Skip to main content
IUCrData logoLink to IUCrData
. 2024 Mar 6;9(Pt 3):x240189. doi: 10.1107/S2414314624001895

erythro-{1-Bromo-1-[(1-phenyl­eth­yl)sulfon­yl]eth­yl}benzene

Peter W R Corfield a,*
Editor: M Weilb
PMCID: PMC10993556  PMID: 38586521

Structural analysis of the title diasteromeric sulfone determines this to be the erythro (RR/SS) isomer, and was pivotal in showing that the 1,3-elimination reactions of these compounds, which lead to substituted stilbenes, occur with inversion at each asymmetric carbon atom.

Keywords: crystal structure; sulfone; diasteromer; 1,3-elimination; C—H⋯O and C—H⋯Br hydrogen bonding

Abstract

The title compound, C16H17BrO2S, crystallizes as the erythro (RR/SS) isomer of a pair of sulfones that were diastereomeric due to chirality of the α-carbon atoms on the sulfone sulfur atom. The structural analysis was pivotal in showing that the 1,3 elimination reactions of these compounds, which lead to substituted stilbenes, occur with inversion at each asymmetric carbon atom. In the crystal, C—H⋯Br and C—H⋯O hydrogen bonds link the mol­ecules into a tri-periodic inter­molecular network. graphic file with name x-09-x240189-scheme1-3D1.jpg

Structure description

In an earlier paper (Bordwell et al., 1970), we described how two mono­bromo sulfone diastereomers with melting points of 349 and 385 K had been prepared. The final products from a Ramberg–Bäcklung reaction on these compounds were primarily cis-α,α’-di­methyl­stilbene for the higher melting stereoisomer, and trans-α,α’-di­methyl­stilbene for the lower melting isomer. The crystal-structure determination of the title compound, which is the higher melting isomer, enabled the determination that the reactions involved inversion at each of the asymmetric α-C atoms, but no crystallographic details were given in the above paper. Continuing inter­est in the stereochemistry of such reactions (Düfert, 2023; Paquette, 2001) prompted this publication to give details of the structure analysis of the title compound, C16H17BrO2S.

The structure of the mol­ecule, with displacement ellipsoids, is shown in Fig. 1, where it is evident that the stereochemistries of the two α-C atoms to the sulfone group are RR. As the sample was present as a racemic mixture, there are equal numbers of mol­ecules in the crystal with the SS configuration – these configurations are referred to as erythro in the 1970 publication (Bordwell et al., 1970). While the phenyl group C11–C16 is trans to the S1—C1 bond in the mol­ecule, phenyl group C5–C10 is gauche to the S1—C2 bond, with the Br1 atom taking the trans position. The planes of the two phenyl groups are inclined at 49.4 (2)° with one another.

Figure 1.

Figure 1

View of the title mol­ecule showing the atomic numbering and displacement ellipsoids at the 50% probability level.

The S=O distances of 1.426 (3) and 1.436 (4) Å are close to the mean of 1.437 Å found for 1142 sulfones with tetra­hedral α-C atoms in the Cambridge Structural Database (CSD; Groom et al., 2016). The C1—Br1 bond length in the present structure is 1.976 (5) Å, close to the mean of 1.950 (2) Å found for 11000 aliphatic C—Br bond lengths in the database. The only other sulfone in the database with a phenyl group on each α-C atom and a bromine atom on at least one of the α-C atoms is entry WAVWOJ (Corfield, 2022). That analysis resulted from a similar collaboration with the Bordwell laboratory.

Table 1 lists four C—H⋯O and C—H⋯Br hydrogen bonds, chosen for contacts with C⋯O and C⋯Br distances close to the sum of the van der Waals radii and with C—H⋯O and C—H⋯Br angles of 140° or larger. These hydrogen bonds are shown in Fig. 2. The C—H⋯Br and C—H⋯O1 hydrogen bonds link the mol­ecules into sheets parallel to the ab plane, while the C—H⋯O2 hydrogen bonds complete the tri-periodic inter­molecular network via hydrogen bonds to mol­ecules related by a screw axis.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O1i 0.93 2.67 3.468 (4) 145
C8—H8⋯O2ii 0.93 2.67 3.483 (4) 147
C12—H12⋯Br1iii 0.93 3.01 3.795 (3) 143
C14—H14⋯Br1iv 0.93 3.19 3.967 (3) 143

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic ; (iv) Inline graphic .

Figure 2.

Figure 2

Projection of the crystal structure down the b axis. Atom colors: Br green, S yellow, O red, C,H black. C—H⋯Br and C—H⋯O hydrogen bonds are shown in green and red, respectively. The reference mol­ecule is bolded, with O1 and O2 labeled.

Analysis of the Hirshfeld surface of the mol­ecule carried out with CrystalExplorer (Spackman et al., 2021) confirmed that the hydrogen bonds are the most significant inter­molecular contacts. The d norm surface shown in Fig. 3 is colored blue for points where closest contacts are greater than the sum of the relevant van der Waals radii, while the red areas correspond to contacts closer than that sum. In the view shown, there are red areas corresponding to inter­molecular contacts for all of the four C—H donors and for two of the acceptors. There are also C⋯H contacts of 3.4–3.5 Å between phenyl rings C5–C10 related by the screw axes, which may be reflected in the red area at the lower right of Fig. 3. There are, however, no C⋯C contacts less than 4.0 Å between these screw-related phenyl rings.

Figure 3.

Figure 3

Hirshfeld d norm surface for the title compound.

Synthesis and crystallization

The diastereomer was obtained by bromination of dl-bis-α-methyl­benzyl sulfone with N-bromo­succinimide. Details of similar syntheses by the Bordwell group are given in Carpino et al. (1971).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The data were collected in 1969 with a linear diffractometer unit. The (4 5 6) reflection was omitted due to a clear typewriter error in the data listing. Frequent system errors were common at that time, so that data collection could take much more time than is usual with today’s equipment. This is why the data do not reach the resolution expected in today’s work and why almost no symmetry equivalents were collected. No absorption corrections were made when the data was first processed, but the use of XABS2 (Parkin et al., 1995) in our current final refinements led to a smoother final difference map and somewhat lower reliability factors. XABS2 rescales the observed data, using a tensor analysis. In Table 2, the minimum and maximum XABS2 corrections of 0.84 and 1.12 for the transmission coefficients have been multiplied by exp (–μr), with μ = 4.754 mm−1 and r = 0.23 mm.

Table 2. Experimental details.

Crystal data
Chemical formula C16H17BrO2S
M r 353.26
Crystal system, space group Monoclinic, P21/c
Temperature (K) 295
a, b, c (Å) 9.1051 (13), 10.665 (2), 16.688 (3)
β (°) 102.16 (2)
V3) 1584.1 (5)
Z 4
Radiation type Cu Kα
μ (mm−1) 4.75
Crystal size (mm) 0.50 × 0.13 × 0.05
 
Data collection
Diffractometer Picker 4-circle diffractometer
Absorption correction Empirical (using intensity measurements); four-dimensional tensor analysis (Parkin et al., 1995)
T min, T max 0.28, 0.38
No. of measured, independent and observed [I > 2σ(I)] reflections 1821, 1678, 1373
R int 0.012
θmax (°) 50.8
(sin θ/λ)max−1) 0.503
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.038, 0.103, 1.03
No. of reflections 1678
No. of parameters 159
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.40, −0.32

Data reduction followed procedures in Corfield et al. (1973) with p = 0.06. Computer programs: Local Programs (Corfield & Gainsford, 1972), SHELXL (Sheldrick, 2015), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 2012), and publCIF (Westrip, 2010).

The phenyl groups were refined as rigid hexa­gons, in order to reduce the number of parameters varied. C—C distances of 1.38 Å were chosen to minimize the reliability factors. C—H distances were constrained at 0.98 Å for the methine C2 atom, 0.96 Å for the methyl groups at C3 and C4, and 0.93 Å for the phenyl H atoms, while the H atom displacement parameters were set at 1.2U eq of the parental C atoms.

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314624001895/wm4209sup1.cif

x-09-x240189-sup1.cif (93.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314624001895/wm4209Isup2.hkl

x-09-x240189-Isup2.hkl (92.5KB, hkl)
x-09-x240189-Isup3.cml (5.3KB, cml)

Supporting information file. DOI: 10.1107/S2414314624001895/wm4209Isup3.cml

CCDC reference: 2335505

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

I acknowledge with pleasure collaboration with F. G. Bordwell of Northwestern University, whose laboratory supplied the crystalline sample.

full crystallographic data

Crystal data

C16H17BrO2S Dx = 1.481 Mg m3
Mr = 353.26 Melting point: 385 K
Monoclinic, P21/c Cu Kα radiation, λ = 1.5405 Å
a = 9.1051 (13) Å Cell parameters from 7 reflections
b = 10.665 (2) Å θ = 22.1–43.1°
c = 16.688 (3) Å µ = 4.75 mm1
β = 102.16 (2)° T = 295 K
V = 1584.1 (5) Å3 Block, colorless
Z = 4 0.50 × 0.13 × 0.05 mm
F(000) = 720

Data collection

Picker 4-circle diffractometer 1373 reflections with I > 2σ(I)
Radiation source: sealed X-ray tube Rint = 0.012
Oriented graphite 200 reflection monochromator θmax = 50.8°, θmin = 5.0°
θ/2θ scans h = 0→9
Absorption correction: empirical (using intensity measurements) Four-dimensional tensor analysis (Parkin et al., 1995) k = 0→10
Tmin = 0.28, Tmax = 0.38 l = −16→16
1821 measured reflections 3 standard reflections every 150 reflections
1678 independent reflections intensity decay: 7(4)

Refinement

Refinement on F2 Primary atom site location: heavy-atom method
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.P)2 + 1.890P] where P = (Fo2 + 2Fc2)/3
1678 reflections (Δ/σ)max < 0.001
159 parameters Δρmax = 0.40 e Å3
0 restraints Δρmin = −0.32 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. At the time when this dataset was collected, mechanical failures were frequent enough that minimum redundancy was sought. This accounts for the low resolution of the data and the lack of many symmetry equivalents.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.20607 (7) 0.25910 (6) 0.43308 (4) 0.0668 (3)
S1 0.05864 (13) 0.18503 (11) 0.26327 (7) 0.0437 (4)
O1 −0.0819 (4) 0.2157 (3) 0.2845 (2) 0.0587 (10)
O2 0.1378 (4) 0.2843 (3) 0.2337 (2) 0.0546 (9)
C1 0.1784 (5) 0.1156 (5) 0.3565 (3) 0.0478 (13)
C2 0.0240 (5) 0.0609 (5) 0.1867 (3) 0.0512 (14)
H2 −0.005395 −0.014850 0.212602 0.061*
C3 0.0847 (6) 0.0181 (5) 0.3923 (3) 0.0600 (15)
H3A −0.009418 0.054726 0.397050 0.072*
H3B 0.138733 −0.007678 0.445547 0.072*
H3C 0.066447 −0.053491 0.356734 0.072*
C4 0.1613 (6) 0.0309 (6) 0.1531 (4) 0.080 (2)
H4A 0.233922 −0.011531 0.194211 0.096*
H4B 0.204106 0.107184 0.137720 0.096*
H4C 0.133361 −0.022196 0.105833 0.096*
C5 0.3308 (3) 0.0729 (3) 0.3438 (2) 0.0449 (13)
C6 0.4283 (4) 0.1569 (3) 0.3197 (2) 0.0505 (13)
H6 0.400215 0.240310 0.310129 0.061*
C7 0.5676 (3) 0.1172 (4) 0.3097 (2) 0.0665 (16)
H7 0.633361 0.173769 0.293460 0.080*
C8 0.6093 (3) −0.0066 (4) 0.3239 (2) 0.083 (2)
H8 0.703208 −0.033387 0.317177 0.100*
C9 0.5118 (5) −0.0906 (3) 0.3480 (3) 0.089 (2)
H9 0.539910 −0.174004 0.357563 0.107*
C10 0.3725 (4) −0.0509 (3) 0.3580 (2) 0.0685 (17)
H10 0.306764 −0.107466 0.374233 0.082*
C11 −0.1105 (3) 0.1051 (3) 0.12212 (18) 0.0447 (13)
C12 −0.0907 (3) 0.1791 (3) 0.0573 (2) 0.0553 (14)
H12 0.005339 0.203684 0.053144 0.066*
C13 −0.2136 (5) 0.2166 (3) −0.00117 (18) 0.0706 (17)
H13 −0.200293 0.266399 −0.044821 0.085*
C14 −0.3562 (4) 0.1801 (4) 0.0051 (2) 0.0786 (19)
H14 −0.438943 0.205308 −0.034375 0.094*
C15 −0.3759 (3) 0.1061 (4) 0.0698 (3) 0.0762 (19)
H15 −0.471962 0.081501 0.074037 0.091*
C16 −0.2530 (4) 0.0686 (3) 0.1284 (2) 0.0607 (15)
H16 −0.266331 0.018783 0.172003 0.073*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0632 (4) 0.0751 (5) 0.0627 (4) 0.0016 (3) 0.0149 (3) −0.0201 (3)
S1 0.0398 (7) 0.0383 (7) 0.0520 (8) 0.0021 (6) 0.0073 (6) −0.0049 (6)
O1 0.039 (2) 0.065 (2) 0.070 (2) 0.0087 (18) 0.0075 (18) −0.0142 (19)
O2 0.056 (2) 0.038 (2) 0.068 (2) −0.0030 (17) 0.0089 (18) 0.0074 (17)
C1 0.049 (3) 0.046 (3) 0.048 (3) −0.001 (3) 0.008 (2) 0.000 (3)
C2 0.060 (3) 0.034 (3) 0.056 (3) 0.001 (3) 0.006 (3) −0.010 (2)
C3 0.051 (3) 0.063 (4) 0.069 (4) −0.007 (3) 0.018 (3) 0.016 (3)
C4 0.069 (4) 0.091 (5) 0.075 (4) 0.035 (4) 0.005 (3) −0.028 (4)
C5 0.041 (3) 0.046 (3) 0.047 (3) 0.008 (3) 0.007 (2) −0.005 (2)
C6 0.037 (3) 0.059 (3) 0.056 (3) −0.003 (3) 0.012 (2) −0.007 (3)
C7 0.045 (4) 0.088 (5) 0.066 (4) −0.005 (3) 0.013 (3) −0.011 (3)
C8 0.055 (4) 0.118 (6) 0.077 (4) 0.035 (4) 0.015 (3) −0.002 (4)
C9 0.089 (5) 0.080 (5) 0.102 (5) 0.037 (4) 0.027 (4) 0.016 (4)
C10 0.067 (4) 0.060 (4) 0.083 (4) 0.015 (3) 0.026 (3) 0.012 (3)
C11 0.047 (3) 0.039 (3) 0.045 (3) −0.005 (2) 0.004 (2) −0.010 (3)
C12 0.057 (3) 0.056 (3) 0.054 (4) −0.004 (3) 0.015 (3) −0.007 (3)
C13 0.090 (5) 0.075 (4) 0.042 (3) 0.004 (4) 0.002 (3) 0.002 (3)
C14 0.080 (5) 0.072 (4) 0.069 (4) 0.020 (4) −0.018 (4) −0.015 (4)
C15 0.049 (4) 0.087 (5) 0.088 (5) −0.011 (3) 0.003 (4) −0.025 (4)
C16 0.070 (4) 0.053 (3) 0.058 (4) −0.011 (3) 0.010 (3) −0.008 (3)

Geometric parameters (Å, º)

Br1—C1 1.976 (5) C6—H6 0.9300
S1—O2 1.426 (3) C7—C8 1.3800
S1—O1 1.436 (4) C7—H7 0.9300
S1—C2 1.820 (5) C8—C9 1.3800
S1—C1 1.856 (5) C8—H8 0.9300
C1—C5 1.516 (5) C9—C10 1.3800
C1—C3 1.543 (7) C9—H9 0.9300
C2—C4 1.509 (7) C10—H10 0.9300
C2—C11 1.525 (5) C11—C12 1.3800
C2—H2 0.9800 C11—C16 1.3800
C3—H3A 0.9600 C12—C13 1.3800
C3—H3B 0.9600 C12—H12 0.9300
C3—H3C 0.9600 C13—C14 1.3800
C4—H4A 0.9600 C13—H13 0.9300
C4—H4B 0.9600 C14—C15 1.3800
C4—H4C 0.9600 C14—H14 0.9300
C5—C6 1.3800 C15—C16 1.3800
C5—C10 1.3800 C15—H15 0.9300
C6—C7 1.3800 C16—H16 0.9300
O2—S1—O1 117.2 (2) C5—C6—C7 120.0
O2—S1—C2 108.8 (2) C5—C6—H6 120.0
O1—S1—C2 107.9 (2) C7—C6—H6 120.0
O2—S1—C1 109.6 (2) C8—C7—C6 120.0
O1—S1—C1 106.3 (2) C8—C7—H7 120.0
C2—S1—C1 106.4 (2) C6—C7—H7 120.0
C5—C1—C3 116.7 (4) C7—C8—C9 120.0
C5—C1—S1 113.3 (3) C7—C8—H8 120.0
C3—C1—S1 108.6 (3) C9—C8—H8 120.0
C5—C1—Br1 109.1 (3) C10—C9—C8 120.0
C3—C1—Br1 106.1 (3) C10—C9—H9 120.0
S1—C1—Br1 101.8 (2) C8—C9—H9 120.0
C4—C2—C11 114.0 (4) C9—C10—C5 120.0
C4—C2—S1 112.4 (4) C9—C10—H10 120.0
C11—C2—S1 105.4 (3) C5—C10—H10 120.0
C4—C2—H2 108.3 C12—C11—C16 120.0
C11—C2—H2 108.3 C12—C11—C2 120.8 (3)
S1—C2—H2 108.3 C16—C11—C2 119.2 (3)
C1—C3—H3A 109.5 C13—C12—C11 120.0
C1—C3—H3B 109.5 C13—C12—H12 120.0
H3A—C3—H3B 109.5 C11—C12—H12 120.0
C1—C3—H3C 109.5 C12—C13—C14 120.0
H3A—C3—H3C 109.5 C12—C13—H13 120.0
H3B—C3—H3C 109.5 C14—C13—H13 120.0
C2—C4—H4A 109.5 C13—C14—C15 120.0
C2—C4—H4B 109.5 C13—C14—H14 120.0
H4A—C4—H4B 109.5 C15—C14—H14 120.0
C2—C4—H4C 109.5 C16—C15—C14 120.0
H4A—C4—H4C 109.5 C16—C15—H15 120.0
H4B—C4—H4C 109.5 C14—C15—H15 120.0
C6—C5—C10 120.0 C15—C16—C11 120.0
C6—C5—C1 120.7 (3) C15—C16—H16 120.0
C10—C5—C1 119.3 (3) C11—C16—H16 120.0
O2—S1—C1—C5 −54.5 (4) C10—C5—C6—C7 0.0
O1—S1—C1—C5 177.9 (3) C1—C5—C6—C7 178.9 (3)
C2—S1—C1—C5 63.0 (4) C5—C6—C7—C8 0.0
O2—S1—C1—C3 174.1 (3) C6—C7—C8—C9 0.0
O1—S1—C1—C3 46.5 (4) C7—C8—C9—C10 0.0
C2—S1—C1—C3 −68.3 (4) C8—C9—C10—C5 0.0
O2—S1—C1—Br1 62.5 (3) C6—C5—C10—C9 0.0
O1—S1—C1—Br1 −65.1 (3) C1—C5—C10—C9 −178.9 (3)
C2—S1—C1—Br1 −180.0 (2) C4—C2—C11—C12 −36.1 (5)
O2—S1—C2—C4 45.6 (5) S1—C2—C11—C12 87.6 (3)
O1—S1—C2—C4 173.8 (4) C4—C2—C11—C16 142.9 (4)
C1—S1—C2—C4 −72.5 (5) S1—C2—C11—C16 −93.3 (3)
O2—S1—C2—C11 −79.2 (3) C16—C11—C12—C13 0.0
O1—S1—C2—C11 49.0 (4) C2—C11—C12—C13 179.0 (3)
C1—S1—C2—C11 162.7 (3) C11—C12—C13—C14 0.0
C3—C1—C5—C6 −173.6 (3) C12—C13—C14—C15 0.0
S1—C1—C5—C6 59.2 (4) C13—C14—C15—C16 0.0
Br1—C1—C5—C6 −53.5 (4) C14—C15—C16—C11 0.0
C3—C1—C5—C10 5.3 (5) C12—C11—C16—C15 0.0
S1—C1—C5—C10 −121.9 (3) C2—C11—C16—C15 −179.0 (3)
Br1—C1—C5—C10 125.4 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C7—H7···O1i 0.93 2.67 3.468 (4) 145
C8—H8···O2ii 0.93 2.67 3.483 (4) 147
C12—H12···Br1iii 0.93 3.01 3.795 (3) 143
C14—H14···Br1iv 0.93 3.19 3.967 (3) 143

Symmetry codes: (i) x+1, y, z; (ii) −x+1, y−1/2, −z+1/2; (iii) x, −y+1/2, z−1/2; (iv) x−1, −y+1/2, z−1/2.

Funding Statement

Funding for this research was provided by: National Science Foundation Equipment Grant (grant No. GP8534).

References

  1. Bordwell, F. G., Doomes, E. & Corfield, P. W. R. (1970). J. Am. Chem. Soc. 92, 2581–2583.
  2. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL6895. Oak Ridge National Laboratory, Tennessee, USA.
  3. Carpino, L. A., McAdams, L. V. III, Rynbrandt, R. H. & Spiewak, J. W. (1971). J. Am. Chem. Soc. 93, 476–484.
  4. Corfield, P. W. R. (2022). IUCrData, 7, x2113151.
  5. Corfield, P. W. R., Dabrowiak, J. C. & Gore, E. S. (1973). Inorg. Chem. 12, 1734–1740.
  6. Corfield, P. W. R. & Gainsford, G. J. (1972). Local versions of standard programs, written at the Ohio State University.
  7. Düfert, A. (2023). Pericyclic reactions. In: Organic Synthesis Methods. Berlin, Heidelberg: Springer Spektrum. https://doi. org/10.1007/978-3-662-65244-2_5
  8. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  9. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  10. Paquette, L. A. (2001). The electrophilic and radical behavior of α-halosulfonyl systems. Synlett, no. 01, 0001-0012.
  11. Parkin, S., Moezzi, B. & Hope, H. (1995). J. Appl. Cryst. 28, 53–56.
  12. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  13. Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. [DOI] [PMC free article] [PubMed]
  14. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314624001895/wm4209sup1.cif

x-09-x240189-sup1.cif (93.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314624001895/wm4209Isup2.hkl

x-09-x240189-Isup2.hkl (92.5KB, hkl)
x-09-x240189-Isup3.cml (5.3KB, cml)

Supporting information file. DOI: 10.1107/S2414314624001895/wm4209Isup3.cml

CCDC reference: 2335505

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES