Linalool oxide (furanoid) 0.3 - 0.1 - 0.4 0.2 - - 0.1 - - 0.2
1089 1089 Isoamyl phenylacetate - - - - - - - - tr - - -
1090 1093 Phenethyl isovalerate - - - - - - - - 0.1 - - -
1090 1091 p-Cymenene - - - - - - - - 0.1 - - -
1101 1101 Linalool 15.6 0.1 2.1 0.3 19.9 0.7 0.2 0.9 1.1 0.6 6.1 1.6
1101 1103 Filifolone - - - - - - - - 0.4 - - -
1102 1101 trans-Sabinene hydrate - - - - - 0.4 - - - - - -
1102 1103 2-Methylbutyl 3-methylbutyrate 0.8 1.5 0.3 0.3 0.5 0.1 0.2 0.6 1.1 0.3 0.4 0.1
1103 1102 6-Methylhepta-3,5-dien-2-one - - 0.1 - - - 0.1 - - 0.2 - -
1104 1104 Hotrienol 0.4 - - - 0.9 - - 0.6 0.5 - 0.6 0.8
1104 1104 Nonanal - 0.1 0.1 0.1 0.1 - 0.1 0.2 0.1 0.1 0.1 0.1
1107 1103 Tetrahydromyrcenol - - - - - - - - - - - 0.2
1107 1108 Amyl isovalerate 0.7 0.1 0.1 0.1 - 0.1 tr 0.2 0.3 0.1 - -
1109 1110 α-Thujone - - - - - - - - - - 1.0 -
1110 1110 3-Methyl-3-butenyl 3-methylbutyrate - tr - - - - - 0.1 - - - -
1113 1113 1,3,8-p-Menthatriene - - - - - - - tr - - - -
1119 1118 β-Thujone - - - - - - - - - - 0.1 -
1121 1122 Dehydrosabina ketone - - - - - - - tr - - - -
1122 1122 Chrysanthenone - - - - - 0.1 - tr 0.6 - - -
1122 1122 trans-p-Mentha-2,8-dien-1-ol - 0.1 - - - - - - - - - -
1124 1124 cis-p-Menth-2-en-1-ol - 0.1 - - - 0.2 - tr - - - -
1127 1127 α-Campholenal - 0.1 - - - 0.1 0.1 - tr - - -
1130 1130 Cuminaldehyde - - - - - - - - - 0.1 - -
1132 1131 Limona ketone - - - - - - - tr - - - -
1132 --- Unidentified (RI 1132) - - - - 1.3 - - - - - - -
1132 1132 Butyl tiglate - tr - - - - - - - - - -
1137 1137 cis-p-Mentha-2,8-dien-1-ol - 0.1 - - - - 0.5 - - - - -
1137 --- neo-Lyratol 1.3 - 0.1 4.2 4.3 - 0.1 - - 22.0 - -
1141 1141 trans-Pinocarveol - - - - - - - 0.1 - - - -
1144 1142 trans-p-Menth-2-en-1-ol - 0.1 - - - 0.2 - tr - - - -
1144 1145 trans-Verbenol - - - tr 0.1 - - - - - - -
1145 1147 Nerol - - - - - - - - - - - 0.2
1149 1149 Camphor 0.3 30.7 0.2 0.1 9.5 13.6 61.9 0.4 49.0 0.8 1.1 1.2
1151 1152 Nerol oxide - - - - - - - 0.1 - - - -
1154 1156 Lyratol - - - 0.9 0.8 - - - - 1.1 - -
1156 1155 cis-Chrysanthemol 14.2 - 3.0 0.3 1.0 0.2 0.9 - - - - -
1162 1162 β-Artemisyl acetate - - 0.3 - - 6.9 - - - - - 4.8
1163 1164 Pinocarvone - 0.2 - - - - 0.3 0.1 0.2 - - -
1164 1166 cis-Chrysanthenol - - - - - 0.2 - - - - - -
1164 1165 iso-Borneol - - - - - - - - tr - - -
1164 1165 Lavandulol - - - 0.3 0.4 - - - - - - -
1164 1164 Pinocarvone - - - - - - - - - - 0.1 -
1170 1170 δ-Terpineol - 0.5 - 0.1 - 0.5 0.1 0.7 0.3 - 0.2 -
1172 1171 p-Mentha-1,5-dien-8-ol - - - - - - - 0.1 - - - -
1172 1173 Borneol - 2.1 - - 0.2 4.3 2.9 - 1.4 - - -
1180 1180 Terpinen-4-ol 0.1 2.7 0.1 0.6 1.0 2.6 1.0 4.0 1.7 0.2 1.6 0.2
1186 --- Unidentified (RI 1186) - - 1.0 - - - - - - - - 1.2
1187 1186 p-Cymen-8-ol - - - - - tr - - - - - -
1188 1188 (3Z)-Hexenyl butyrate 0.1 - - - 0.2 - - - - - - 0.1
1189 1189 Geraniol 0.1 - 0.1 - - - - - - - - -
1192 1192 Methyl salicylate 0.1 - - 0.1 - tr - - - - - -
1193 1192 2-Methylbutyl tiglate 0.1 0.1 - - - - 0.1 - - - - -
1195 1195 α-Terpineol 0.2 2.3 0.1 0.6 0.5 2.1 0.4 1.5 0.7 0.1 0.8 0.1
1197 1197 Myrtenal - - - - - - 0.1 - - - - -
1199 1197 Lilac aldehyde B - - - - - - - - - - 0.2 -
1200 1197 Lilac aldehyde C - - - - - - - - - - 0.2 -
1208 1208 Verbenone - - - - 0.2 0.2 tr 0.3 - - - -
1211 --- Unidentified (RI 1211) - - - - - - - - - - - 1.0
1232 1232 cis-Carveol - - - - - 1.1 - - - - - -
1236 --- Unidentified (RI 1236) - - 1.2 0.2 0.3 - - - - 0.5 - 2.9
1238 1238 Neral - - - - - tr 0.1 0.1 - - - -
1239 1240 Ascaridole - - - - - tr - - - - - -
1240 1241 Pulegone - - - - - - - - - - - 0.3
1245 1246 Carvone - - - - - 0.2 - - 0.1 - - -
1247 1247 trans-Chrysanthenyl acetate 0.2 - - 0.9 1.4 - - - - 16.1 0.2 0.1
1252 1252 Chavicol - - - - - - - - tr - - 0.1
1254 1254 2-Phenethyl acetate - - - - - tr - - tr - - -
1265 1266 cis-Chrysanthenyl acetate 0.1 - - 0.3 0.7 0.7 - 0.1 - 0.6 - -
1268 1268 Geranial - - - - - 0.1 0.1 0.1 - - 0.1 -
1270 1270 iso-Piperitenone - - - - - 0.1 - - 0.2 - - -
1274 1273 Methyl hydrocinnamate - - - - - - - 0.1 - - - -
1275 --- Chrysanthemyl acetate 1.2 - 4.4 0.1 0.2 2.6 0.3 - - - - 0.1
1282 1282 Bornyl acetate tr 5.0 tr - 0.2 1.6 0.3 - 1.5 - 0.3 0.1
1282 1284 Lavandulyl acetate 0.1 - 0.6 0.2 0.4 0.1 tr - - 0.4 - 0.3
1288 1291 trans-Sabinyl acetate - - - - - - - - - - 0.1 -
1288 1289 trans-Verbenyl acetate - - - - - 0.2 0.1 - - - - -
1289 1289 Thymol - - - - - - 0.1 - - - - -
1297 1296 Carvacrol - - - - - - tr - - - - -
1305 1306 iso-Ascaridole - - - - - 0.1 0.1 - - - - -
1311 1313 δ-Terpinyl acetate - 0.1 - - - - - 0.1 0.1 - 0.1 -
1320 1325 (3Z)-Hexenyl tiglate - 0.1 - - - - - - - - - -
1332 1332 trans-Carvyl acetate - - - - - 0.1 - - - - - -
1345 1346 α-Terpinyl acetate - 0.5 - 0.1 0.1 - - 0.3 0.3 - 0.3 -
1347 1347 Ethyl hydrocinnamate - - - - - - - 0.1 - - - -
1352 1356 Eugenol 0.1 0.1 - 0.5 0.1 0.1 - - 0.3 - - 0.4
1355 1356 p-Acetanisole - - - - - - - 0.1 - - - -
1357 1361 Neryl acetate - tr - - - - - 0.1 - - 0.1 -
1358 1357 cis-Carvyl acetate - - - - - 0.9 - - - - - -
1373 1375 α-Copaene 0.3 tr 0.3 0.6 0.1 0.1 tr 0.1 tr 0.2 0.1 0.1
1377 1378 Geranyl acetate - 0.1 - - - tr - 0.4 tr - 0.8 -
1378 1379 (E)-β-Damascenone - - - - - tr - - - - - -
1382 1382 β-Bourbonene - - - - - tr - - - - - -
1389 1390 trans-β-Elemene - - - - - - - - - 0.2 - -
1393 1394 (Z)-Jasmone - - 0.1 0.1 0.1 - 0.1 0.2 0.1 0.3 0.4 0.1
1398 1396 (2E)-1,3,7-Trimethyl-2,6-octadienyl acetate 0.2 - 1.5 - 0.1 4.4 0.5 - - - - 0.1
1416 --- Unidentified (RI 1416) - - 0.5 - - 3.6 - - - - 0.1 0.1
1418 1417 (E)-β-Caryophyllene - - - 0.2 0.1 - - - 0.1 0.2 0.1 0.1
1428 1427 γ-Elemene - - - - - - - - - 0.1 - -
1456 1460 Cabreuva oxide B - - 0.1 - - - - - - - - -
1458 1457 Valerana-7,11-diene - - - - - - - - - 0.2 - -
1462 --- Unidentified (RI 1462) 0.4 - 0.5 0.2 0.4 - 0.3 - - 2.4 0.3 0.2
1463 1463 γ-Decalactone tr tr 0.1 0.1 - 0.1 tr 0.1 tr 0.2 0.1 -
1467 1468 Geranyl propionate - - - - - - - - - - 0.2 -
1470 1472 trans-Cadina-1(6),4-diene - - - 0.1 - - - - - - - -
1472 1474 Amorpha-4,7(11)-diene - - - - - - - - - 0.2 - -
1472 1475 Selina-4,11-diene - - - - - - 0.1 - 0.1 0.3 - -
1477 1479 γ-Curcumene - - - - - - - - - - - 0.1
1479 1480 Germacrene D 0.4 0.3 0.4 0.9 0.4 0.4 tr 0.2 tr 0.6 - 0.5
1479 1480 ar-Curcumene - - - - - - - 0.1 0.1 - 0.1 -
1480 1483 Davana ether 1 - 0.1 - 0.3 - - - - - - - -
1482 1478 γ-Muurolene - - - - - - - - - 0.2 - -
1483 1483 Phenethyl 2-methylbutyrate 0.1 0.1 tr - - tr - - 0.1 - - -
1486 1488 δ-Selinene - - - - - - - - - 1.1 0.1 -
1486 1491 Eremophilene - - - 0.3 0.2 - - 0.1 - - - -
1487 1489 β-Selinene - - 0.2 - - - 0.1 0.1 tr 0.2 0.2 -
1488 1490 (Z)-Jasmin lactone - - 0.2 0.1 - 0.1 - - - 0.2 0.1 tr
1488 1493 Phenethyl isovalerate 0.2 - - - - - - - - - - -
1489 1489 Isoamyl phenylacetate - - - - - - - 0.1 - - - 0.1
1490 1492 Valencene - - - - - - - 0.1 - 0.1 - -
1490 1490 γ-Amorphene - - - 0.2 - - - - - - - tr
1493 1497 Bicyclogermacrene - 0.1 0.1 - - tr - - - - - 0.1
1494 1497 epi-Cubebol - - - 0.3 - - - - - - - -
1495 1500 Chrysanthemyl 2-methylbutyrate 0.1 - - - - - - - - - - -
1495 1497 α-Selinene - - - - - - - - 0.1 - - -
1496 1500 α-Muurolene 0.1 - 0.2 0.2 - - - 0.1 tr 0.1 0.1 tr
1501 1502 Davana ether 2 - 0.2 - 0.8 - - - - - - - 0.1
1502 1504 Davana ether 3 - tr - 0.2 - - - - - - - -
1511 1512 γ-Cadinene - tr - 0.1 - tr - 0.2 - - - -
1514 1516 Artedouglasia oxide C - 0.5 - 2.5 - - - 0.2 - - 5.0 -
1515 1515 Cubebol - - - - - - - - - - - tr
1515 1518 δ-Cadinene 0.2 tr 0.2 0.5 0.1 0.1 tr - - 0.2 - 0.3
1520 1519 trans-Calamenene - - 0.1 - - - - - - 0.1 - -
1520 1521 Davana ether 4 - 0.1 - 0.6 - - - - - - - tr
1522 1521 Zonarene - - - - - - - - - 0.1 - -
1524 1526 Laciniata furanone G - - - 0.1 - - - - - - 0.6 -
1528 1528 Artedouglasia oxide A - 0.8 - 3.0 - - - 0.2 - - 6.8 0.1
1536 1536 Laciniata furanone F - - - 0.1 - - - - - - 0.7 -
1539 1539 Laciniata furanone E - - - 0.2 - - - - - - 0.9 -
1548 1546 α-Elemol - - - - - - - 0.3 - 0.9 - -
1548 1549 Davanone B - 0.7 - 2.9 0.1 - - - - - 2.6 0.2
1550 1549 Laciniata furanone H - 0.3 - 1.1 - - - 0.2 - - 2.3 tr
1554 1555 (Z)-Dihydronerolidol - - 0.7 - - - - - - - - -
1554 1556 Davanone C - 0.7 - 3.0 0.1 - - - - - 2.1 0.1
1561 1560 (E)-Nerolidol 35.1 0.5 41.0 0.3 3.3 0.1 0.2 0.1 - - 0.4 0.1
1561 1562 Davanone D - 0.6 - 1.7 - - - - - - 1.5 0.2
1569 1570 (E)-Dihydronerolidol 0.6 - 1.2 - - - - - - - - -
1573 1573 Artedouglasia oxide B - 0.4 - 1.6 - - - - - - 2.9 -
1577 1577 Davanone - 0.4 0.2 1.6 0.1 - - - - - 2.8 -
1578 1574 Germacra-1(10),5-dien-4β-ol - - - - - - - 0.7 tr 1.1 - 0.3
1582 1583 Phenethyl tiglate - tr - - - tr - - - - - -
1582 1587 Caryophyllene oxide - - - 0.5 - 0.1 - - - - - 0.3
1590 1590 Globulol - - 0.2 0.1 - - - - - - - -
1592 1593 Salvial-4(14)-en-1-one - - - 0.1 - - - - - - - -
1594 1594 Viridiflorol - - - 0.1 - - - - - - - -
1595 1596 Fokienol 1.5 0.1 1.6 0.3 0.7 - 0.2 - - - - 0.3
1598 --- Unidentified (RI 1598) - - - 0.1 - - - 0.8 tr 1.3 1.1 -
1602 1600 α-Oplopenone - - - 0.5 0.1 - - - - - - -
1604 1605 Ledol - - 0.1 - - - - - - - - -
1605 --- Isoamyl 3-phenylpropionate - - - - - - - 0.2 - - - -
1606 1605 Davanone E - - - - - - 0.1 - - - - -
1610 1611 Germacra-1(10),5-dien-4α-ol - - - 0.1 - - - 1.4 0.1 2.1 1.8 -
1615 1612 5-epi-7-epi-β-Eudesmol - - - - - - - - - 0.2 - -
1619 --- Unidentified (RI 1619) 0.6 - 1.1 0.2 0.6 - 0.2 - 0.2 - - 0.8
1627 1628 1-epi-Cubenol - - - 0.3 - - - - - - - 0.1
1628 1628 Methyl (E)-jasmonate - - - - - - tr - - - - -
1630 1632 γ-Eudesmol - 0.2 - - - - - - - - - -
1631 1631 Eremoligenol - - - - - - - 1.8 - 0.4 - -
1633 1630 Caryophylla-4(12),8(13)-dien-5α-ol 0.4 0.1 0.6 0.1 0.3 - 0.2 - 0.1 - - 0.5
1634 1632 γ-Eudesmol - - - - - - - - - 2.7 - -
1641 1642 Methyl (Z)-jasmonate 0.6 0.4 1.1 0.9 0.6 0.6 0.6 0.7 0.2 0.7 1.8 0.5
1643 1644 τ-Muurolol 0.2 - 0.3 0.2 - - - - - - - 0.1
1645 1645 α-Muurolol (=δ-Cadinol) 0.2 - 0.2 - - - - - - - - -
1654 --- Unidentified (RI 1654) - - 1.1 - - - - - - - - -
1655 1655 α-Cadinol 0.6 0.1 - 0.5 0.3 0.1 - - - - - 0.1
1655 1656 β-Eudesmol - - - - - - - 0.4 - 0.6 - -
1658 1660 Selin-11-en-4α-ol - - - - - 0.9 - - - - - 0.3
1671 --- Unidentified (RI 1671) 0.8 - 1.8 - 0.4 - - - - - - 0.1
1673 1673 Methyl (E)-epi-jasmonate 0.4 0.1 1.2 0.2 0.3 0.3 0.3 0.3 0.1 0.3 0.6 0.2
1676 1674 γ-Dodecalactone - - - - - tr tr 0.1 - - - -
1687 --- Unidentified (RI 1687) - - - - - - - 6.8 - 6.5 5.1 1.0
1726 1722 (2E,6E)-Farnesol 1.3 - 2.8 - - - - - - - - -
1780 --- Unidentified (RI 1780) - 2.2 - 5.7 - - - - - - - 0.3
1945 --- Gazaniolide - - - 0.4 0.2 - - - - - - 0.2
2129 2131 (3Z,6Z)-9,10-Epoxynonadecadiene 0.4 - 0.8 - - - - - - - - -
2142 2143 Serratol 0.7 - - - - - - - - - - -
Monoterpene hydrocarbons 5.5 15.0 0.6 20.0 16.9 29.9 16.2 8.1 12.9 9.7 4.4 2.2
Oxygenated monoterpenoids 42.2 72.0 31.1 32.9 65.4 56.9 77.5 63.0 80.6 51.3 35.9 79.4
Sesquiterpene hydrocarbons 1.1 0.4 1.5 3.0 0.9 0.5 0.2 1.0 0.3 4.0 0.7 1.2
Oxygenated sesquiterpenoids 39.8 5.7 49.0 23.8 5.3 1.1 0.7 5.2 0.1 8.1 30.4 2.9
Diterpenoids 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Benzenoid aromatics 0.8 0.2 0.2 0.5 0.1 0.1 0.0 0.7 0.4 0.2 0.2 0.8
Others 5.1 3.9 6.1 5.6 3.4 6.8 3.1 8.3 4.6 6.0 15.4 2.8
Total identified 95.2 97.2 88.5 85.8 92.0 95.3 97.7 86.4 99.0 79.2 87.0 89.2

RIcalc = Retention index determined with respect to a homologous series of n-alkanes on a ZB-5ms column. RIdb = Reference retention index from the databases. A.l. = Artemisia ludoviciana. tr = trace (< 0.05%). - = not detected.

Previous investigations of A. ludoviciana essential oil showed camphor to be abundant (15.9–46.2%, average 30.0%), followed by 1,8-cineole (0.7–26.2%, average 15.2%), borneol (0.9–18.0%, average 8.5%), and α-terpineol (0.2–18.0%, average 3.3%) [21,22,23,24,25,26]. In order to place the volatile phytochemistry of this plant into perspective, an agglomerative hierarchical cluster (AHC) analysis was carried out using the major components in the essential oils from this work as well as the previously published compositions. The cluster analysis shows five possible groupings based on chemical compositions (Figure 4). The chemical groupings are (1) a santolina triene/linalool cluster, (2) a camphor/1,8-cineole cluster, (3) a 1,8-cineole “cluster” (one sample only), (4) a 1,8-cineole/camphor cluster, and (5) an artemisia ketone “cluster” (one sample only). Surprisingly, the 12 Idaho samples are distributed throughout the five clusters, demonstrating the phytochemical diversity of this plant species even within a small geographical range.

Figure 4.

Figure 4

Dendrogram obtained by agglomerative hierarchical cluster (AHC) analysis of Artemisia ludoviciana essential oil compositions from this work and previously published investigations (Collin A, B [24], Anaya-Eugenio [23], Lopes-Lutz [22], Zavala-Sanchez [21], Baldemir [25], Zheljazkov [26]).

Enantioselective GC-MS analyses were carried out on the 12 A. ludoviciana essential oil samples (Table 5). Pure enantiomers (enantiomeric excess, ee = 100%) were found for (−)-α-thujene, (−)-lavandulol, (−)-borneol, (−)-α-copaene, (−)-(E)-β-caryophyllene, (−)-germacrene D, and (+)-δ-cadinene. The levorotatory enantiomers predominated for α-pinene (average ee = 46.0%), camphene (average ee = 94.4%), β-pinene (average ee = 73.6%), cis-sabinene hydrate (average ee = 70.2%), and trans-sabinene hydrate (average ee = 29.9%). Several monoterpenoid constituents did not show consistent enantiomeric distribution. Sabinene was mostly dominated by (−)-sabinene, but one sample (A.l. C1) had (+)-sabinene as the major enantiomer. Likewise, (−)-terpinen-4-ol dominated most essential oil samples, but sample A.l. T2 showed a slight excess of (+)-terpinen-4-ol. Similarly, (−)-α-terpineol predominated in most samples, but sample A.l. B2 showed an excess of (+)-α-terpineol. In the case of limonene, four samples had (−)-limonene predominating, while two samples had (+)-limonene as the major enantiomer. There was no consistency in the enantiomeric distribution of linalool. In the case of camphor, (−)-camphor predominated except for one sample (A.l. T3). Note, however, that camphor was abundant in samples A.l. C2, A.l T1, A.l. T2, and A.l. U2, so separation of the enantiomers was likely not possible. A similar situation existed for (E)-nerolidol; two samples (A.l. B1 and A.l. B3) had high concentrations of (E)-nerolidol, precluding enantiomeric separation.

Table 5.

Enantiomeric distribution (percent) of chiral terpenoid components of the essential oil of Artemisia ludoviciana.

Compounds RIdb RIcalc A.l. B1 A.l. B2 A.l. B3 A.l. C1 A.l. C2 A.l. T1 A.l. T2 A.l. T3 A.l. U1 A.l. U2 A.l. U3 A.l. U4
(+)-α-Thujene 950 no - 0.0 - - 0.0 - - 0.0 - - - -
(−)-α-Thujene 951 953 - 100.0 - - 100.0 - - 100.0 - - - -
(−)-α-Pinene 976 976 - 88.0 - 77.1 59.9 80.7 61.4 81.5 50.6 74.0 83.8 -
(+)-α-Pinene 982 981 - 12.0 - 22.9 40.1 19.3 38.6 18.5 49.4 26.0 16.2 -
(−)-Camphene 998 997 - 99.4 - 100.0 99.3 99.5 90.3 84.2 99.5 100.0 100.0 100.0
(+)-Camphene 1005 1002 - 0.6 - 0.0 0.7 0.5 9.7 15.8 0.5 0.0 0.0 0.0
(+)-Sabinene 1021 1018 - 16.0 - 13.9 79.4 15.4 21.3 14.7 14.9 17.6 35.0 -
(−)-Sabinene 1030 1027 - 84.0 - 86.1 20.6 84.6 78.7 85.3 85.1 82.4 65.0 -
(+)-β-Pinene 1027 1024 - 10.0 2.5 - - 13.1 18.9 10.2 25.8 - 12.0 -
(−)-β-Pinene 1031 1029 - 90.0 97.5 - - 86.9 81.1 89.8 74.2 - 88.0 -
(−)-Limonene 1073 1073 - 86.1 - 43.3 91.8 93.2 38.0 - - 100.0 - -
(+)-Limonene 1081 1081 - 13.9 - 56.7 8.2 6.8 62.0 - - 0.0 - -
(+)-cis-Sabinene hydrate 1199 1199 - 9.4 - - - 9.4 33.3 12.8 12.1 - 12.5 -
(−)-cis-Sabinene hydrate 1202 1202 - 90.6 - - - 90.6 66.7 87.2 87.9 - 87.5 -
(−)-Linalool 1228 1227 0.6 - 98.6 19.0 99.0 - 29.2 74.6 73.0 86.0 85.1 95.8
(+)-Linalool 1231 1231 99.4 - 1.4 81.0 1.0 - 70.8 25.4 27.0 14.0 14.9 4.2
(+)-trans-Sabinene hydrate 1231 1230 - 43.5 - - - 32.3 - 33.0 31.4 - - -
(−)-trans-Sabinene hydrate 1235 1234 - 56.5 - - - 67.7 - 67.0 68.6 - - -
(−)-Camphor 1253 1258 100.0 100.0 - - 100.0 100.0 100.0 38.9 100.0 100.0 100.0 100.0
(+)-Camphor 1259 1261 0.0 0.0 - - 0.0 0.0 0.0 61.1 0.0 0.0 0.0 0.0
(+)-Terpinen-4-ol 1297 1296 - 34.4 - 0.0 0.0 43.5 58.3 35.2 35.2 - 36.1 45.5
(−)-Terpinen-4-ol 1300 1299 - 65.6 - 100.0 100.0 56.5 41.7 64.8 64.8 - 63.9 54.5
(−)-Lavandulol 1314 1314 100.0 - 100.0 100.0 100.0 - - - - - - -
(+)-Lavandulol na no 0.0 - 0.0 0.0 0.0 - - - - - - -
(−)-Borneol 1335 1334 - 100.0 - - 100.0 100.0 100.0 - 100.0 - 100.0 -
(+)-Borneol 1340 no - 0.0 - - 0.0 0.0 0.0 - 0.0 - 0.0 -
(−)-α-Terpineol 1347 1346 82.3 40.9 - 85.2 - 89.1 58.5 86.3 82.0 85.2 83.4 -
(+)-α-Terpineol 1356 1355 17.7 59.1 - 14.8 - 10.9 41.5 13.7 18.0 14.8 16.6 -
(−)-α-Copaene 1381 1382 100.0 - 100.0 100.0 - - - - - 100.0 - -
(+)-α-Copaene na no 0.0 - 0.0 0.0 - - - - - 0.0 - -
(−)-(E)-β-Caryophyllene 1461 1463 - - 100.0 100.0 - - - - - 100.0 - 100.0
(+)-(E)-β-Caryophyllene na no - - 0.0 0.0 - - - - - 0.0 - 0.0
(+)-Germacrene D 1519 no - 0.0 0.0 0.0 0.0 0.0 - - - - - 0.0
(−)-Germacrene D 1522 1524 - 100.0 100.0 100.0 100.0 100.0 - - - - - 100.0
(−)-δ-Cadinene 1563 no 0.0 - 0.0 0.0 0.0 - - - - - - 0.0
(+)-δ-Cadinene 1576 1578 100.0 - 100.0 100.0 100.0 - - - - - - 100.0
(−)-(E)-Nerolidol 1677 1677 0.0 87.1 0.0 60.2 100.0 - 38.7 - - 0.0 0.0 41.8
(+)-(E)-Nerolidol 1680 1679 100.0 12.9 100.0 39.8 0.0 - 61.3 - - 100.0 100.0 58.2

RIdb = Retention index from our in-house database. RIcalc = Calculated retention index based on a homologous series of n-alkanes on a Restek B-Dex 325 capillary column. A.l. = Artemisia lucoviciana. na = Reference compound not available. no = not observed. - = compound not detected.

There have been several reports that investigated the enantiomeric distributions of monoterpenoids in Artemisia essential oils. Consistent with the enantiomeric distributions for α-pinene, camphene, and β-pinene, the (−)-enantiomers predominated in the essential oil of Artemisia annua L. [46] and Artemisia tridentata subsp. vaseyana (Rydb.) Beetle [47]. Limonene enantiomers were variable in A. ludoviciana (this work), but (+)-limonene was dominant in Artemisia arborescens L. [48] and (−)-limonene was dominant in A. annua [46]. Linalool enantiomeric distribution was inconsistent in A. ludoviciana (this work), while (+)-linalool predominated in A. arborescens [48,49]. (+)-Terpinen-4-ol and (−)-α-terpineol were the dominant enantiomers in A. arborescens [48,49]. Interestingly, (−)-terpinen-4-ol was the dominant enantiomer in Artemisia tridentata Nutt. subsp. tridentata and A. tridentata subsp. vaseyana, but (+)-terpinen-4-ol dominated the essential oil of Artemisia tridentata subsp. wyomingensis Beetle & A.L. Young [47]. However, (−)-α-terpineol was the dominant enantiomer in A. tridentata subsp. vaseyana [47].

Consistent with the observations in A. ludoviciana, (−)-camphor was the dominant enantiomer in A. arborescens from Algeria or southern Italy [48], Artemisia herba-alba Asso [50]. In contrast, however, (+)-camphor was the dominant enantiomer in A. arborescens from Sicily [49] and A. tridentata subsp. wyomingensis and A. tridentata subsp. vaseyana from Idaho, USA [47]. Although (−)-borneol was the only enantiomer observed in A. ludoviciana (this work) and A. tridentata subsp. wyomingensis and subsp. vaseyana [47], (+)-borneol was the dominant enantiomer in A. arborescens [48].

2.3. Gutierrezia sarothrae

Six individual samples of G. sarothrae were collected and hydrodistillation of the aerial parts of the plants gave pale-yellow essential oils in yields ranging from 3.681% to 4.606%. The essential oils were analyzed by GC-MS and GC-FID (Table 6). The most abundant components in the G. sarothrae essential oils were the monoterpene hydrocarbons (Z)-β-ocimene (18.8–39.4%), limonene (1.4–25.4%), β-pinene (0.5–18.4%), and α-phellandrene (2.2–11.8%), along with the diacetylenes (Z,E)-matricaria ester (0.2–9.3%) and (E,Z)-matricaria ester (0.1–7.5%). There were also several unidentified components with relatively high concentrations in the G. sarothrae essential oils. The mass spectra of the major unidentified compounds are available as supplementary material (Supplementary Figure S2). Although present in small amounts, the presence of nepetalactones was unexpected.

Table 6.

Chemical composition (percent of total) of the essential oil from the aerial parts of Gutierrezia sarothrae from southwestern Idaho.

RIcalc RIdb Compounds G.s. #1 G.s. #2 G.s. #3 G.s. #4 G.s. #5 G.s. #6
844 842 Ethyl 2-methylbutyrate 0.3 - 0.2 0.6 0.1 0.3
848 847 Ethyl isovalerate 0.2 - - 0.1 0.1 0.1
923 924 Ethyl tiglate - - - 0.1 tr 0.1
926 925 α-Thujene tr tr tr - tr tr
933 933 α-Pinene 0.7 1.7 1.0 0.6 0.1 0.8
948 948 α-Fenchene tr tr tr tr tr tr
950 950 Camphene tr 0.1 0.1 tr tr 0.1
972 971 Sabinene 0.1 tr tr tr tr tr
978 978 β-Pinene 6.2 18.4 12.3 5.9 0.5 8.6
987 993 Methyl isoheptanoate 0.1 - tr - tr 0.1
989 989 Myrcene 1.5 0.7 0.7 1.8 1.5 1.1
999 1003 Ethyl hexanoate 0.3 tr 0.2 tr 0.1 0.1
1005 1004 Octanal - tr 0.1 - tr tr
1007 1006 3-Ethenyl-1,2-dimethylcyclohexa-1,4-diene - - 0.2 0.1 0.2 0.1
1008 1007 α-Phellandrene 11.8 7.0 2.2 7.7 3.0 9.2
1009 1009 δ-3-Carene tr tr - - tr tr
1012 1012 Hexyl acetate - - 0.2 - - -
1017 1017 α-Terpinene 0.2 0.2 0.1 0.1 0.1 0.1
1025 1025 p-Cymene 1.8 0.8 0.4 1.2 0.8 1.4
1030 1030 Limonene 11.7 1.4 10.3 11.0 25.4 7.4
1032 1031 β-Phellandrene 0.7 0.8 0.4 0.5 0.2 0.6
1033 1032 1,8-Cineole 1.0 tr tr tr 0.6 0.1
1036 1034 (Z)-β-Ocimene 20.1 32.1 39.4 28.3 18.8 21.3
1046 1045 (E)-β-Ocimene 2.2 3.1 3.2 2.7 1.9 2.2
1058 1057 γ-Terpinene 0.2 0.2 0.1 0.1 0.1 0.1
1070 1069 cis-Linalool oxide (furanoid) - - - - 0.1 -
1085 1086 Terpinolene 0.1 0.3 0.2 0.1 tr 0.2
1086 1086 trans-Linalool oxide (furanoid) - - - - tr -
1086 1085 Methyl 6-methylheptanoate 0.1 - - - tr -
1090 1091 p-Cymenene - - - - tr -
1092 1091 Rosefuran - tr 0.1 tr tr -
1100 1101 Linalool 0.1 tr tr 0.1 0.2 0.1
1111 1114 Heptyl acetate - - 0.1 - - -
1120 1119 endo-Fenchol - tr tr tr - -
1122 1119 1,3,8-p-Menthatriene 0.9 0.6 0.9 0.7 0.6 0.7
1123 1123 Methyl octanoate - tr 0.1 - tr tr
1125 1124 cis-p-Menth-2-en-1-ol 0.2 0.2 0.1 0.2 0.1 0.2
1128 1127 (4E,6Z)-allo-Ocimene 0.8 1.4 1.6 1.2 0.8 0.9
1130 1130 (3E,5E)-2,6-Dimethyl-1,3,5,7-octatetraene 0.9 0.7 1.0 0.7 0.7 0.7
1143 1142 trans-p-Menth-2-en-1-ol 0.1 0.1 0.1 0.1 tr 0.1
1152 1151 Citronellal tr tr 0.1 0.1 0.1 0.1
1155 1156 Camphene hydrate tr 0.1 0.1 tr - tr
1163 1164 Pinocarvone - tr tr - - -
1170 1170 Borneol - tr - tr - -
1176 1176 cis-Pinocamphone - tr tr - - -
1181 1180 Terpinen-4-ol 0.4 0.4 0.3 0.2 0.2 0.3
1186 1185 Dill ether 0.2 tr tr tr - 0.2
1192 1189 Methyl 6-methyloctanoate 0.1 - 0.1 - - tr
1192 1192 Methyl salicylate - tr - tr - -
1194 1196 (4Z)-Decenal - - 0.2 - - -
1196 1195 α-Terpineol 1.0 2.0 1.4 0.8 0.3 1.0
1206 1206 Decanal - - tr - - -
1208 1207 (3E)-Octenyl acetate - - 0.1 tr tr -
1210 1211 Octyl acetate - - 0.1 - - -
1226 1227 Citronellol 2.2 0.2 0.6 1.7 0.7 1.2
1238 1238 Neral - - tr - tr tr
1267 1268 Geranial - - tr - tr tr
1273 1273 Methyl hydrocinnamate - - - tr tr tr
1306 1307 Methyl (4Z)-decenoate - - 0.1 - - -
1309 1309 4-Vinylguaiacol - - - - tr -
1349 1349 Citronellyl acetate 0.1 tr 0.1 0.1 0.4 0.2
1361 1358 4aα,7α,7aα-Nepetalactone 0.1 tr tr 0.1 tr 0.1
1373 1374 Methyl p-anisate - - tr - - 0.1
1375 1375 α-Copaene 0.2 0.1 tr 0.1 tr 0.1
1377 1378 Geranyl acetate - - - - tr -
1384 1384 Methyl (E)-cinnamate 0.4 tr 1.9 0.9 3.0 3.2
1387 1387 7-epi-Sesquithujene - - - - tr tr
1389 1390 trans-β-Elemene 0.1 - tr tr tr tr
1392 1392 (Z)-Jasmone - - tr - - -
1397 1398 4aβ,7α,7aβ-Nepetalactone tr tr tr tr tr tr
1406 1406 α-Gurjunene tr - - - - -
1410 --- Unidentified (RI 1410) 0.6 1.9 0.5 0.1 tr 0.6
1419 1417 (E)-β-Caryophyllene 0.2 tr tr 0.1 0.1 0.1
1429 1433 β-Copaene tr - - - - -
1432 1432 trans-α-Bergamotene - - - - tr -
1438 --- 2-Tetradecyne 0.1 tr - 0.1 tr 0.1
1438 1438 Aromadendrene - - tr - - -
1443 --- Unidentified (RI 1443) 5.1 5.7 2.4 0.5 0.3 9.0
1445 1446 cis-Muurola-3,5-diene tr tr - - - -
1448 1450 trans-Muurola-3,5-diene 0.1 - - tr tr 0.2
1451 1452 (E)-β-Farnesene - - - - tr tr
1455 1454 α-Humulene 0.1 tr tr tr tr tr
1459 1458 allo-Aromadendrene 0.2 tr 0.1 0.1 0.1 0.1
1462 1463 cis-Muurola-4(14),5-diene 0.1 tr tr tr tr tr
1463 --- Unidentified (RI 1463) 0.2 0.3 0.1 8.2 4.0 0.7
1465 1463 γ-Decalactone 0.1 tr 0.2 0.9 0.9 0.2
1467 1469 Ethyl (E)-cinnamate 0.1 - - 0.2 0.1 0.4
1471 1472 cis-Cadina-1(6),4-diene 0.4 0.5 0.1 0.2 0.1 0.2
1474 1475 γ-Muurolene 0.6 0.2 0.2 0.3 0.2 0.3
1477 1478 γ-Curcumene 0.1 0.1 tr 0.4 0.3 0.3
1478 1480 Citronellyl isobutyrate - - - 0.1 - -
1480 1482 ar-Curcumene - tr tr - - -
1481 1480 Germacrene D 0.1 0.1 - 0.1 0.1 0.1
1484 1477 trans-Cadina-1(6),4-diene 0.1 tr - - - -
1488 1489 β-Selinene 0.1 tr tr 0.1 tr 0.1
1491 1490 γ-Amorphene 0.1 tr 0.1 0.1 tr 0.1
1493 1496 Methyl isoeugenol - 0.2 0.1 - - -
1496 1498 cis-β-Guaiene 0.2 0.1 0.1 0.1 tr 0.1
1498 1497 α-Muurolene 0.8 0.3 0.2 0.5 0.3 0.5
1509 1510 (E)-Lachnophyllum ester tr - 0.5 3.1 1.4 0.1
1509 --- Unidentified (RI 1509) 1.6 7.3 0.9 - - 1.7
1512 1512 γ-Cadinene - 0.4 0.3 0.7 0.3 0.7
1515 1521 (Z)-Lachnophyllum ester 0.7 1.0 0.6 1.5 0.4 1.0
1518 1518 δ-Cadinene 4.1 1.7 1.1 2.8 1.6 2.5
1521 1517 (E,Z)-Matricaria ester 0.2 1.0 0.7 0.1 7.5 0.7
1521 1519 trans-Calamenene - tr - - - -
1522 1521 Zonarene 0.1 0.1 - 0.1 - 0.1
1526 1527 (Z,E)-Matricaria ester 3.1 0.2 7.4 0.5 9.3 6.4
1527 --- Unidentified (RI 1527) - - - 2.1 0.5 0.2
1531 1533 trans-Cadina-1,4-diene 0.2 0.1 - 0.1 0.2 0.1
1536 1538 α-Cadinene 0.2 0.1 0.1 0.2 0.1 0.1
1549 1549 α-Elemol - - - - 1.4 0.4
1560 1560 (E)-Nerolidol 0.2 0.1 - 0.1 0.3 0.2
1576 1574 Germacra-1(10),5-dien-4β-ol 0.2 tr tr 0.1 0.1 0.1
1576 1576 Spathulenol - - tr - - -
1585 1582 epi-Globulol tr tr 0.1 0.1 tr 0.1
1594 1594 Viridiflorol tr tr 0.1 tr - -
1595 1593 Guaiol - - - - 0.1 -
1614 1614 1,10-di-epi-Cubenol 0.2 0.1 0.1 0.1 0.1 0.1
1621 1624 epi-γ-Eudesmol - - - - 0.1 tr
1627 1628 1-epi-Cubenol 0.5 0.2 0.1 0.3 0.1 0.3
1632 1632 γ-Eudesmol - - - - 1.7 0.5
1641 1640 τ-Cadinol 1.8 1.0 0.6 1.3 0.6 1.2
1644 1644 τ-Muurolol 1.8 0.9 0.7 1.4 0.7 1.2
1646 1645 α-Muurolol (=δ-Cadinol) 1.9 0.5 0.2 1.1 0.3 1.0
1655 1655 α-Eudesmol - - - - 1.8 0.7
1655 1655 α-Cadinol 4.0 2.3 1.6 3.1 3.8 3.1
Monoterpene hydrocarbons 59.8 69.4 74.1 62.9 54.7 55.6
Oxygenated monoterpenoids 5.3 3.0 2.8 3.3 2.6 3.4
Sesquiterpene hydrocarbons 7.8 3.6 2.1 6.0 3.3 5.6
Oxygenated sesquiterpenoids 10.5 5.0 3.4 7.6 11.0 8.8
Benzenoid aromatics 0.5 0.2 2.0 1.1 3.0 3.7
Acetylenes 4.0 2.2 9.2 5.2 18.6 8.3
Others 1.1 0.0 1.5 1.8 1.1 0.9
Total identified 89.0 83.4 95.0 88.0 94.4 86.2

RIcalc = Retention index determined with respect to a homologous series of n-alkanes on a ZB-5ms column. RIdb = Reference retention index from the databases. G.s. = Gutierrezia sarothrae. tr = trace (< 0.05%). - = not detected.

A previous analysis of G. sarothrae essential oil from New Mexico reported geraniol (53.8%), γ-humulene (12.2%), trans-verbenol (6.0%), and verbenone (4.2%) as major components [35]. A subsequent examination of G. sarothrae essential oil from Utah by Epstein and Seidel [36] showed the major components to be (+)-α-pinene (12.6–22.9%), (−)-β-pinene (27.6–40.4%), (+)-limonene (7.2–13.1%), camphor (0.7–10.9%), (−)-pinocarvone (trace-11.3%), and (+)-verbenone (trace-6.0%). Another sample of G. sarothrae from New Mexico showed α-pinene (0.4–9.4%), β-pinene 0.7–9.6%), p-cymene (labeled as o-cymene, but the RI is more consistent with p-cymene, 2.5–7.9%), limonene (2.4–13.4%), cryptone (2.4–8.1%), bornyl acetate (2.8–4.5%), (E)-β-caryophyllene (2.3–4.8%), and β-eudesmol (0.1–5.9%) [37]. There is apparently much variation in the essential oil compositions of this plant and is likely due to subspecies variation [36]. Lane [27] has concluded, based on morphological characteristics, that “Gutierrezia sarothrae is an extremely variable taxon that possibly should be subdivided into a number of taxonomic varieties.” Ralphs and McDaniels have characterized eight chemotypes of G. sarothrae based on diterpenoid composition [30]. World Flora Online currently lists three varieties of G. sarothrae (var. sarothrae, var. pomariensis S.L. Welsh, and var. pauciflora Eastw.) [51].

The enantiomeric distributions of chiral terpenoid components were determined using chiral GC-MS (Table 7). (−)-α-Pinene (62.4–96.2%), (−)-β-pinene (97.3–99.8%), (−)-terpinen-4-ol (64.2–69.6%), (−)-α-terpineol (70.8–98.1%), and (−)-citronellol (64.7–70.2%) were the dominant enantiomers. Five of the six G. sarothrae essential oils showed (+)-limonene to be the major enantiomer (>90%), but sample G.s. #2 had (−)-limonene with 71.5%. Only one peak was observed for α-phellandrene, and its calculated RI was between the database RI values for (+)- and (−)-α-phellandrene, so identification of the enantiomer is in doubt. The predominance of (−)-β-pinene and (+)-limonene is in agreement with Epstein and Seidel [36]. In contrast, however, (−)-α-pinene was the major enantiomer in this present study, while Epstein and Seidel isolated (+)-α-pinene.

Table 7.

Enantiomeric distribution of chiral terpenoids in the essential oil from the aerial parts of Gutierrezia sarothrae.

Compounds RIdb RIcalc G.s. #1 G.s. #2 G.s. #3 G.s. #4 G.s. #5 G.s. #6
(−)-α-Pinene 976 976 86.4 96.2 95.3 89.7 62.4 90.8
(+)-α-Pinene 982 983 13.6 3.8 4.7 10.3 37.6 9.2
(+)-β-Pinene 1027 1027 0.4 0.2 0.2 0.2 2.7 0.3
(−)-β-Pinene 1031 1029 99.6 99.8 99.8 99.8 97.3 99.7
(−)-α-Phellandrene 1050 1051 100.0 100.0 100.0 100.0 100.0 100.0
(+)-α-Phellandrene 1053
(−)-Limonene 1073 1075 6.5 71.5 9.1 5.2 2.2 8.9
(+)-Limonene 1081 1079 93.5 28.5 90.9 94.8 97.9 91.1
(−)-Linalool 1228 1228 - - - 20.6 9.3 -
(+)-Linalool 1231 1232 - - - 79.4 90.7 -
(+)-Terpinen-4-ol 1297 1296 31.1 34.4 35.8 32.6 30.4 33.1
(−)-Terpinen-4-ol 1300 1299 68.9 65.6 64.2 67.4 69.6 66.9
(−)-α-Terpineol 1347 1344 83.3 98.1 92.6 81.9 70.8 85.0
(+)-α-Terpineol 1356 1359 16.7 1.9 7.4 18.1 29.2 15.0
(+)-Citronellol 1384 1385 29.8 31.6 32.3 34.0 35.3 31.4
(−)-Citronellol 1384 1386 70.2 68.4 67.7 66.0 64.7 68.6
(+)-δ-Cadinene 1576 1576 100.0 100.0 100.0 100.0 100.0 100.0

RIdb = Retention index from our in-house database. RIcalc = Calculated retention index based on a homologous series of n-alkanes on a Restek B-Dex 325 capillary column. G.s. = Gutierrezia sarothrae. - = compound not detected.

3. Materials and Methods

3.1. Plant Material, Hydrodistillation

Aerial parts of several individuals of A. acanthicarpa, A. ludoviciana, and G. sarothrae were collected from the Owyhee mountains of southwestern Idaho. The plants were identified by W.N. Setzer by comparison with samples from the New York Botanical Garden [52,53,54] and the Brigham Young University Herbarium via the Intermountain Region Herbarium Network [55]. Voucher specimens (WNS-Aa-7768, WNS-Al-7669, WNS-Al-7782, WNS-Gs-7772) have been deposited with the University of Alabama in Huntsville herbarium. The plant materials were frozen fresh (−20 °C) and stored frozen until distilled. For each plant sample, the fresh-frozen aerial parts were hydrodistilled for 4 h using a Likens-Nickerson apparatus with continuous extraction of the distillate with dichloromethane. The collection and hydrodistillation details are summarized in Table 8.

Table 8.

Collection and hydrodistillation details for Ambrosia acanthicarpa, Artemisia ludoviciana, and Gutierrezia sarothrae from the Owyhee Mountains of Idaho.

Sample Collection Site Collection Date Mass Aerial Parts (g) Mass Essential Oil (g) % Yield
A.a. #1 43°8′56″ N, 116°30′58″ W, 1033 m asl 11 August 2023 53.34 2.673 5.011
A.a. #2 43°8′56″ N, 116°30′58″ W, 1033 m asl 11 August 2023 60.82 2.651 4.358
A.a. #3 43°8′56″ N, 116°30′58″ W, 1033 m asl 11 August 2023 94.85 4.610 4.860
A.l. B1 43°7′7″ N, 116°43′51″ W, 1862 m asl 21 July 2023 64.18 1.263 1.968
A.l. B2 43°7′7″ N, 116°43′51″ W, 1862 m asl 21 July 2023 76.65 2.534 3.306
A.l. B3 43°7′7″ N, 116°43′51″ W, 1862 m asl 21 July 2023 36.82 0.213 0.580
A.l. C1 43°7′7″ N, 116°43′51″ W, 1862 m asl 21 July 2023 102.46 2.294 2.239
A.l. C2 43°7′7″ N, 116°43′51″ W, 1862 m asl 21 July 2023 109.45 3.086 2.819
A.l. T1 43°1′34″ N, 116°43′58″ W, 1033 m asl 11 August 2023 41.74 0.571 1.368
A.l. T2 43°1′34″ N, 116°43′58″ W, 1033 m asl 11 August 2023 68.90 1.234 1.791
A.l. T3 43°1′34″ N, 116°43′58″ W, 1033 m asl 11 August 2023 92.73 2.297 2.477
A.l. U1 43°1′34″ N, 116°43′58″ W, 1033 m asl 11 August 2023 102.02 2.741 2.687
A.l. U2 43°1′34″ N, 116°43′58″ W, 1033 m asl 11 August 2023 67.98 1.223 1.798
A.l. U3 43°1′34″ N, 116°43′58″ W, 1033 m asl 11 August 2023 83.90 2.112 2.517
A.l. U4 43°1′34″ N, 116°43′58″ W, 1033 m asl 11 August 2023 85.52 2.158 2.524
G.s. #1 43°8′56″ N, 116°30′58″ W, 1033 m asl 11 August 2023 100.64 4.058 4.032
G.s. #2 43°8′56″ N, 116°30′58″ W, 1033 m asl 11 August 2023 88.74 3.638 4.100
G.s. #3 43°8′56″ N, 116°30′58″ W, 1033 m asl 11 August 2023 91.72 3.376 3.681
G.s. #4 43°8′56″ N, 116°30′58″ W, 1033 m asl 11 August 2023 107.85 4.386 4.066
G.s. #5 43°8′56″ N, 116°30′58″ W, 1033 m asl 11 August 2023 81.59 3.758 4.606
G.s. #6 43°8′56″ N, 116°30′58″ W, 1033 m asl 11 August 2023 98.60 4.080 4.138

3.2. Gas Chromatographic Analyses

The essential oils of the aerial parts of Ambrosia acanthicarpa, Artemisia ludoviciana, and Gutierrezia sarothrae were analyzed by gas chromatography coupled with flame ionization detection (GC-FID, gas chromatography–mass spectrometry (GC-MS), and chiral GC-MS as previously described [56]. Instrumental details are provided as supplementary material (Supplementary Table S1). Retention indices (RI) were calculated based on a homologous series of n-alkanes using the linear equation of van den Dool and Kratz [57]. The essential oil components were identified by comparing their RI values (within ten RI units) and their MS fragmentation patterns (>80% similarity) with those reported in the Adams [58], FFNSC3 [59], NIST20 [60], and Satyal [61] databases. The compound percentages were based on raw peak areas without standardization. The individual enantiomers were determined from the chiral GC-MS analysis by comparison of RI values with authentic samples (Sigma-Aldrich, Milwaukee, WI, USA), which have been compiled in our in-house database. Percentages of each enantiomer were calculated from raw peak integration.

3.3. Hierarchical Cluster Analysis

The agglomerative hierarchical cluster (AHC) analysis was carried out on the A. ludoviciana essential oils using XLSTAT v. 2018.1.1.62926 (Addinsoft, Paris, France). The AHC analysis was performed using the concentrations of the 15 most abundant components (santolina triene, α-pinene, camphene, β-pinene, 1,8-cineole, lavender lactone, artemisia ketone, linalool, nonanal, camphor, borneol, terpinen-4-ol, α-terpineol, carvacrol, and davanone) from this current work as well as those previously reported compositions from the literature [21,22,23,24,25,26]. Dissimilarity was used to determine clusters, considering Euclidean distance, and Ward’s method was used to define agglomeration.

4. Conclusions

This is the first report on the chemical characterization of A. acanthicarpa essential oil. This species is wide-ranging in western North America, but the plants in this investigation were obtained from only one location in southwestern Idaho. Clearly, additional collections are needed to characterize the essential oil of this species more fully. In addition, this work complements previous investigations of A. ludoviciana by extending the geographical sampling as well as including enantiomeric distributions of chiral terpenoid components. It is apparent that not only the essential oil compositions, but also the enantiomeric distributions, are highly variable in A. ludoviciana. A comparison of essential oil analyses of G. sarothrae from this work and from previous investigations has revealed much variation in composition. Obviously, additional work on the essential oils of A. acanthicarpa, A. ludoviciana, and G. sarothrae are needed from different geographical locations. DNA barcode investigations may help to correlate with chemotypes of these species to help define the subspecies in these plants.

Acknowledgments

This work was carried out as part of the activities of the Aromatic Plant Research Center (APRC, https://aromaticplant.org/, accessed on 20 February 2024).

Supplementary Materials

The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/molecules29061383/s1, Figure S1: Mass spectra of major unidentified components in the essential oils of Artemisia ludoviciana; Figure S2: Mass spectra of major unidentified components in the essential oils of Gutierrezia sarothrae. Table S1: Instrument details for the gas chromatographic analyses of Ambrosia acanthicarpa, Artemisia ludoviciana, and Gutierrezia sarothrae.

Author Contributions

Conceptualization, W.N.S.; methodology, P.S. and W.N.S.; software, P.S.; validation, W.N.S.; formal analysis, A.P. and W.N.S.; investigation, K.S., A.P., P.S. and W.N.S.; data curation, W.N.S.; writing—original draft preparation, W.N.S.; writing—review and editing, K.S., A.P., P.S. and W.N.S.; project administration, W.N.S.; All authors have read and agreed to the published version of the manuscript.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

All data are available in the manuscript and Supplementary Materials.

Conflicts of Interest

The authors declare no conflicts of interest.

Funding Statement

This research received no external funding. The APC was funded by W.N.S.

Footnotes

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

References

  • 1.Payne W.W. A re-evaluation of the genus Ambrosia (Compositae) J. Arnold Arbor. 1964;45:401–438. doi: 10.5962/p.30872. [DOI] [Google Scholar]
  • 2.Geissman T.A., Griffin S., Waddell T.G., Chen H.H. Sesquiterpene lactones. Some new constituents of Ambrosia species: A. psilostachya and A. acanthicarpa. Phytochemistry. 1969;8:145–150. doi: 10.1016/S0031-9422(00)85806-9. [DOI] [Google Scholar]
  • 3.Anderson G.D.I. Ph.D. Thesis. Florida State University; Tallahassee, FL, USA: 1973. A chemotaxonomic study of some members of the Ambrosiinae (Compositae) II; The absolute and relative configuration of axivalin and its congeners. [Google Scholar]
  • 4.Taylor J.R., McArthur E.D. Artemisia ludoviciana Nutt. Louisiana sagewort. In: Francis J.K., editor. Wildland Shrubs of the United States and Its Territories: Thamnic Descriptions: Volume 1. Forest Service, United States Department of Agriculture; Fort Collins, CO, USA: 2004. pp. 69–71. [Google Scholar]
  • 5.Stevens M., Roberts W. White Sage Artemisia ludoviciana Nutt. [(accessed on 13 February 2024)]; Available online: https://plants.usda.gov/DocumentLibrary/plantguide/pdf/pg_arlu.pdf.
  • 6.World Flora Online Artemisia ludoviciana Nutt. [(accessed on 15 February 2024)]. Available online: https://www.worldfloraonline.org/taxon/wfo-0000003410.
  • 7.eFloras.org Artemisia ludoviciana Nuttall subsp. Ludoviciana. [(accessed on 22 July 2023)]. Available online: http://www.efloras.org/florataxon.aspx?flora_id=1&taxon_id=250068071.
  • 8.eFloras.org Artemisia ludoviciana Nuttall subsp. candicans (Rydberg) D. D. Keck. [(accessed on 22 July 2023)]. Available online: http://www.efloras.org/florataxon.aspx?flora_id=1&taxon_id=250068069.
  • 9.eFloras.org Artemisia ludoviciana Nuttall subsp. incompta (Nuttall) D. D. Keck. [(accessed on 22 July 2023)]. Available online: http://www.efloras.org/florataxon.aspx?flora_id=1&taxon_id=250068070.
  • 10.Abad M.J., Bedoya L.M., Apaza L., Bermejo P. The Artemisia L. genus: A review of bioactive essential oils. Molecules. 2012;17:2542–2566. doi: 10.3390/molecules17032542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Anaya-Eugenio G.D., Rivero-Cruz I., Rivera-Chávez J., Mata R. Hypoglycemic properties of some preparations and compounds from Artemisia ludoviciana Nutt. J. Ethnopharmacol. 2014;155:416–425. doi: 10.1016/j.jep.2014.05.051. [DOI] [PubMed] [Google Scholar]
  • 12.Moerman D.E. Native American Ethnobotany. Timber Press, Inc.; Portland, OR, USA: 1998. [Google Scholar]
  • 13.Lee K.H., Geissman T.A. Sesquiterpene lactones of Artemisia: Constituents of A. ludoviciana ssp. mexicana. Phytochemistry. 1970;9:403–408. doi: 10.1016/S0031-9422(00)85153-5. [DOI] [Google Scholar]
  • 14.Geissman T.A., Saitoh T. Ludalbin, a new lactone from Artemisia ludoviciana. Phytochemistry. 1972;11:1157–1160. doi: 10.1016/S0031-9422(00)88471-X. [DOI] [Google Scholar]
  • 15.Epstein W.W., Ubben Jenkins E.E. Anthemidin, a new sesquiterpene lactone from Artemisia ludoviciana. J. Nat. Prod. 1979;42:279–281. doi: 10.1021/np50003a006. [DOI] [Google Scholar]
  • 16.Jakupovic J., Tan R.X., Bohlmann F., Boldt P.E., Jia Z.J. Sesquiterpene lactones from Artemisia ludoviciana. Phytochemistry. 1991;30:1573–1577. doi: 10.1016/0031-9422(91)84211-A. [DOI] [Google Scholar]
  • 17.Ruiz-Cancino A., Cano A.E., Delgado G. Sesquiterpene lactones and flavonoids from Artemisia ludoviciana ssp. mexicana. Phytochemistry. 1993;33:1113–1115. doi: 10.1016/0031-9422(93)85032-M. [DOI] [Google Scholar]
  • 18.Liu Y.-L., Mabry T.J. Flavonoids from Artemisia ludoviciana var. ludoviciana. Phytochemistry. 1982;21:209–214. doi: 10.1016/0031-9422(82)80045-9. [DOI] [Google Scholar]
  • 19.Hofer O., Wallnöfer B., Widhalm M., Greger H. Naturally occurring thienyl-substituted spiroacetal enol ethers from Artemisia ludoviciana. Liebigs Ann. der Chemie. 1988;1988:525–529. doi: 10.1002/jlac.198819880606. [DOI] [Google Scholar]
  • 20.Alexander K., Epstein W.W. Studies on the biogenesis of non-head-to-tail monoterpenes. Isolation of (1R,3R)-chrysanthemol from Artemesia ludoviciana. J. Org. Chem. 1975;40:2576. doi: 10.1021/jo00905a053. [DOI] [Google Scholar]
  • 21.Zavala-Sánchez M.A., Pérez-Gutiérrez S., Pérez-González C., Sánchez-Saldivar D., Arias-García L. Antidiarrhoeal activity of nonanal, an aldehyde isolated from Artemisia ludoviciana. Pharm. Biol. 2002;40:263–268. doi: 10.1076/phbi.40.4.263.8465. [DOI] [Google Scholar]
  • 22.Lopes-Lutz D., Alviano D.S., Alviano C.S., Kolodziejczyk P.P. Screening of chemical composition, antimicrobial and antioxidant activities of Artemisia essential oils. Phytochemistry. 2008;69:1732–1738. doi: 10.1016/j.phytochem.2008.02.014. [DOI] [PubMed] [Google Scholar]
  • 23.Anaya-Eugenio G.D., Rivero-Cruz I., Bye R., Linares E., Mata R. Antinociceptive activity of the essential oil from Artemisia ludoviciana. J. Ethnopharmacol. 2016;179:403–411. doi: 10.1016/j.jep.2016.01.008. [DOI] [PubMed] [Google Scholar]
  • 24.Collin G., St-Gelais A., Turcotte M., Gagnon H. Composition of the essential oil and of some extracts of the aerial parts of Artemisia ludoviciana var. latiloba Nutt. Am. J. Essent. Oils Nat. Prod. 2017;5:1–11. [Google Scholar]
  • 25.Baldemir A., Karaman Ü., İlgün S., Kaçmaz G., Demirci B. Antiparasitic efficacy of Artemisia ludoviciana Nutt. (Asteraceae) essential oil for Acanthamoeba castellanii, Leishmania infantum and Trichomonas vaginalis. Indian J. Pharm. Educ. Res. 2018;52:416–425. doi: 10.5530/ijper.52.3.48. [DOI] [Google Scholar]
  • 26.Zheljazkov V.D., Cantrell C.L., Jeliazkova E.A., Astatkie T., Schlegel V. Essential oil yield, composition, and bioactivity of sagebrush species in the Bighorn Mountains. Plants. 2022;11:1228. doi: 10.3390/plants11091228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Lane M.A. Taxonomy of Gutierrezia (Compositae: Astereae) in North America. Syst. Bot. 1985;10:7–28. doi: 10.2307/2418432. [DOI] [Google Scholar]
  • 28.Ladyman J.A.R. Gutierrezia sarothrae (Pursh) Britt. & Rusby, broom snakeweed. In: Francis J.K., editor. Wildland Shrubs of the United States and Its Territories: Thamnic Descriptions: Volume 1. United States Department of Agriculture, Forest Service; Rio Piedras, Puerto Rico: 2004. pp. 367–369. [Google Scholar]
  • 29.eFloras.org Gutierrezia sarothrae. [(accessed on 12 August 2023)]. Available online: http://www.efloras.org/florataxon.aspx?flora_id=1&taxon_id=250066828.
  • 30.Ralphs M.H., McDaniel K.C. Broom snakeweed (Gutierrezia sarothrae): Toxicology, ecology, control, and management. Invasive Plant Sci. Manag. 2011;4:125–132. doi: 10.1614/IPSM-D-09-00038.1. [DOI] [Google Scholar]
  • 31.Bohlmann F., Zdero C., King R.M., Robinson H. Gutierrezial and further diterpenes from Gutierrezia sarothrae. Phytochemistry. 1984;23:2007–2012. doi: 10.1016/S0031-9422(00)84959-6. [DOI] [Google Scholar]
  • 32.Su Q., Dalal S., Goetz M., Cassera M.B., Kingston D.G.I. New antiplasmodial diterpenes from Gutierrezia sarothrae. Nat. Prod. Commun. 2016;11:719–721. doi: 10.1177/1934578X1601100605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Gardner D.R., Cook D., Larsen S.W., Stonecipher C.A., Johnson R. Diterpenoids from Gutierrezia sarothrae and G. microcephala: Chemical diversity, chemophenetics and implications to toxicity in grazing livestock. Phytochemistry. 2020;178:112465. doi: 10.1016/j.phytochem.2020.112465. [DOI] [PubMed] [Google Scholar]
  • 34.Hradetzky D., Wollenweber E., Roitman J.N. Flavonoids from the leaf resin of snakeweed, Gutierrezia sarothrae. Zeitschrift fur Naturforsch.Sect. C J. Biosci. 1987;42:73–76. doi: 10.1515/znc-1987-1-212. [DOI] [Google Scholar]
  • 35.Molyneux R.J., Stevens K.L., James L.F. Chemistry of toxic range plants. Volatile constituents of broomweed (Gutierrezia sarothrae) J. Agric. Food Chem. 1980;28:1332–1333. doi: 10.1021/jf60232a044. [DOI] [Google Scholar]
  • 36.Epstein W.W., Seidel J.L. Monoterpenes of Gutierrezia sarothrae. J. Agric. Food Chem. 1989;37:651–654. doi: 10.1021/jf00087a016. [DOI] [Google Scholar]
  • 37.Lucero M.E., Fredrickson E.L., Estell R.E., Morrison A.A., Richman D.B. Volatile composition of Gutierrezia sarothrae (broom snakeweed) as determined by steam distillation and solid phase microextraction. J. Essent. Oil Res. 2006;18:121–125. doi: 10.1080/10412905.2006.9699039. [DOI] [Google Scholar]
  • 38.Poudel A., Satyal P., Swor K., Setzer W.N. Essential oils of two Great Basin composites: Chaenactis douglasii and Dieteria canescens from southwestern Idaho. J. Essent. Oil Plant Compos. 2023;1:275–283. doi: 10.58985/jeopc.2023.v01i03.35. [DOI] [Google Scholar]
  • 39.Cicció J.F., Chaverri C. Essential oil composition of Ambrosia cumanensis (Asteraceae) from Costa Rica. Am. J. Essent. Oils Nat. Prod. 2015;3:15–21. [Google Scholar]
  • 40.Solís-Quispe L., Pino J.A., Marín-Villa J.Z., Tomaylla-Cruz C., Solís-Quispe J., Aragón-Alencastre L.J., Hernández I., Cuellar C., Rodeiro I., Fernández M.D. Chemical composition and antioxidant activity of Ambrosia arborescens Miller leaf essential oil from Peruvian Andes. J. Essent. Oil Res. 2022;34:439–445. doi: 10.1080/10412905.2021.1937354. [DOI] [Google Scholar]
  • 41.Janaćković P., Rajčević N., Gavrilović M., Novaković J., Radulović M., Miletić M., Janakiev T., Dimkić I., Marin P.D. Essential oil composition of Ambrosia artemisiifolia and its antibacterial activity against phytopathogens. Biol. Life Sci. Forum. 2022;15:22. doi: 10.3390/iecd2022-12348. [DOI] [Google Scholar]
  • 42.Han C., Shao H., Zhou S., Mei Y., Cheng Z., Huang L., Lv G. Chemical composition and phytotoxicity of essential oil from invasive plant, Ambrosia artemisiifolia L. Ecotoxicol. Environ. Saf. 2021;211:111879. doi: 10.1016/j.ecoenv.2020.111879. [DOI] [PubMed] [Google Scholar]
  • 43.Matzrafi M., Wolberg S., Abu-Nassar J., Zelinger E., Bar E., Cafri D., Lewinsohn E., Shtein I. Distinctive foliar features and volatile profiles in three Ambrosia species (Asteraceae) Planta. 2023;257:79. doi: 10.1007/s00425-023-04113-3. [DOI] [PubMed] [Google Scholar]
  • 44.Guzmán L., Malla J.L., Ramírez J., Gilardoni G., Calva J., Hidalgo D., Valarezo E., Rey-Valeirón C. Acaricidal efficacy of plants from Ecuador, Ambrosia peruviana (Asteraceae) and Lepechinia mutica (Lamiaceae) against larvae and engorged adult females of the common cattle tick, Rhipicephalus microplus. Vet. Sci. 2022;9:23. doi: 10.3390/vetsci9010023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Sarić-Krsmanović M., Umiljendić J.G., Radivojević L., Rajković M., Šantrić L., Đurović-Pejčev R. Chemical composition of Ambrosia trifida essential oil and phytotoxic effect on other plants. Chem. Biodivers. 2020;17:e1900508. doi: 10.1002/cbdv.201900508. [DOI] [PubMed] [Google Scholar]
  • 46.Holm Y., Laakso I., Hiltunen R., Galambosi B. Variation in the essential oil composition of Artemisia annua L. of different origin cultivated in Finland. Flavour Fragr. J. 1997;12:241–246. doi: 10.1002/(SICI)1099-1026(199707)12:4&#x0003c;241::AID-FFJ641&#x0003e;3.0.CO;2-Z. [DOI] [Google Scholar]
  • 47.Swor K., Satyal P., Poudel A., Setzer W.N. Chemical characterization of three Artemisia tridentata essential oils and multivariate analyses: A preliminary investigation. Nat. Prod. Commun. 2023;18:1934578X231154965. doi: 10.1177/1934578X231154965. [DOI] [Google Scholar]
  • 48.Lo Presti M., Crupi M.L., Zellner B.d., Dugo G., Mondello L., Dugo P., Ragusa S. Characterization of Artemisia arborescens L. (Asteraceae) leaf-derived essential oil from Southern Italy. J. Essent. Oil Res. 2007;19:218–224. doi: 10.1080/10412905.2007.9699265. [DOI] [Google Scholar]
  • 49.Said M.E.A., Militello M., Saia S., Settanni L., Aleo A., Mammina C., Bombarda I., Vanloot P., Roussel C., Dupuy N. Artemisia arborescens essential oil composition, enantiomeric distribution, and antimicrobial activity from different wild populations from the Mediterranean area. Chem. Biodivers. 2016;13:1095–1102. doi: 10.1002/cbdv.201500510. [DOI] [PubMed] [Google Scholar]
  • 50.Said M.E.A., Vanloot P., Bombarda I., Naubron J.V., Dahmane E.M., Aamouche A., Jean M., Vanthuyne N., Dupuy N., Roussel C. Analysis of the major chiral compounds of Artemisia herba-alba essential oils (EOs) using reconstructed vibrational circular dichroism (VCD) spectra: En route to a VCD chiral signature of EOs. Anal. Chim. Acta. 2016;903:121–130. doi: 10.1016/j.aca.2015.11.010. [DOI] [PubMed] [Google Scholar]
  • 51.World Flora Online Gutierrezia sarothrae (Pursh) Britton & Rusby. [(accessed on 13 February 2024)]. Available online: https://www.worldfloraonline.org/taxon/wfo-0000038804.
  • 52.New York Botanical Garden C. V. Starr Virtual Herbarium. [(accessed on 15 August 2023)]. Available online: https://sweetgum.nybg.org/science/vh/specimen-list/?SummaryData=Ambrosia acanthicarpa.
  • 53.New York Botanical Garden C. V. Starr Virtual Herbarium. [(accessed on 30 July 2023)]. Available online: https://sweetgum.nybg.org/science/vh/specimen-list/?SummaryData=Artemisia ludoviciana.
  • 54.New York Botanical Garden C. V. Starr Virtual Herbarium. [(accessed on 15 August 2023)]. Available online: https://sweetgum.nybg.org/science/vh/specimen-list/?SummaryData=Gutierrezia sarothrae.
  • 55.Herbarium B.Y.U. Intermountain Region Herbarium Network. [(accessed on 16 August 2023)]. Available online: https://www.intermountainbiota.org/portal/index.php.
  • 56.Poudel A., Dosoky N.S., Satyal P., Swor K., Setzer W.N. Essential oil composition of Grindelia squarrosa from southern Idaho. Molecules. 2023;28:3854. doi: 10.3390/molecules28093854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.van den Dool H., Kratz P.D. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr. A. 1963;11:463–471. doi: 10.1016/S0021-9673(01)80947-X. [DOI] [PubMed] [Google Scholar]
  • 58.Adams R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry. 4th ed. Allured Publishing; Carol Stream, IL, USA: 2007. [Google Scholar]
  • 59.Mondello L. FFNSC 3. Shimadzu Scientific Instruments; Columbia, MD, USA: 2016. [Google Scholar]
  • 60.NIST20. National Institute of Standards and Technology; Gaithersburg, MD, USA: 2020. [Google Scholar]
  • 61.Satyal P. Ph.D. Thesis. University of Alabama in Huntsville; Huntsville, AL, USA: 2015. Development of GC-MS Database of Essential Oil Components by the Analysis of Natural Essential Oils and Synthetic Compounds and Discovery of Biologically Active Novel Chemotypes in Essential Oils. [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Data Availability Statement

All data are available in the manuscript and Supplementary Materials.


Articles from Molecules are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)

RESOURCES