Skip to main content
IUCrData logoLink to IUCrData
. 2024 Mar 21;9(Pt 3):x240247. doi: 10.1107/S2414314624002475

Poly[(μ-2,3-diethyl-7,8-di­methyl­quinoxaline-κ2 N:N)(2,3-diethyl-7,8-di­methyl­quinoxaline-κN)-μ-nitrato-κ2 O:O′-nitrato-κ2 O,O′-disilver(I)]

Guy Crundwell a,*, Ashley Leeds a
Editor: M Zellerb
PMCID: PMC10993558  PMID: 38586514

The structure of the title compound, [Ag2(NO3)2(C14H18N2)2] n , contains subtle differences in ligand, metal, and counter-anion coordination. One quinoxaline ligand uses one of its quinoxaline N atoms to bond to one silver cation. That silver cation is bound to a second quinoxaline which, in turn, is bound to a second silver atom, thereby using both of its quinoxaline N atoms. A nitrate group bonds with one of its O atoms to the first silver and uses the same oxygen to bond to a silver atom (related by symmetry to the second), thereby forming an extended network. The second nitrate group on the other silver bonds via two nitrate O atoms; one silver cation therefore has a coordination number of three whereas the second has a coordination number of four.

Keywords: crystal structure, silver, quinoxaline, extended network

Abstract

The structure of the title compound, [C14H18N2)2Ag2](NO3)2, contains subtle differences in ligand, metal, and counter-anion coordination. One quinoxaline ligand uses one of its quinoxaline N atoms to bond to one silver cation. That silver cation is bound to a second quinoxaline which, in turn, is bound to a second silver atom; thereby using both of its quinoxaline N atoms. A nitrate group bonds with one of its O atoms to the first silver and uses the same oxygen to bond to a silver atom (related by symmetry to the second), thereby forming an extended network. The second nitrate group on the other silver bonds via two nitrate O atoms; one silver cation therefore has a coordination number of three whereas the second has a coordination number of four. One of the quinoxaline ligands has a disordered ethyl group. graphic file with name x-09-x240247-scheme1-3D1.jpg

Structure description

There are many known structures of polymeric silver(I) quinoxaline complexes. Yeh et al. (2009) have made catena complexes of silver and 2,3-di­phenyl­quinoxaline with tetra­fluoro­borate in water, tetra­fluoro­borate in aceto­nitrile, perchlorate in aceto­nitrile, tri­fluoro­methane­sulfonate, and hexa­fluoro­anti­monate salts. When they used nitrate salts, be they in water, di­methyl­formamide, or aceto­nitrile, the nitrate counter-anions acted as bridging ligands; in addition, in all of the structures, regardless of solvent or counter-anion, the quinoxaline ligands are always bidentate and bridge silver cations. Patra et al. (2007) also studied several catena complexes of 1:1 molar amounts of silver with 2,3-di­phenyl­quinoxaline–silver perchlorate from methanol, silver tetra­fluoro­borate from ethanol, and again with silver nitrate to name a few. In all of these structures, the quinoxaline is bidentate and bridging and nitrate ions (if present) bridge silver cations. Finally, cationic silver–di­phenyl­quinoxaline polymeric networks can even be isolated with large phosphato–molybdenum oxide anion clusters (Tian et al., 2016). As with the other complexes, the quinoxalines are bidentate and bridge silver cations.

This is the first structure of a silver catena complex with 2,3-diethyl-7,8-di­methyl­quinoxaline; however, unlike previous structures, the bonding behavior of the quinoxaline ligand is varied. There are subtle differences in ligand, metal, and counter-anion coordination in the crystal. The structure can be described loosely as a dimer – two sets of a metal, a ligand, and an anion; however, each part of those two sets has inter­esting differences. As can be seen in Fig. 1, the first silver atom (Ag1) is bound to a bidentate nitrate anion [with Ag—O distances of 2.498 (2) Å and 2.512 (2) Å] and a quinoxaline nitro­gen (N1) at 2.2600 (17) Å. What is not seen in the ORTEP is that the silver is also bound to a bridging oxygen from the second nitrate (O4) at 2.3195 (19) Å, making the silver four-coord­inate. The first quinoxaline (on the left in Fig. 1) is bidentate and bridging; making a bond with the second silver (Ag2) at 2.2492 (17) Å. The di­methyl­quinoxaline portion of the ligand is essentially flat, whereas the ethyl groups dangle above and below the plane formed by the dimer. The second silver (Ag2) is three-coordinate and bridges the two quinoxalines [Ag2—N3 has a bond distance of 2.2552 (17) Å], while also being bound to a bridging nitrate anion oxygen at a distance of 2.5956 (19) Å. The N2—Ag2—N3 bond angle is essentially linear at 173.50 (6)° which is commonly seen in bis- and catena complexes of silver(I). Finally, the dimer is capped by a second 2,3-diethyl-7,8-di­methyl­quinoxaline ligand. This ligand is monodentate and is not bridging. Also, unlike the other ligand, this quinoxaline exhibits a positional disorder of its outer ethyl group. The disordered ethyl group was refined to be 59.6 (1)/40.4 (1)%.

Figure 1.

Figure 1

A view of the title compound (Farrugia, 2012). Displacement ellipsoids are drawn at the 50% probability level.

Synthesis and crystallization

Silver nitrate was used as received from Fisher Scientific. The ligand, 2,3-diethyl-7,8-di­methyl­quinoxaline, was synthesized from the condensation of 4,5-dimethyl-1,2-phenyl­enedi­amine with 3,4-hexa­nedione. Purity of the ligand was confirmed prior to use by 1H NMR. A 30 ml solution of 43 mg (0.20 mmol) of 2,3-diethyl-7,8-di­methyl­quinoxaline in warmed methanol was combined with a 10 ml methanol solution of 34 g (0.20 mmol) of silver nitrate and stirred for 1 minute. The solution was taken off heat and pipetted into test tubes which were covered with parafilm and place in amber vials in a drawer to keep them from direct light. Diffraction-quality, colorless crystals formed via slow evaporation of the solvent within 48–72 h. Crystals were harvested from the evaporating solutions and used immediately due to the decay of the silver(I) complex in light.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. One of the ethyl groups in a 2,3-diethyl-7,8-di­methyl­quinoxaline are disordered. The thermal displacement parameters of the disordered carbons in the group were restrained as the amount of disorder was refined. The percent disorder of the ethyl group was determined to be 59.6 (1)/40.4 (1)%. Thermal displacement parameters for the nitrate atoms were also restrained during refinement.

Table 1. Experimental details.

Crystal data
Chemical formula [Ag2(NO3)2(C14H18N2)2]
M r 768.37
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 10.3048 (2), 24.1140 (6), 12.6416 (4)
β (°) 100.911 (3)
V3) 3084.53 (13)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.32
Crystal size (mm) 0.41 × 0.33 × 0.25
 
Data collection
Diffractometer Xcalibur, Sapphire3
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2019)
T min, T max 0.775, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 36657, 11225, 6825
R int 0.030
(sin θ/λ)max−1) 0.778
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.039, 0.096, 1.00
No. of reflections 11225
No. of parameters 407
No. of restraints 102
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.36, −0.49

Computer programs: CrysAlis PRO (Rigaku OD, 2019), SHELXS97 (Sheldrick, 2008), SHELXL2019/3 (Sheldrick, 2015) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314624002475/zl4069sup1.cif

x-09-x240247-sup1.cif (1.2MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314624002475/zl4069Isup2.hkl

x-09-x240247-Isup2.hkl (890.4KB, hkl)

CCDC reference: 2340469

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors would like to thank CSU-AAUP for research funding.

full crystallographic data

Crystal data

[Ag2(NO3)2(C14H18N2)2] F(000) = 1552
Mr = 768.37 Dx = 1.655 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 10.3048 (2) Å Cell parameters from 7239 reflections
b = 24.1140 (6) Å θ = 3.2–31.2°
c = 12.6416 (4) Å µ = 1.32 mm1
β = 100.911 (3)° T = 293 K
V = 3084.53 (13) Å3 Block, colorless
Z = 4 0.41 × 0.33 × 0.25 mm

Data collection

Xcalibur, Sapphire3 diffractometer 11225 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source 6825 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.030
Detector resolution: 16.1790 pixels mm-1 θmax = 33.6°, θmin = 2.9°
ω scans h = −12→16
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2019) k = −36→37
Tmin = 0.775, Tmax = 1.000 l = −19→19
36657 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039 H-atom parameters constrained
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0359P)2 + 0.7322P] where P = (Fo2 + 2Fc2)/3
S = 1.00 (Δ/σ)max = 0.001
11225 reflections Δρmax = 0.36 e Å3
407 parameters Δρmin = −0.49 e Å3
102 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Hydrogen atoms on sp2 and sp3 carbons were placed at calculated positions with a C—H distance of 0.93 Å and 0.96 Å and were included in the refinement in riding motion approximation with Uiso = 1.2Ueq or 1.5Ueq of the carrier atom, respectively.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Ag1 −0.14525 (2) 0.20877 (2) 0.97995 (2) 0.07499 (8)
Ag2 0.46103 (2) 0.14066 (2) 0.79131 (2) 0.05543 (7)
O1 −0.2455 (3) 0.30344 (10) 0.96797 (18) 0.0987 (8)
O2 −0.1200 (2) 0.28503 (9) 1.11773 (16) 0.0775 (6)
O3 −0.2180 (3) 0.36261 (12) 1.0993 (2) 0.1337 (12)
O4 0.65506 (19) 0.16154 (10) 0.94950 (16) 0.0773 (6)
O5 0.7486 (3) 0.13377 (12) 1.1028 (2) 0.1105 (9)
O6 0.5601 (3) 0.09973 (12) 1.0286 (2) 0.1210 (9)
N1 0.04723 (17) 0.18545 (7) 0.93064 (14) 0.0420 (4)
N2 0.28512 (17) 0.15893 (7) 0.86719 (14) 0.0432 (4)
N3 0.63183 (17) 0.11208 (7) 0.71683 (14) 0.0456 (4)
N4 0.8581 (2) 0.07533 (9) 0.64542 (19) 0.0641 (5)
N5 −0.1946 (3) 0.31748 (11) 1.0619 (2) 0.0733 (6)
N6 0.6550 (2) 0.12997 (11) 1.0286 (2) 0.0679 (6)
C1 0.0822 (2) 0.13332 (8) 0.92080 (17) 0.0427 (4)
C2 0.2046 (2) 0.11947 (9) 0.88956 (18) 0.0446 (5)
C3 0.2505 (2) 0.21320 (8) 0.87823 (16) 0.0395 (4)
C4 0.3359 (2) 0.25626 (9) 0.85985 (17) 0.0488 (5)
H4 0.416424 0.247454 0.841048 0.059*
C5 0.3027 (2) 0.31103 (9) 0.86910 (17) 0.0502 (5)
C6 0.1787 (2) 0.32432 (9) 0.89600 (17) 0.0507 (5)
C7 0.0972 (2) 0.28286 (9) 0.91814 (17) 0.0472 (5)
H7 0.018040 0.291969 0.939103 0.057*
C8 0.1309 (2) 0.22665 (8) 0.90976 (16) 0.0397 (4)
C9 0.3989 (3) 0.35595 (11) 0.8517 (2) 0.0707 (8)
H9A 0.481081 0.339371 0.843480 0.106*
H9B 0.413660 0.380471 0.912574 0.106*
H9C 0.362848 0.376525 0.787826 0.106*
C10 0.1338 (3) 0.38397 (10) 0.8971 (3) 0.0752 (8)
H10A 0.201248 0.405602 0.941353 0.113*
H10B 0.053914 0.385828 0.925588 0.113*
H10C 0.117678 0.398347 0.824958 0.113*
C11 −0.0104 (2) 0.08953 (10) 0.9478 (2) 0.0578 (6)
H11A −0.002809 0.056545 0.905528 0.069*
H11B −0.100595 0.102873 0.928672 0.069*
C12 0.0193 (3) 0.07459 (12) 1.0669 (2) 0.0775 (8)
H12A −0.044023 0.047837 1.081579 0.116*
H12B 0.014014 0.107320 1.109146 0.116*
H12C 0.106552 0.059182 1.085205 0.116*
C13 0.2465 (2) 0.06016 (9) 0.8794 (2) 0.0554 (6)
H13A 0.216330 0.038035 0.934057 0.066*
H13B 0.342299 0.058425 0.892742 0.066*
C14 0.1930 (3) 0.03547 (11) 0.7699 (2) 0.0715 (7)
H14A 0.225652 0.056205 0.715590 0.107*
H14B 0.098237 0.036948 0.756165 0.107*
H14C 0.221257 −0.002413 0.768422 0.107*
C15 0.6497 (2) 0.05903 (10) 0.6971 (2) 0.0540 (5)
C16 0.7649 (3) 0.04099 (11) 0.6597 (2) 0.0690 (7)
C17 0.8409 (2) 0.13033 (10) 0.66478 (18) 0.0502 (5)
C18 0.9360 (2) 0.16915 (11) 0.64532 (19) 0.0557 (6)
H18 1.012429 0.156529 0.624060 0.067*
C19 0.9188 (2) 0.22453 (11) 0.65687 (17) 0.0532 (6)
C20 0.8031 (2) 0.24404 (9) 0.69231 (17) 0.0485 (5)
C21 0.7112 (2) 0.20651 (9) 0.71427 (18) 0.0476 (5)
H21 0.637117 0.219201 0.739108 0.057*
C22 0.7273 (2) 0.14926 (9) 0.69975 (17) 0.0430 (5)
C23 1.0185 (3) 0.26514 (13) 0.6288 (2) 0.0705 (8)
H23A 1.090685 0.245182 0.608650 0.106*
H23B 1.051032 0.288095 0.690112 0.106*
H23C 0.977148 0.287968 0.569713 0.106*
C24 0.7797 (3) 0.30509 (11) 0.7034 (2) 0.0699 (7)
H24A 0.849340 0.320529 0.756530 0.105*
H24B 0.696477 0.310717 0.725358 0.105*
H24C 0.778444 0.323040 0.635432 0.105*
C25 0.5457 (3) 0.01907 (11) 0.7192 (2) 0.0708 (7)
H25A 0.534315 −0.010084 0.665401 0.085*
H25B 0.462154 0.038469 0.713275 0.085*
C26 0.5819 (4) −0.00665 (15) 0.8302 (3) 0.1045 (12)
H26A 0.659852 −0.028957 0.834056 0.157*
H26B 0.510343 −0.029452 0.843495 0.157*
H26C 0.598597 0.022160 0.883486 0.157*
C27 0.7664 (9) −0.0197 (4) 0.6193 (9) 0.088 (2) 0.596 (10)
H27A 0.777363 −0.044631 0.680528 0.105* 0.596 (10)
H27B 0.682208 −0.027963 0.573177 0.105* 0.596 (10)
C28 0.8758 (9) −0.0294 (3) 0.5578 (7) 0.125 (3) 0.596 (10)
H28A 0.852852 −0.012733 0.487817 0.187* 0.596 (10)
H28B 0.888376 −0.068523 0.550261 0.187* 0.596 (10)
H28C 0.956043 −0.013087 0.596236 0.187* 0.596 (10)
C27B 0.8116 (14) −0.0203 (7) 0.6527 (12) 0.082 (3) 0.404 (10)
H27C 0.907171 −0.023151 0.669858 0.099* 0.404 (10)
H27D 0.773839 −0.044287 0.700621 0.099* 0.404 (10)
C28B 0.7591 (16) −0.0344 (5) 0.5362 (10) 0.123 (4) 0.404 (10)
H28D 0.777508 −0.072623 0.523581 0.185* 0.404 (10)
H28E 0.801120 −0.011260 0.490895 0.185* 0.404 (10)
H28F 0.665400 −0.028341 0.520112 0.185* 0.404 (10)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ag1 0.05433 (12) 0.06584 (14) 0.1134 (2) 0.00078 (9) 0.03772 (12) −0.00521 (12)
Ag2 0.04237 (10) 0.05675 (11) 0.07309 (13) −0.00201 (7) 0.02599 (8) −0.00126 (9)
O1 0.1078 (18) 0.1112 (18) 0.0684 (13) 0.0367 (14) −0.0053 (12) −0.0201 (12)
O2 0.0752 (13) 0.0839 (14) 0.0710 (12) 0.0089 (11) 0.0079 (10) −0.0057 (11)
O3 0.163 (3) 0.108 (2) 0.115 (2) 0.0615 (19) −0.0098 (19) −0.0460 (16)
O4 0.0605 (11) 0.1091 (16) 0.0630 (12) −0.0214 (11) 0.0131 (9) −0.0019 (11)
O5 0.0779 (16) 0.168 (3) 0.0800 (15) 0.0122 (16) −0.0001 (13) 0.0222 (16)
O6 0.105 (2) 0.120 (2) 0.142 (2) −0.0468 (17) 0.0317 (17) 0.0218 (18)
N1 0.0381 (9) 0.0437 (9) 0.0460 (10) −0.0011 (7) 0.0125 (7) 0.0001 (7)
N2 0.0389 (9) 0.0446 (9) 0.0483 (10) −0.0020 (7) 0.0138 (7) −0.0011 (8)
N3 0.0433 (9) 0.0449 (10) 0.0517 (10) −0.0019 (8) 0.0170 (8) 0.0005 (8)
N4 0.0604 (13) 0.0612 (13) 0.0779 (15) 0.0082 (10) 0.0314 (11) −0.0059 (11)
N5 0.0711 (15) 0.0812 (16) 0.0682 (15) 0.0140 (13) 0.0150 (12) −0.0149 (13)
N6 0.0596 (14) 0.0778 (16) 0.0700 (15) −0.0021 (11) 0.0220 (12) −0.0061 (12)
C1 0.0392 (10) 0.0417 (11) 0.0489 (12) −0.0019 (8) 0.0125 (9) 0.0015 (9)
C2 0.0404 (11) 0.0440 (11) 0.0511 (12) −0.0006 (9) 0.0131 (9) 0.0010 (9)
C3 0.0396 (10) 0.0424 (11) 0.0369 (10) −0.0036 (8) 0.0081 (8) 0.0008 (8)
C4 0.0483 (12) 0.0527 (13) 0.0467 (12) −0.0096 (10) 0.0124 (9) −0.0004 (10)
C5 0.0594 (14) 0.0473 (12) 0.0415 (12) −0.0128 (10) 0.0035 (10) 0.0030 (9)
C6 0.0647 (15) 0.0406 (11) 0.0427 (12) −0.0022 (10) −0.0002 (10) −0.0009 (9)
C7 0.0505 (12) 0.0447 (12) 0.0465 (12) 0.0031 (9) 0.0092 (10) −0.0007 (9)
C8 0.0397 (10) 0.0418 (10) 0.0375 (10) −0.0006 (8) 0.0072 (8) 0.0014 (8)
C9 0.0795 (19) 0.0568 (15) 0.0760 (18) −0.0250 (14) 0.0152 (15) 0.0048 (13)
C10 0.092 (2) 0.0421 (13) 0.088 (2) 0.0035 (14) 0.0079 (17) 0.0009 (13)
C11 0.0519 (13) 0.0433 (12) 0.0850 (18) −0.0076 (10) 0.0303 (12) −0.0016 (11)
C12 0.084 (2) 0.0665 (17) 0.092 (2) −0.0005 (15) 0.0425 (17) 0.0214 (15)
C13 0.0517 (13) 0.0430 (12) 0.0767 (16) 0.0006 (10) 0.0256 (12) 0.0024 (11)
C14 0.0704 (17) 0.0570 (15) 0.091 (2) −0.0047 (13) 0.0242 (15) −0.0164 (14)
C15 0.0548 (13) 0.0485 (12) 0.0611 (14) −0.0027 (10) 0.0172 (11) −0.0005 (10)
C16 0.0757 (17) 0.0535 (14) 0.0841 (18) 0.0063 (13) 0.0315 (15) −0.0099 (13)
C17 0.0448 (12) 0.0623 (14) 0.0462 (12) 0.0015 (10) 0.0155 (9) −0.0012 (10)
C18 0.0415 (12) 0.0792 (18) 0.0498 (13) −0.0044 (11) 0.0169 (10) 0.0004 (12)
C19 0.0478 (12) 0.0741 (16) 0.0376 (11) −0.0157 (11) 0.0075 (9) 0.0038 (11)
C20 0.0510 (12) 0.0516 (13) 0.0418 (11) −0.0075 (10) 0.0059 (9) 0.0057 (9)
C21 0.0449 (11) 0.0492 (12) 0.0514 (13) −0.0006 (9) 0.0159 (10) 0.0003 (10)
C22 0.0390 (10) 0.0485 (12) 0.0434 (11) −0.0017 (8) 0.0127 (8) 0.0012 (9)
C23 0.0617 (16) 0.093 (2) 0.0579 (15) −0.0292 (15) 0.0132 (12) 0.0092 (14)
C24 0.0794 (19) 0.0534 (15) 0.0748 (18) −0.0118 (13) 0.0093 (15) 0.0089 (13)
C25 0.0675 (17) 0.0489 (14) 0.101 (2) −0.0106 (12) 0.0276 (15) −0.0025 (14)
C26 0.111 (3) 0.086 (2) 0.128 (3) 0.000 (2) 0.051 (2) 0.033 (2)
C27 0.093 (5) 0.059 (3) 0.116 (6) 0.014 (4) 0.030 (4) −0.026 (4)
C28 0.095 (5) 0.105 (5) 0.170 (6) 0.020 (4) 0.018 (5) −0.073 (4)
C27B 0.081 (6) 0.070 (4) 0.096 (6) −0.006 (5) 0.018 (5) −0.015 (5)
C28B 0.148 (9) 0.094 (6) 0.122 (7) 0.016 (6) 0.011 (7) −0.039 (6)

Geometric parameters (Å, º)

Ag1—O1 2.498 (2) C12—H12C 0.9600
Ag1—O2 2.512 (2) C13—H13A 0.9700
Ag1—O4i 2.3195 (19) C13—H13B 0.9700
Ag1—N1 2.2600 (17) C13—C14 1.512 (4)
Ag2—O4 2.5956 (19) C14—H14A 0.9600
Ag2—N2 2.2492 (17) C14—H14B 0.9600
Ag2—N3 2.2552 (17) C14—H14C 0.9600
O1—N5 1.251 (3) C15—C16 1.427 (4)
O2—N5 1.223 (3) C15—C25 1.506 (3)
O3—N5 1.229 (3) C16—C27 1.550 (10)
O4—N6 1.257 (3) C16—C27B 1.563 (17)
O5—N6 1.215 (3) C17—C18 1.410 (3)
O6—N6 1.220 (3) C17—C22 1.403 (3)
N1—C1 1.320 (3) C18—H18 0.9300
N1—C8 1.373 (3) C18—C19 1.359 (4)
N2—C2 1.328 (3) C19—C20 1.430 (3)
N2—C3 1.371 (3) C19—C23 1.510 (3)
N3—C15 1.323 (3) C20—C21 1.376 (3)
N3—C22 1.378 (3) C20—C24 1.503 (3)
N4—C16 1.306 (3) C21—H21 0.9300
N4—C17 1.366 (3) C21—C22 1.407 (3)
C1—C2 1.430 (3) C23—H23A 0.9600
C1—C11 1.505 (3) C23—H23B 0.9600
C2—C13 1.507 (3) C23—H23C 0.9600
C3—C4 1.408 (3) C24—H24A 0.9600
C3—C8 1.403 (3) C24—H24B 0.9600
C4—H4 0.9300 C24—H24C 0.9600
C4—C5 1.375 (3) C25—H25A 0.9700
C5—C6 1.421 (3) C25—H25B 0.9700
C5—C9 1.512 (3) C25—C26 1.515 (4)
C6—C7 1.368 (3) C26—H26A 0.9600
C6—C10 1.512 (3) C26—H26B 0.9600
C7—H7 0.9300 C26—H26C 0.9600
C7—C8 1.408 (3) C27—H27A 0.9700
C9—H9A 0.9600 C27—H27B 0.9700
C9—H9B 0.9600 C27—C28 1.504 (13)
C9—H9C 0.9600 C28—H28A 0.9600
C10—H10A 0.9600 C28—H28B 0.9600
C10—H10B 0.9600 C28—H28C 0.9600
C10—H10C 0.9600 C27B—H27C 0.9700
C11—H11A 0.9700 C27B—H27D 0.9700
C11—H11B 0.9700 C27B—C28B 1.508 (19)
C11—C12 1.522 (4) C28B—H28D 0.9600
C12—H12A 0.9600 C28B—H28E 0.9600
C12—H12B 0.9600 C28B—H28F 0.9600
O1—Ag1—O2 50.25 (7) C14—C13—H13A 109.0
O4i—Ag1—O1 95.46 (9) C14—C13—H13B 109.0
O4i—Ag1—O2 116.53 (7) C13—C14—H14A 109.5
N1—Ag1—O1 125.80 (8) C13—C14—H14B 109.5
N1—Ag1—O2 113.10 (7) C13—C14—H14C 109.5
N1—Ag1—O4i 129.00 (7) H14A—C14—H14B 109.5
N2—Ag2—O4 101.47 (6) H14A—C14—H14C 109.5
N2—Ag2—N3 173.50 (6) H14B—C14—H14C 109.5
N3—Ag2—O4 80.37 (7) N3—C15—C16 120.8 (2)
N5—O1—Ag1 95.48 (17) N3—C15—C25 117.0 (2)
N5—O2—Ag1 95.56 (16) C16—C15—C25 122.2 (2)
Ag1ii—O4—Ag2 138.85 (9) N4—C16—C15 122.2 (2)
N6—O4—Ag1ii 107.43 (16) N4—C16—C27 120.0 (4)
N6—O4—Ag2 112.28 (16) N4—C16—C27B 110.5 (6)
C1—N1—Ag1 122.18 (13) C15—C16—C27 117.2 (4)
C1—N1—C8 118.57 (18) C15—C16—C27B 126.3 (6)
C8—N1—Ag1 119.25 (14) N4—C17—C18 119.7 (2)
C2—N2—Ag2 122.50 (14) N4—C17—C22 121.1 (2)
C2—N2—C3 118.51 (18) C22—C17—C18 119.2 (2)
C3—N2—Ag2 118.47 (13) C17—C18—H18 119.2
C15—N3—Ag2 121.44 (15) C19—C18—C17 121.6 (2)
C15—N3—C22 118.08 (19) C19—C18—H18 119.2
C22—N3—Ag2 120.23 (14) C18—C19—C20 119.4 (2)
C16—N4—C17 117.8 (2) C18—C19—C23 120.2 (2)
O2—N5—O1 118.7 (2) C20—C19—C23 120.3 (2)
O2—N5—O3 119.5 (3) C19—C20—C24 120.6 (2)
O3—N5—O1 121.8 (3) C21—C20—C19 119.6 (2)
O5—N6—O4 116.6 (2) C21—C20—C24 119.8 (2)
O5—N6—O6 124.3 (3) C20—C21—H21 119.5
O6—N6—O4 118.9 (3) C20—C21—C22 121.0 (2)
N1—C1—C2 121.28 (18) C22—C21—H21 119.5
N1—C1—C11 116.77 (19) N3—C22—C17 120.0 (2)
C2—C1—C11 121.92 (19) N3—C22—C21 120.81 (19)
N2—C2—C1 120.71 (19) C17—C22—C21 119.1 (2)
N2—C2—C13 117.43 (19) C19—C23—H23A 109.5
C1—C2—C13 121.85 (19) C19—C23—H23B 109.5
N2—C3—C4 120.30 (19) C19—C23—H23C 109.5
N2—C3—C8 120.60 (18) H23A—C23—H23B 109.5
C8—C3—C4 119.09 (19) H23A—C23—H23C 109.5
C3—C4—H4 119.3 H23B—C23—H23C 109.5
C5—C4—C3 121.4 (2) C20—C24—H24A 109.5
C5—C4—H4 119.3 C20—C24—H24B 109.5
C4—C5—C6 119.1 (2) C20—C24—H24C 109.5
C4—C5—C9 119.7 (2) H24A—C24—H24B 109.5
C6—C5—C9 121.2 (2) H24A—C24—H24C 109.5
C5—C6—C10 120.5 (2) H24B—C24—H24C 109.5
C7—C6—C5 120.0 (2) C15—C25—H25A 109.2
C7—C6—C10 119.5 (2) C15—C25—H25B 109.2
C6—C7—H7 119.4 C15—C25—C26 112.0 (3)
C6—C7—C8 121.2 (2) H25A—C25—H25B 107.9
C8—C7—H7 119.4 C26—C25—H25A 109.2
N1—C8—C3 120.29 (18) C26—C25—H25B 109.2
N1—C8—C7 120.59 (19) C25—C26—H26A 109.5
C3—C8—C7 119.11 (19) C25—C26—H26B 109.5
C5—C9—H9A 109.5 C25—C26—H26C 109.5
C5—C9—H9B 109.5 H26A—C26—H26B 109.5
C5—C9—H9C 109.5 H26A—C26—H26C 109.5
H9A—C9—H9B 109.5 H26B—C26—H26C 109.5
H9A—C9—H9C 109.5 C16—C27—H27A 109.2
H9B—C9—H9C 109.5 C16—C27—H27B 109.2
C6—C10—H10A 109.5 H27A—C27—H27B 107.9
C6—C10—H10B 109.5 C28—C27—C16 111.8 (7)
C6—C10—H10C 109.5 C28—C27—H27A 109.2
H10A—C10—H10B 109.5 C28—C27—H27B 109.2
H10A—C10—H10C 109.5 C27—C28—H28A 109.5
H10B—C10—H10C 109.5 C27—C28—H28B 109.5
C1—C11—H11A 109.2 C27—C28—H28C 109.5
C1—C11—H11B 109.2 H28A—C28—H28B 109.5
C1—C11—C12 111.9 (2) H28A—C28—H28C 109.5
H11A—C11—H11B 107.9 H28B—C28—H28C 109.5
C12—C11—H11A 109.2 C16—C27B—H27C 111.3
C12—C11—H11B 109.2 C16—C27B—H27D 111.3
C11—C12—H12A 109.5 H27C—C27B—H27D 109.2
C11—C12—H12B 109.5 C28B—C27B—C16 102.2 (10)
C11—C12—H12C 109.5 C28B—C27B—H27C 111.3
H12A—C12—H12B 109.5 C28B—C27B—H27D 111.3
H12A—C12—H12C 109.5 C27B—C28B—H28D 109.5
H12B—C12—H12C 109.5 C27B—C28B—H28E 109.5
C2—C13—H13A 109.0 C27B—C28B—H28F 109.5
C2—C13—H13B 109.0 H28D—C28B—H28E 109.5
C2—C13—C14 113.0 (2) H28D—C28B—H28F 109.5
H13A—C13—H13B 107.8 H28E—C28B—H28F 109.5
Ag1—O1—N5—O2 2.3 (3) C3—C4—C5—C9 178.3 (2)
Ag1—O1—N5—O3 −177.4 (3) C4—C3—C8—N1 −178.48 (18)
Ag1—O2—N5—O1 −2.2 (3) C4—C3—C8—C7 2.4 (3)
Ag1—O2—N5—O3 177.4 (3) C4—C5—C6—C7 3.6 (3)
Ag1ii—O4—N6—O5 5.1 (3) C4—C5—C6—C10 −174.5 (2)
Ag1ii—O4—N6—O6 −178.1 (2) C5—C6—C7—C8 −3.1 (3)
Ag1—N1—C1—C2 −179.96 (15) C6—C7—C8—N1 −179.0 (2)
Ag1—N1—C1—C11 −2.1 (3) C6—C7—C8—C3 0.1 (3)
Ag1—N1—C8—C3 −179.52 (14) C8—N1—C1—C2 0.2 (3)
Ag1—N1—C8—C7 −0.4 (3) C8—N1—C1—C11 178.1 (2)
Ag2—O4—N6—O5 174.1 (2) C8—C3—C4—C5 −1.9 (3)
Ag2—O4—N6—O6 −9.1 (3) C9—C5—C6—C7 −175.8 (2)
Ag2—N2—C2—C1 −169.46 (15) C9—C5—C6—C10 6.1 (3)
Ag2—N2—C2—C13 9.8 (3) C10—C6—C7—C8 175.0 (2)
Ag2—N2—C3—C4 −10.8 (3) C11—C1—C2—N2 −179.3 (2)
Ag2—N2—C3—C8 170.33 (14) C11—C1—C2—C13 1.4 (3)
Ag2—N3—C15—C16 −173.9 (2) C15—N3—C22—C17 −1.4 (3)
Ag2—N3—C15—C25 4.2 (3) C15—N3—C22—C21 176.9 (2)
Ag2—N3—C22—C17 172.84 (16) C15—C16—C27—C28 166.0 (6)
Ag2—N3—C22—C21 −8.8 (3) C15—C16—C27B—C28B 97.3 (11)
N1—C1—C2—N2 −1.5 (3) C16—N4—C17—C18 −176.9 (2)
N1—C1—C2—C13 179.2 (2) C16—N4—C17—C22 0.5 (4)
N1—C1—C11—C12 −88.0 (3) C16—C15—C25—C26 83.2 (3)
N2—C2—C13—C14 −92.9 (3) C17—N4—C16—C15 −1.7 (4)
N2—C3—C4—C5 179.20 (19) C17—N4—C16—C27 168.7 (5)
N2—C3—C8—N1 0.4 (3) C17—N4—C16—C27B −170.5 (6)
N2—C3—C8—C7 −178.69 (19) C17—C18—C19—C20 1.7 (3)
N3—C15—C16—N4 1.3 (4) C17—C18—C19—C23 −176.2 (2)
N3—C15—C16—C27 −169.3 (5) C18—C17—C22—N3 178.5 (2)
N3—C15—C16—C27B 168.4 (6) C18—C17—C22—C21 0.1 (3)
N3—C15—C25—C26 −94.9 (3) C18—C19—C20—C21 0.1 (3)
N4—C16—C27—C28 −4.8 (10) C18—C19—C20—C24 −178.6 (2)
N4—C16—C27B—C28B −94.4 (11) C19—C20—C21—C22 −1.7 (3)
N4—C17—C18—C19 175.7 (2) C20—C21—C22—N3 −176.8 (2)
N4—C17—C22—N3 1.1 (3) C20—C21—C22—C17 1.6 (3)
N4—C17—C22—C21 −177.3 (2) C22—N3—C15—C16 0.3 (4)
C1—N1—C8—C3 0.3 (3) C22—N3—C15—C25 178.4 (2)
C1—N1—C8—C7 179.36 (19) C22—C17—C18—C19 −1.8 (3)
C1—C2—C13—C14 86.4 (3) C23—C19—C20—C21 177.9 (2)
C2—N2—C3—C4 177.23 (19) C23—C19—C20—C24 −0.7 (3)
C2—N2—C3—C8 −1.6 (3) C24—C20—C21—C22 177.0 (2)
C2—C1—C11—C12 89.8 (3) C25—C15—C16—N4 −176.7 (3)
C3—N2—C2—C1 2.2 (3) C25—C15—C16—C27 12.7 (6)
C3—N2—C2—C13 −178.54 (19) C25—C15—C16—C27B −9.7 (7)
C3—C4—C5—C6 −1.1 (3)

Symmetry codes: (i) x−1, y, z; (ii) x+1, y, z.

References

  1. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  2. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  3. Patra, G. K., Goldberg, I., De, S. & Datta, D. (2007). CrystEngComm, 9, 828–832.
  4. Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8.
  7. Tian, A., Tian, Y., Ning, Y., Hou, X., Ni, H., Ji, X., Liu, G. & Ying, J. (2016). Dalton Trans. 45, 13925–13936. [DOI] [PubMed]
  8. Yeh, C.-W., Chen, T.-R., Chen, J.-D. & Wang, J.-C. (2009). Cryst. Growth Des. 9, 2595–2603.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314624002475/zl4069sup1.cif

x-09-x240247-sup1.cif (1.2MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314624002475/zl4069Isup2.hkl

x-09-x240247-Isup2.hkl (890.4KB, hkl)

CCDC reference: 2340469

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES