Skip to main content
Heliyon logoLink to Heliyon
. 2024 Mar 22;10(7):e28272. doi: 10.1016/j.heliyon.2024.e28272

An improved class of estimators for estimation of population distribution functions under stratified random sampling

Sohaib Ahmad a,, Javid Shabbir b, Walid Emam c, Erum Zahid d, Muhammad Aamir a, Mohd Khalid e, Malik Muhammad Anas f
PMCID: PMC10979068  PMID: 38560211

Abstract

The main objective of the current study is to suggest an enhanced family of log ratio-exponential type estimators for population distribution function (DF) using auxiliary information under stratified random sampling. Putting different choices in our suggested generalized class of estimators, we found some Specific estimators. The bias and MSE expressions of the estimators have been approximated up to the first order. By using the actual and simulated data sets, we measured the performance of estimators. Based on the results, the suggested estimators for DF show better performance as compared to the preliminary estimators considered here. The suggested estimators have a advanced efficiency than the other estimators examined with the estimators FˆlogPR(st)2, and FˆlogPR(st)4 for both the actual and simulated data sets. The magnitude of the improvement in efficiency is noteworthy, indicating the superiority of the proposed estimators in terms of MSE.

Keywords: Simulation study, Stratified random sampling, Population DF, Auxiliary variables, Bias, MSE, PRE

1. Introduction

In general, it is broadly recognized that the estimator precision increases when the auxiliary information is employed properly in survey sampling. In the literature, there are numerous estimators for assessing numerous population parameters, comprising mean, variance and total. A widespread variety of techniques for comprising the supporting information using ratio, product, and regression type methods of estimate are covered in the literature on survey sampling. Several estimators have been recommended by numerous researchers by suitably modifying the auxiliary variable. Some notable work by these authors under stratified random sampling includes [17] discussed improved estimator under simple random sampling and stratified random sampling [18]. recommended a general class of estimators under stratified random sampling [19,20]. discussed estimation of finite population mean under Stratified Random Sampling. The authors in Refs. [[21], [22], [23], [24]] suggested improved estimators under stratified sampling schemes. The authors in Refs. [[25], [26], [27], [28]] recommended some novel estimators for estimation of population parameters under stratified random sampling.

Stratification is used to increase the efficiency of estimators. Stratified planning divides the entire population into smaller, more manageable subsets, or "strata." This classification was made based on relevant characteristics or factors. The basic objective of stratification is to achieve internal uniformity. When a population is divided into subgroups with comparable values, there is less room for variation within each stratum. The estimations are more reliable because of the independent sampling within each strata. Simple random sampling is typically used for selecting samples within each stratum. As a result, each individual or unit in a given stratum can be regarded of as a microcosm of that stratum's total population. In order to more effectively capture the variance present within the subgroups of a population, researchers conducting surveys can increase the precision of their estimates by applying stratification and selecting samples using simple random sampling within each stratum. Sometimes we want to examine the proportion or percentage of a population that exhibits a specific attribute or falls within a particular range, we essential to evaluate the population DF. When applied to a finite population, the finite population DF can be used to learn the likelihood of each value. This function is what connects the population values with the associated probabilities. The DF is implemented in the computation of total, coefficient of variation, and standard deviation in populations. Statistical inference techniques are commonly used in survey sampling to extrapolate results from a subset of the population to the entire population, yielding an estimate of the DF for the entire population. Specific estimators that are good choices for the proposed enhanced class of estimators have been found. Factors comprising sample size, sampling technique, and population fluctuation all affect how well the finite population DF works. Greater precision can be achieved by using a larger sample size and a random sampling technique. In conclusion, when we need to estimate population characteristics like the proportion or percentage of the population possessing a given trait, estimation of finite population DF is an essential part of survey sampling. Some notable work in the DF field comprises: The authors in Ref. [1] recommended estimation population distribution function using auxiliary information. The authors in Refs. [[2], [3], [4], [5], [6], [7]] discussed improved estimators for population DF under different sampling schemes. The [[8], [9], [10]] suggested efficient estimators for population DF using ranked set sampling [[11], [12], [13], [14]]. recommend some new estimators for population DF utilizing auxiliary information [[29], [30], [31]]. also discussed improved class of estimators for population DF under stratified random sampling. The authors in Refs. [[32], [33], [34], [35], [36]] discuss enhanced estimator using auxiliary variable and attribute under stratified random sampling.

The organization of the article is given by:

Introduction of the article is discussed in Section 1. Notations and methods are discussed in Section 2. In Section 3, we discussed some well-known existing estimators. The proposed class f estimators are given in Section 4. Data description using actual data sets are given in Section 5. The simulation analysis is assumed in Section 6. Discussion of the article is given in Section 7. Finally the conclusion of the article is given in section 8.

2. Methods and materials

Consider Ω =(1,2,,ΩN) consist of N distinctive elements, which is alienated into L similar strata, where the size of hth stratum is Nh for h = 1,2, …,L, such that h=LN. Let Y and X be the values of the study variable and the auxiliary variable which takes values yi and xi, where i = 1,2, …, ΩN. A sample of size h=1Lnh = n, is chosen from the hth stratum using simple random sampling without replacement (SRSWOR).

Let [Fst(y)=Fy=h=1LWhFh(y)andFst(x)=Fx=h=1LWhFh(x),Fˆst(y)=Fˆy=h=1LWhFˆh(y)andFˆst(x)=Fˆx=h=1LWhFˆh(x)] be the DF of the study variable Y and the auxiliary variabe X, where Wh=Nh/N,

[Fh(y)=i=1NhI(YihY)/Nh,Fˆh(y)=i=1nhI(YihY)/nh,Fh(x)=i=1NhI(XihX)/Nh,Fˆh(x)=i=1nhI(XihX)/nh]

Let, e0=FˆyFyFy , e1=FˆxFxFx a, such that

E(ei)=0 for i=1,2

Let φrs=E[e1re2s], where r,s=1,2. Here,

E(e02)=h=1LWh2λh2CFyh2=φ20,E(e12)=h=1LWh2λh2CFxh2=φ02,
E(e0e1)=h=1LWh2λh2ρ(FyFx)hCFyhCFxh=φ11,
LetρFyh2=i=1Nh(I(YiY)Fy)2/(N1),
ρFxh2=i=1Nh(I(XiX)Fx)2/(N1),
ρ(FyFx)h=σ(FyFx)h/(σFyhσFxh),CFy=ρFyhFy,CFx=ρFxhFx,

where λh=(1/nh1/Nh).

3. Review of existing estimators

In this section, we have discussed some exisiting estimators for population DF under stratified random sampling:

1. The conventional estimator of Fˆu, is given in equation (1):

Fˆ1=1ni=1nI(YiY). (1)

The variance of Fˆ1, is given in equation (2):

Var(Fˆ1)=Fy2φ20. (2)

2. The usual ratio estimator is given in equation (3):

Fˆ2=Fˆst(y)(FxFˆst(x)) (3)

The bias of Fˆ2, is given by:

Bias(Fˆ2)Fy(φ02φ11),

The MSE of Fˆ2, is given in equation (4):

MSE(Fˆ2)Fy2(φ20+φ022φ11). (4)

5. The regression type estimator of Fˆ3 is given in equation (5):

Fˆ3=[Fˆst(y)+w(FxFˆst(x))], (5)

where w is constant.

w(opt)=(Fyφ11)/(Fxφ02)

The variance of Fˆ3 at the optimum value is given in equation (6):

Varmin(Fˆ3)=Fy2(φ20φ02φ112)φ02 (6)

Equation (6) is also inscribed, a simplified form given in equation (7):

Varmin(Fˆ3)=Fy2φ20(1ρ(FyFx)h2). (7)

4. The exponential ratio and produc ttype estimators are given in equation (8) and in equation (9):

Fˆ4=Fˆst(y)exp(FxFˆst(x)Fˆst(x)+Fx), (8)
Fˆ5=Fˆst(y)exp(Fˆst(x)FxFˆst(x)+Fx). (9)

The bias of Fˆ4, is given by:

Bias(Fˆ4)Fy(38φ0212φ11),

The MSE of Fˆ4, is given in equation (10):

MSE(Fˆ4)Fy24(4φ20+φ024φ11) (10)

The bias of Fˆ5, is given by:

Bias(Fˆ5)Fy(12φ1118φ02),

The MSE of Fˆ5, is given in equation (11):

MSE(Fˆ5)Fy24(4φ20+φ02+4φ11), (11)

4. Proposed estimator

The main purpose of survey researchers is to increase the efficiency of an estimator. The utilization of auxiliary information can boost estimator efficiency either at the design or at the estimation stage. In this article, we develop the enhanced estimator using the DF of Y and X. The developed estimator is the combination of regression cum log exponential type estimator. The logarithmic function is indeed a fundamental mathematical concept that appears in many areas of science and non-science including mathematics, economics, and engineering among others. We suggested a new class of estimators for population DF under stratified sampling design, which is given in equation (12):

FˆlogPR(st)G=(K3Fˆst(y)+K4(FxFˆst(x)))[1+log(FxFˆst(x))]α1(st)[exp(FxFˆst(x)Fx+Fˆst(x))]α2(st), (12)

where K3 and K4 are constants.

FˆlogPR(st)G=[K3Fy(1+e0)K4Fxe1][1α1(st)e1α2e12][1α2(st)e12+α2(st)(α2(st)+2)8e12]

Simplify the above equation we got equation (13):

FˆlogPR(st)GFˆy=(K31)Fy+K3Fy[e0δ1(st)e1δ1(st)e0e1+δ2(st)e12]K4Fx[e1δ1(st)e12] (13)

where δ1(st) = α1(st) + α2(st)2, and

δ2(st)=12[α1(st)α2(st)+α1(st)2+α2(st)(α2(st)+2)].
Bias(FˆlogPR(st)G)=Fy[(K31)+K3λ{δ2(st)CFx2δ1(st)ρFyFxCFyCFx}+K4Rδ1(st)CFx2],

where R = FyFx.

Squaring equation (13) and then taking expectations, we get

MSE(FˆlogPR(st)G)=Fy2E[(K31)+K3{e0δ1(st)e1δ1(st)e0e1+δ2(st)e12}+K4{e1δ1(st)e12}]2

Applying the values we got equation (14):

MSE(FˆlogPR(st)G)=Fy2[1+K32A+K42B2K3C2K4D+2K3K4E], (14)

where

A=1+λ{CFy2+(δ1(st)2+2δ2(st))CFx24δ1(st)ρFyFxCFyCFx},
B=R2λCFx2,
C=1+λ{δ2(st)CFx2δ1(st)ρFyFxCFyCFx},
D=Rδ1(st)λCFx2,
E=Rλ(2δ1(st)CFx2ρFyFxCFyCFx)

The ideal values of K3 and K4 are

K3(opt)=BCDEABE2,K3(opt)=ADCEABE2,

Putting the values of K3(opt) and K4(opt) in equation (13), we got equation (15):

MSE(FˆlogPR(st)G)min=Fy2[1AD2+BC22CDEABE2] (15)

Some Special Cases.

Case 1

When α1(st) = 1, α2(st) = 1, δ1(st) = 1, δ2(st) = 12, we get

MSE(FˆlogPR(st)1)=[K3Fˆst(y)+K4(FxFˆst(x))][1+log(FxFˆst(y))]

Case 2

When α1(st) = 0, α2(st) = 1, δ1(st) = 12, δ2(st) = 32, we get

MSE(FˆlogPR(st)2)=[K3Fˆst(y)+K4(FxFˆst(x))][exp(FxFˆst(x)Fx+Fˆst(x))]

Case 3

When α1(st) = 1, α2(st) = 1, δ1(st) = 32, δ2(st) = 52, we get

MSE(FˆlogPR(st)3)=[K3Fˆst(y)+K4(FxFˆst(x))][1+log(FxFˆst(y))][exp(FxFˆst(x)Fx+Fˆst(x))]

Case 4

When α1(st) =  1, α2(st) = 1, δ1(st) = 12, δ2(st) = 32, we get

MSE(FˆlogPR(st)4)=[K3Fˆst(y)+K4(FxFˆst(x))][1+log(FxFˆst(y))]1[exp(FxFˆst(x)Fx+Fˆst(x))]

Case 5

When α1(st) = 1, α2(st) =  1, δ1(st) = 12, δ2(st) = 12, we get

MSE(FˆlogPR(st)5)=[K3Fˆst(y)+K4(FxFˆst(x))][1+log(FxFˆst(y))][exp(Fˆst(x)FxFˆst(x)+Fx)]

Case 6

When α1(st) =  1, α2(st) = 0, δ1(st) =  1, δ2(st) = 12, we get

MSE(FˆlogPR(st)6)=[K3Fˆst(y)+K4(FxFˆst(x))][1+log(FxFˆst(y))]1

Case 7

When α1(st) = 0, α2(st) =  1, δ1(st) = 12, δ2(st) = 12, we get

MSE(FˆlogPR(st)7)=[K3Fˆst(y)+K4(FxFˆst(x))][exp(Fˆst(x)FxFˆst(x)+Fx)]

Case 8

When α1(st) =  1, α2(st) =  1, δ1(st) = 12, δ2(st) = 12, we get

MSE(FˆlogPR(st)8)=[K3Fˆst(y)+K4(FxFˆst(x))][1+log(FxFˆst(y))]2[exp(Fˆst(x)FxFˆst(x)+Fx)]

5. Data description and numerical results

Three actual data are used to empirically measure the suggested generalized class of estimators which is compared to the preliminary estimators. To check the performances of estimators in terms of PRE we use the following relation, which is given by:

PRE(.)=Var(Fˆ1)MSE(Fˆi(st)(min))×100,

where i = (Fˆ1, Fˆ2,Fˆ3,Fˆ4,Fˆ5FˆlogPR(st)1, FˆlogPR(st)2, FˆlogPR(st)3, FˆlogPR(st)4, FˆlogPR(st)5, FˆlogPR(st)6, FˆlogPR(st)7, FˆlogPR(st)8).

Population-I [Source: [15]]:

Y: The number of teachers.

X: the number of pupils attending primary and intermediate schools.

Population-II [Source: [15] ]:

Y: The number of teachers,

X: the number of students enrolled in basic and secondary education in 923 districts throughout six regions in 2007.

Population-III [Source: [16]]:

Y: The yield of apples in 1999,

X: the number of apples timber in 1999.

6. Simulation study

Three populations, each with 1000 observations, were generated from a multivariate normal distribution. Population-I, exhibits negative correlation. Population-II, exhibits positive association. Population-III, is highly positive correlation.

Population-I:

μ=

and

=[49.09.064]

N1=500andN2=500,ρXY=0.590220

Population-II:

μ=

and

=[49.59.563]

N1 = 500 and N2 = 500, ρXY = 0.612254.

Population-III:

μ=[55]

and

=[24610]

N1 = 500 and N2 = 500, ρXY = 0.902645.

7. Discussion

We evaluated the effectiveness of our suggested novel improved class of estimators using simulation and three real populations. We also took into account various population sample sizes. Table 1, Table 2, Table 3 contain descriptions of actual data sets. Table 4 and Table 5 provide the numerical outcomes of MSE and PRE developed on actual data sets. It is also emphasized that the suggested estimators are more effective than the existing estimators based on the numerical illustration. It has been noted that the proposed estimator outperforms its previous counterparts in terms of less MSE and higher PRE. Table 6 and Table 7 provide the MSE and PRE results based on simulation. We visualize actual population 1–3 for the result of mean square error and PRE in Fig. 1, Fig. 2. Similarly, the simulated population is also presented visually on Fig. 3, Fig. 4. As the sample size increases, the suggested estimators are closely to the true value. This property is known as consistency, which means that as the sample size grows, the estimated values become more accurate and coverage to the true value of the population parameters being estimated. Consistency is a desirable property for estimators because it indicates that as more data is collected, the estimators improve and provide more reliable results. It suggests that the proposed estimators are effective in estimating the finite population DF accurately.

Table 1.

Description using Population-I.

Nh nh Wh λh
127 31 0.1375 0.0244
117 21 0.1267 0.0390
103 29 0.1115 0.0248
170 38 0.1841 0.0204
205 22 0.2221 0.0406
201 39 0.2177 0.0207
Fyh Syh Fxh Sxh
0.3543 0.4802 0.3779 0.4868
0.4188 0.4955 0.4872 0.5019
0.4272 0.4970 0.4660 0.5013
0.5765 0.4956 0.6118 0.4888
0.6146 0.4879 0.6537 0.4769
0.5025 0.5012 0.3532 0.4792

Table 2.

Description using population-II.

Nh nh Wh λh
127 31 0.1375 0.0244
117 21 0.1267 0.0391
103 29 0.1115 0.0248
170 38 0.1841 0.0204
205 22 0.2221 0.0406
201 39 0.2177 0.0207
Fyh Syh Fxh Sxh
0.3543 0.4802 0.3700 0.4847
0.4188 0.4955 0.4700 0.5013
0.4272 0.4970 0.4272 0.4970
0.5765 0.4956 0.5882 0.4936
0.6146 0.4879 0.6146 0.4879
0.5025 0.5012 0.4527 0.4990

Table 3.

Description using population-III.

Nh nh Wh λh Yh
106 9 0.1241 0.1017 1536.774
106 17 0.1241 0.0494 2212.594
94 38 0.1100 0.0157 9384.309
171 67 0.2002 0.0090 5588.012
204 7 0.2389 0.1379 966.955
173 2 0.2026 0.4942 404.398
Syh2 Cyh2 Xh Sxh2 Cxh2
41281746 17.479 24711.81 2414224935 3.95
133437791 27.256 26840.04 2913701588 4.04
894457433 10.156 72723.76 25956279019 4.90
820445636 26.274 73191.2 68903936687 12.86
5710999 6.107 26833.75 2040714047 2.83
894440.3 5.469 9903.30 360137210 3.67

Table 4.

MSE using actual Populations.

Estimators Populations
I II III
Fˆ1 0.0009240016 0.0009240016 0.00519513
Fˆ2 0.0001780699 0.000221005 0.002569816
Fˆ3 0.0001690221 0.0002206926 0.002565836
Fˆ4 0.0003187042 0.0003891876 0.003275305
Fˆ5 0.001993962 0.0018255447 0.008329292
FˆlogPR(st)1 0.0001673105 0.0002202792 0.002364296
FˆlogPR(st)2 0.0001368365 0.0001970156 0.0009471063
FˆlogPR(st)3 0.0001658819 0.0002175351 0.001524696
FˆlogPR(st)4 0.0001368365 0.0001970156 0.009471063
FˆlogPR(st)5 0.0001635881 0.0002185955 0.002508543
FˆlogPR(st)6 0.0001673105 0.0002202792 0.002364296
FˆlogPR(st)7 0.0001635881 0.0002185955 0.002508543
FˆlogPR(st)8 0.0001635881 0.0002185955 0.002508543

Table 5.

PRE using actual Populations.

Estimators Populations
I II III
Fˆ1 100 100 100
Fˆ2 518.8982 418.0909 202.1596
Fˆ3 546.675 418.6825 202.4732
Fˆ4 289.9245 237.418 158.6152
Fˆ5 46.33998 50.61783 62.37181
FˆlogPR(st)1 552.2675 419.4684 219.7327
FˆlogPR(st)2 675.2595 468.9992 548.52266
FˆlogPR(st)3 557.0236 424.7597 340.7321
FˆlogPR(st)4 675.2595 468.9992 548.5266
FˆlogPR(st)5 564.8343 422.6993 207.0975
FˆlogPR(st)6 552.2675 419.4684 219.7327
FˆlogPR(st)7 564.8343 422.6993 207.0975
FˆlogPR(st)8 564.8343 422.6993 207.0975

Table 6.

Mean squared error using simulation analysis.

Estimators Populations
I II III
Fˆ1 0.001001643 0.001000641 0.001001323
Fˆ2 0.0028426528 0.0011419570 0.0005401607
Fˆ3 0.0008131456 0.0008314480 0.0004650720
Fˆ4 0.0016769029 0.0008367699 0.0005175744
Fˆ5 0.0008168738 0.0016335711 0.0019914054
FˆlogPR(st)1 0.0008127221 0.0008308942 0.0004650653
FˆlogPR(st)2 0.0007965114 0.0008147885 0.0004534033
FˆlogPR(st)3 0.0008085939 0.0008266602 0.0004630307
FˆlogPR(st)4 0.0007965114 0.0008147885 0.0004534033
FˆlogPR(st)5 0.0008131212 0.0008313792 0.0004647290
FˆlogPR(st)6 0.0008127221 0.0008308942 0.0004650653
FˆlogPR(st)7 0.0008131212 0.0008313792 0.0004647290
FˆlogPR(st)8 0.0008131212 0.0008313792 0.0004647290

Table 7.

Percentage relative efficiency using simulation study.

Estimators
Populations

I II III
Fˆ1 100 100 100
Fˆ2 35.23622 87.62513 185.37494
Fˆ3 123.1813 120.3492 215.3049
Fˆ4 59.73174 119.58380 193.46447
Fˆ5 122.61910 61.25483 50.28221
FˆlogPR(st)1 123.2455 120.4295 215.3080
FˆlogPR(st)2 125.7538 122.8099 220.8459
FˆlogPR(st)3 123.8747 121.0463 216.2541
FˆlogPR(st)4 125.7538 122.8099 220.8459
FˆlogPR(st)5 123.1850 120.3592 215.4638
FˆlogPR(st)6 123.2455 120.4295 215.3080
FˆlogPR(st)7 123.1850 120.3592 215.4638
FˆlogPR(st)8 123.1850 120.3592 215.4638

Fig. 1.

Fig. 1

Show the mean square error using population 1-3.

Fig. 2.

Fig. 2

Show percentage relative efficiency using populations 1-3.

Fig. 3.

Fig. 3

MSE using simulated populations 1–3.

Fig. 4.

Fig. 4

PRE using simulated Population 1-3.

8. Conclusion

In this article, we propose an improved generalized class of estimators. These estimators are developed by combining regression type, log ratio and exponential ratio type estimators. We utilize transformation of population DF under stratified random sampling to construct these estimators. These expressions allow for a quantitative evaluation of the performance of the estimator. To validate the effectiveness of the proposed estimators, we conduct numerical investigations using actual data sets. We also perform a simulation analysis on an artificially created population. The simulation outcomes are accessible in Table 6, Table 7, which validate the dominance of the suggested improved class of estimators equated to usual estimators. Furthermore, the authors identify 8 sub-classes within the recommended class of estimators. These sub-classes are formed by employing various combinations of the proposed estimators, potentially offering different estimation approaches for different estimation approaches for different scenarios. Overall, the article introduces a novel approach to estimation by combining different types of estimators and provides empirical evidence supporting the helpfulness of the recommended generalized class of estimators. Based on the actual data and a simulation study the proposed subclass i.e. TlogPR5, TlogPR7 and TlogPR8 provide similar results. The gain in efficiency of TlogPR2 and TlogPR4 are the best among all the entire suggested sub class of estimators. Based on the numerical results, we can see that the suggested sub-classes of improved estimators are outperforming as compared to existing counterparts. Therefore, the suggested improved class of estimators is preferable in further study.

Data availability

Data will be made available on request.

CRediT authorship contribution statement

Sohaib Ahmad: Writing – original draft, Visualization, Validation, Software, Data curation, Conceptualization. Javid Shabbir: Supervision. Walid Emam: Investigation, Funding acquisition. Erum Zahid: Software. Muhammad Aamir: Visualization, Supervision. Mohd Khalid: Methodology. Malik Muhammad Anas: Formal analysis.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationship that could have appeared to influence the work reported in this paper.

Acknowledgements

The study was funded by Researchers Supporting Project number (RSPD2024R749), King Saud University, Riyadh, Saudi Arabia.

Contributor Information

Sohaib Ahmad, Email: sohaib_ahmad@awkum.edu.pk.

Javid Shabbir, Email: javidshabbir@gmail.com.

Walid Emam, Email: wemam.c@ksu.edu.pk.

Erum Zahid, Email: erumzahid22@gmail.com.

Muhammad Aamir, Email: aamirkhan@awkum.edu.pk.

Mohd Khalid, Email: mohdkhalid4870@gmail.com.

Malik Muhammad Anas, Email: anas.uaar@gmail.com.

References

  • 1.Ahmed M.S., Abu-Dayyeh W. Estimation of finite-population distribution function using multivariate auxiliary information. Statistics in Transition. 2001;5(3):501–507. [Google Scholar]
  • 2.Chambers R.L., Dunstan R. Estimating distribution functions from survey data. Biometrika. 1986;73(3):597–604. [Google Scholar]
  • 3.Chambers R.L., Dorfman A.H., Hall P. Properties of estimators of the finite population distribution function. Biometrika. 1992;79(3):577–582. [Google Scholar]
  • 4.Dorfman A.H. A comparison of design‐based and model‐based estimators of the finite population distribution function. Aust. J. Stat. 1993;35(1):29–41. [Google Scholar]
  • 5.Singh H.P., Singh S., Kozak M. A family of estimators of finite-population distribution function using auxiliary information. Acta applicandae mathematicae. 2008;104(2):115–130. [Google Scholar]
  • 6.Ahmad S., Hussain S., Zahid E., Iftikhar A., Hussain S., Shabbir J., Aamir M. A simulation study: population distribution function estimation using dual auxiliary information under stratified sampling scheme. Math. Probl Eng. 2022;2022 [Google Scholar]
  • 7.Iftikhar A., Hongbo S., Hussain S., Khan S., Alnssyan B., Shabbir J.…Aamir M. A new exponential factor-type estimator for population distribution function using dual auxiliary variables under stratified random sampling. Math. Probl Eng. 2022;2022 [Google Scholar]
  • 8.Zamanzade E., Mahdizadeh M., Samawi H.M. Efficient estimation of cumulative distribution function using moving extreme ranked set sampling with application to reliability. AStA Advances in Statistical Analysis. 2020;104(3):485–502. [Google Scholar]
  • 9.Zamanzade E., Mahdizadeh M. Distribution function estimation using concomitant-based ranked set sampling. Hacettepe Journal of Mathematics and Statistics. 2018;47(3):755–761. [Google Scholar]
  • 10.Mahdizadeh M., Zamanzade E. Estimation of a symmetric distribution function in multistage ranked set sampling. Stat. Pap. 2020;61(2):851–867. [Google Scholar]
  • 11.Ahmad S., Ullah K., Zahid E., Shabbir J., Aamir M., Alshanbari H.M., El-Bagoury A.A.A.H. A new improved generalized class of estimators for population distribution function using auxiliary variable under simple random sampling. Sci. Rep. 2023;13(1):5415. doi: 10.1038/s41598-023-30150-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Yaqub M., Shabbir J. Estimation of population distribution function involving measurement error in the presence of non-response. Commun. Stat. Theor. Methods. 2020;49(10):2540–2559. [Google Scholar]
  • 13.Yaqub M., Sohil F., Shabbir J., Sohail M.U. Estimation of population distribution function in the presence of non-response using stratified random sampling. Commun. Stat. Simulat. Comput. 2022:1–29. [Google Scholar]
  • 14.Hussain S., Ahmad S., Saleem M., Akhtar S. Finite population distribution function estimation with dual use of auxiliary information under simple and stratified random sampling. PLoS One. 2020;15(9) doi: 10.1371/journal.pone.0239098. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Koyuncu N., Kadilar C. Ratio and product estimators in stratified random sampling. J. Stat. Plann. Inference. 2009;139(8):2552–2558. [Google Scholar]
  • 16.Kadilar C., Cingi H. Ratio estimators in stratified random sampling. Biom. J. 2003;45(2):218–225. [Google Scholar]
  • 17.Aladag S., Cingi H. Improvement in estimating the population median in simple random sampling and stratified random sampling using auxiliary information. Commun. Stat. Theor. Methods. 2015;44(5):1013–1032. [Google Scholar]
  • 18.Singh G.N., Bhattacharyya D., Bandyopadhyay A. A general class of calibration estimators under stratified random sampling in presence of various kinds of non-sampling errors. Commun. Stat. Simulat. Comput. 2023;52(2):320–333. [Google Scholar]
  • 19.Ullah K., Hussain Z., Hussain I., Cheema S.A., Almaspoor Z., El-Morshedy M. Mathematical Problems in Engineering; 2022. Estimation of Finite Population Mean in Simple and Stratified Random Sampling by Utilizing the Auxiliary, Ranks, and Square of the Auxiliary Information. 2022. [Google Scholar]
  • 20.Ahmad S., Hussain S., Shabbir J., Zahid E., Aamir M., Onyango R. Mathematical Problems in Engineering; 2022. Improved Estimation of Finite Population Variance Using Dual Supplementary Information under Stratified Random Sampling. 2022. [Google Scholar]
  • 21.Tailor R., Chouhan S. Ratio-cum-product type exponential estimator of finite population mean in stratified random sampling. Commun. Stat. Theor. Methods. 2014;43(2):343–354. [Google Scholar]
  • 22.Muili J.O., Singh R.V.K., Onwuka G.I., Audu A. New calibration of finite population mean of combined ratio estimators in stratified random sampling. Fudma Journal of Sciences. 2022;6(4):37–44. [Google Scholar]
  • 23.Kadilar C., Cingi H. A new ratio estimator in stratified random sampling. Commun. Stat. Theor. Methods. 2005;34(3):597–602. [Google Scholar]
  • 24.Mishra M., Singh S., Khare B.B. Separate ratio estimator using calibration approach for the population mean in stratified random sampling. Asian Journal of Probability and Statistics. 2022;20(3):64–73. [Google Scholar]
  • 25.Lone H.A., Tailor R., Singh H.P. Generalized ratio-cum-product type exponential estimator in stratified random sampling. Commun. Stat. Theor. Methods. 2016;45(11):3302–3309. [Google Scholar]
  • 26.Lone H.A., Tailor R., Verma M.R. Efficient separate class of estimators of population mean in stratified random sampling. Commun. Stat. Theor. Methods. 2017;46(2):554–573. [Google Scholar]
  • 27.Kumar S., Trehan M., Joorel J.S. A simulation study: estimation of population mean using two auxiliary variables in stratified random sampling. J. Stat. Comput. Simulat. 2018;88(18):3694–3707. [Google Scholar]
  • 28.Shahzad U., Hanif M., Koyuncu N. A new estimator for mean under stratified random sampling. Mathematical Sciences. 2018;12:163–169. [Google Scholar]
  • 29.Hussain S., Ahmad S., Akhtar S., Javed A., Yasmeen U. Estimation of finite population distribution function with dual use of auxiliary information under non-response. PLoS One. 2020;15(12) doi: 10.1371/journal.pone.0243584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Ahmad S., Hussain S., Al Mutairi A., Kamal M., Rehman M.U., Mustafa M.S. Improved estimation of population distribution function using twofold auxiliary information under simple random sampling. Heliyon. 2024;10(2) doi: 10.1016/j.heliyon.2024.e24115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Gu L., Wang S., Yang L. Simultaneous confidence bands for the distribution function of a finite population in stratified sampling. Ann. Inst. Stat. Math. 2019;71(4):983–1005. [Google Scholar]
  • 32.Zaman T., Kadilar C. On estimating the population mean using auxiliary character in stratified random sampling. J. Stat. Manag. Syst. 2020;23(8):1415–1426. [Google Scholar]
  • 33.Zaman T. Efficient estimators of population mean using auxiliary attribute in stratified random sampling. Adv. Appl. Stat. 2019;56(2):153–171. [Google Scholar]
  • 34.Zaman T. An efficient exponential estimator of the mean under stratified random sampling. Math. Popul. Stud. 2021;28(2):104–121. [Google Scholar]
  • 35.Bhushan S., Kumar A., Lone S.A., Anwar S., Gunaime N.M. An efficient class of estimators in stratified random sampling with an application to real data. Axioms. 2023;12(6):576. [Google Scholar]
  • 36.Bhushan S., Kumar A., Singh S. Some efficient classes of estimators under stratified sampling. Commun. Stat. Theor. Methods. 2023;52(6):1767–1796. [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

Data will be made available on request.


Articles from Heliyon are provided here courtesy of Elsevier

RESOURCES