Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2024 Mar 26;80(Pt 4):408–412. doi: 10.1107/S2056989024002652

Synthesis, crystal structure and Hirshfeld surface analysis of bromido­tetra­kis­[5-(prop-2-en-1-yl­sulf­an­yl)-1,3,4-thia­diazol-2-amine-κN 3]copper(II) bromide

Aziz Atashov a, Mukhlisakhon Azamova a, Daminbek Ziyatov a, Zamira Uzakbergenova b, Batirbay Torambetov a,*, Tamas Holczbauer c, Jamshid Ashurov d, Shakhnoza Kadirova a
Editor: N Alvarez Failachee
PMCID: PMC10993600  PMID: 38584734

The mol­ecular and crystal structure of the bromido­tetra­kis­[5-(prop-2-en-1-ylsulfan­yl)-1,3,4-thia­diazol-2-amine-κN 3]copper(II) bromide complex was studied and Hirshfeld surfaces and fingerprint plots were generated to investigate the various inter­molecular inter­actions.

Keywords: crystal structure; copper(II); 1,3,4-thia­diazole; hydrogen bonding; Hirshfeld surface analysis

Abstract

A novel cationic complex, bromido­tetra­kis­[5-(prop-2-en-1-ylsulfan­yl)-1,3,4-thia­diazol-2-amine-κN 3]copper(II) bromide, [CuBr](C5H7N3S2)4Br, was synthesized. The complex crystallizes with fourfold mol­ecular symmetry in the tetra­gonal space group P4/n. The CuII atom exhibits a square-pyramidal coord­ination geometry. The Cu atom is located centrally within the complex, being coordinated by four nitro­gen atoms from four AAT mol­ecules, while a bromine anion is located at the apex of the pyramid. The amino H atoms of AAT inter­act with bromine from the inner and outer spheres, forming a two-dimensional network in the [100] and [010] directions. Hirshfeld surface analysis reveals that 33.7% of the inter­mol­ecular inter­actions are from H⋯H contacts, 21.2% are from S⋯H/H⋯S contacts, 13.4% are from S⋯S contacts and 11.0% are from C⋯H/H⋯C, while other contributions are from Br⋯H/H⋯Br and N⋯H/H⋯N contacts.

1. Chemical context

Nitro­gen-containing heterocycles are a promising class of ligands for the synthesis of transition-metal complexes that are strongly responsive to the changes in external conditions (Lavrenova et al., 2023). Derivatives of 1,3,4-thia­diazole represent a relatively new class of compounds that demonstrate a broad array of biological activities, making them of significant inter­est to various fields in medicinal chemistry and pharmacology worldwide (Gowramma et al., 2018; Kaviarasan et al., 2020; Upadhyay & Mishra, 2017; Yusuf et al., 2008). 1,3,4-Thia­diazole derivatives exhibit many biological properties, such as anti­microbial (Li et al., 2014; Chen et al., 2019), anti­tuberculosis (Foroumadi et al., 2004; Kolavi et al., 2006), anti­oxidant (Jakovljević et al., 2017; Swapna et al., 2013), anti­cancer (Altıntop et al., 2018; Aliabadi, 2016), herbicidal (Wang et al., 2011) and anti­fungal (Chen et al., 2007; Karaburun et al., 2018) activities. In addition, a limited number of studies mention the utilization of diverse thia­diazo­les as ligands in the synthesis of biologically active metal complexes (Huxel et al., 2015; Chandra et al., 2015; Hangan et al., 2015).

The strong complexing capability of thia­diazole derivatives is associated with the existence of numerous sulfur and nitro­gen atoms and the distinctiveness of its structure, specifically, the presence of unshared electron pairs and donor characteristics. They generate complexes with elements whose ions possess partially vacant d-orbitals or occupied d-orbitals and a low positive charge, exhibiting various polyhedral structures. In this context, investigating the complex-forming properties of thia­diazole derivatives is pertinent in delineating the characteristics of the mol­ecular and electronic structure of the original ligands and the stereochemistry of the coordination polyhedron (Hassan et al., 2018). This study focuses on the synthesis, examination of the structure, and characteristics of the [Cu(L)4Br]Br complex, where L is 2-amino-5-allyl­thio-1,3,4-thia­diazole (AAT), employing single-crystal X-ray diffraction (SC-XRD). 1.

2. Structural commentary

The crystals of [Cu(AAT)4Br]Br possess an ionic-mol­ecular structure. The complex crystallizes in the fourfold tetra­gonal system, space group P4/n, and the asymmetric unit comprises one mol­ecule of 2-amino-5-allyl­thio-1,3,4-thia­diazole (AAT), one Cu2+ ion with a multiplicity of 0.25, and Br ions in two positions with multiplicities of 0.25 each. The Br ions occupy special positions on fourfold axes, and this symmetry transformation generates the formula unit. In [Cu(AAT)4Br]Br, the copper atom exhibits a square-pyramidal geometry and its coordination sphere includes four nitro­gen atoms (N2) from the heterocyclic ligands and a bromine anion at the top of the pyramid. These nitro­gen atoms lie in one plane. The planar AAT mol­ecules are nearly perpendicular to this plane, exhibiting a slight twist of the Br1CuN2 planes. All the amino groups are in a syn arrangement. One of the Br ions is integrated into the inner coordination sphere, while the second Br- ion resides in the outer sphere (Fig. 1). As a result, the inner coordination sphere of the complex takes the shape of a tetra­gonal pyramid, where the basal positions are filled by nitro­gen atoms from the 2-amino-5-allyl­thio-1,3,4-thia­diazole ligands, and the apical position is occupied by the Br ion.

Figure 1.

Figure 1

Mol­ecular structure of the complex [Cu(AAT)4Br]Br. Displacement ellipsoids are shown with 20% probability level for clarity. Symmetry codes: (a) −x, y, z; (b) − Inline graphic  − y, x, z; (c) − Inline graphic  − x, Inline graphic  − y, z; (d) −y, Inline graphic  − x, z.

The Cu—Br bond length in the compound measures 2.7474 (7) Å, closely resembling the Cu—Br distance in the [CuL 4Br2](H2O)2 mol­ecule, which is 2.9383 Å (Berezin et al., 2018). Apparently, the binding of the Br ion into the inner coordination sphere induces a distortion of the CuN4 plane. The effect of this distortion is to the reduce N—Cu—N coordination angles [88.446 (18) and 161.04 (11)°], in contrast to the angles of 90 and 180° expected in an ideal square-planar structure. The sum of bond angles at the Cu atom is 353.8°. The Cu atom deviates from the (N2)4 plane toward Br by 0.333 Å. The length of the Cu—N coordination bonds is 2.0206 (17) Å, similar to those bonds in analogous complexes. For instance, in nitrato-tetra­kis­(2-amino-5-ethyl-1,3,4-thia­diazole)copper(II) nitrate, the average Cu—N bond length is 2.003 Å (Kadirova et al., 2008), aligning with the sum of the covalent radii of Cu and N.

Additionally, the Br1 atom participates in the formation of an intra­mol­ecular hydrogen bond with hydrogen atoms of four amino groups NH2 simultaneously (Table 1). By comparing the structures of some complexes based on 2-amino-1,3,4-thia­diazole derivatives, we see that copper(II) bromide, in contrast to chlorides and acetates of cobalt(II) and zinc(II) (Camí et al., 2005; Song et al., 2012; Wang et al., 2009; Kadirova et al., 2008; Ishankhodzhaeva et al., 2000, 2001), exhibits a distinct behavior when reacted with 2-amino-5-all­ylthio-1,3,4-thia­diazole under identical conditions. Instead of forming a tetra­hedral mol­ecular complex as might be anti­cipated from analytical data, copper(II) bromide forms the tetra­gonal–pyramidal cationic complex [Cu(AAT)4Br]Br.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯Br1 0.86 2.52 3.3265 (1) 157
N3—H3B⋯Br2 0.86 2.54 3.3685 (1) 162
C5A—H5AA⋯Br1i 0.93 3.03 3.95 (2) 175

Symmetry code: (i) Inline graphic .

3. Supra­molecular features

In the crystal structure of [Cu(AAT)4Br]Br, in addition to the aforementioned intra­molecular hydrogen bonds, there exist inter­mol­ecular hydrogen bonds. The second bromide ion, positioned in the outer sphere, forms a hydrogen bond with the second (not participating in the intra­mol­ecular hydrogen bond) hydrogen atom of the amino group N3H2 (Table 1). The outer-sphere Br2 ion also resides on the fourfold axis, resulting in the generation of a layer in the crystal perpendicular to the fourfold axis due to this symmetry transformation. As a result, in the crystal packing, the cationic coordination complexes form columns along the [001] crystallographic axis (Fig. 2). The bromine anions of the outer sphere of the complex are located between the columns due to the formation of the N3—H3B⋯Br2 inter­molecular hydrogen bonds with the amino groups of the ligand (Table 1).

Figure 2.

Figure 2

Packing of [Cu(AAT)4Br]Br complex mol­ecules in the crystal structure in projections along the (a) b and (b) c crystallographic axis. Hydrogen bonds are indicated by blue dashed lines.

The inter­action energies of the secondary inter­actions system within the structure were calculated using the HF method (HF/3-21G) in CrystalExplorer17 (Spackman et al., 2021). Although these calculations may not yield precise values for an ionic inter­action, they effectively highlight the direction of strong inter­actions. The result shows the total energy (E tot), which is the sum of the Coulombic (E ele), polar (E pol), dispersion (E dis) and repulsive (E rep) contributions. The four energy components were scaled in the total energy (E tot = 1.019E ele + 0651E pol + 0901E dis + 0.811E rep). The inter­action energies were investigated for a 3.8 Å cluster around the reference mol­ecule. The calculation reveals two stronger inter­actions within the neighbouring mol­ecules. The strongest inter­action total energy (E tot) is −112.5 kJ mol−1 (∼-27 kcal mol−1), with the polar (−30.1 kJ mol−1), dispersion (−123.3 kJ mol−1), Coulombic (−58.5 kJ mol−1) and repulsive (96.0 kJ mol−1) energies (with green colour) (Fig. 3).

Figure 3.

Figure 3

Inter­action energy calculations within the structure were performed using the HF method (HF/3–21 G) (CrystalExplorer17; Spackman et al., 2021. The thickness of the tube represents the value of the energy. The distribution of the inter­actions according to type shows strong inter­actions along the crystallographic a-axis direction (the largest values are represented here). The total energy framework (in blue) and its two main components, dispersion (in green) and Coulombic energy (in red), are shown for a cluster around a reference mol­ecule also exhibit stronger inter­actions along the crystallographic a-axis direction.

4. Hirshfeld surface analysis

To further investigate the inter­mol­ecular inter­actions present in the title compound, a Hirshfeld surface analysis was performed, and the two-dimensional (2D) fingerprint plots were generated with CrystalExplorer17 (Spackman et al., 2021). Fig. 4 shows the three-dimensional (3D) Hirshfeld surfaces of the complex with d norm (normalized contact distance) plotted. The hydrogen-bond inter­actions given in Table 1 play a key role in the mol­ecular packing of the complex. The overall 2D fingerprint plot and those delineated into H⋯H, S⋯H/H⋯S, S⋯S, C⋯H/H⋯C, Br⋯H/H⋯Br and N⋯H/H⋯N inter­actions are shown in Fig. 5. The percentage contributions to the Hirshfeld surfaces from the various inter­atomic contacts are as follows: H⋯H 33.7%, S⋯H/H⋯S 21.2%, S⋯S 13.4, C⋯H/H⋯C 11%, Br⋯H/H⋯Br 9.2% and N⋯H/H⋯N 7.8%. Other minor contributions to the Hirshfeld surface are: S⋯C/C⋯S 1.9% and Br⋯S/S⋯Br 1.6%.

Figure 4.

Figure 4

Views of the three-dimensional Hirshfeld surface of the complex [Cu(AAT)4Br]+ cation plotted over d norm in views along the (a) [110] and (b) [001] directions.

Figure 5.

Figure 5

Contributions of the various contacts to the two-dimensional fingerprint plots built using the Hirshfeld surfaces of the title complex.

5. Database survey

A survey of the Cambridge Structural Database (CSD, version 5.43, update of March 2022; Groom et al., 2016) revealed that nearly a hundred crystal structures had been reported for complexes of 2-amino-1,3,4-thia­diazole derivatives and a number of metal ions, including Mn, Fe, Co, Ni, Cu, Zn, Mo, Ag, Pd, Cd, Sn, Re, Pt, Au and Hg, twelve of which are for Cu complexes. Six structures exhibit tetra­gonal–pyramidal polyhedra (HONDOG, Torambetov et al., 2019; RUFQIT, Kadirova et al., 2008; SUZVOY, SUZVUE, Lynch & Ewington, 2001; XIGWIU, Camí et al., 2005; ZEKWOE, Gurbanov, et al., 2018). In seven structures, AAT is attached to metal ions, making p-complexes (ODAPOC, Slyvka et al., 2022; CEDSEM, Slyvka, 2017a ; ESIBUG, Slyvka et al., 2021; HAJLUC, Ardan et al., 2017; HAJMAJ, HAJMIR, Ardan et al., 2017; YEBNAX, Slyvka, 2017b ). However, no complexes of CuBr2 based on 2-amino-1,3,4-thia­diazole derivatives have been documented in the CSD.

6. Synthesis and crystallization

The ligand 2-amino-5-allyl­thio-1,3,4-thia­diazole (AAT) was synthesized by the method of Toshmurodov et al. (2016), yield: 93%, m.p. = 388–390 K. CuBr2·4H2O (0.296g, 1 mmol) was added under continuous stirring to a solution of AAT (0.692 g, 4 mmol) dissolved in 10 ml of methanol. The resulting dark-green solution was stirred for 3 h and was then left to stand at room temperature. After one week, green crystals suitable for X-ray diffraction were obtained (yield 86%) by the slow evaporation of the solvent, m.p. = 458–460 K.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were positioned geometrically (N—H = 0.86 Å, C—H = 0.83–0.97 Å) and refined as riding with U iso(H) = 1.2U eq(C, N).

Table 2. Experimental details.

Crystal data
Chemical formula [CuBr(C5H7N3S2)4]Br
M r 916.38
Crystal system, space group Tetragonal, P4/n
Temperature (K) 293
a, c (Å) 12.69368 (9), 11.35879 (13)
V3) 1830.24 (3)
Z 2
Radiation type Cu Kα
μ (mm−1) 7.95
Crystal size (mm) 0.12 × 0.08 × 0.03
 
Data collection
Diffractometer XtaLAB Synergy, Single source at home/near, HyPix3000
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2020)
T min, T max 0.626, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 18450, 1746, 1597
R int 0.036
(sin θ/λ)max−1) 0.609
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.025, 0.065, 1.05
No. of reflections 1746
No. of parameters 118
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.26, −0.28

Computer programs: CrysAlis PRO (Rigaku OD, 2020), SHELXT (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ), OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989024002652/ny2003sup1.cif

e-80-00408-sup1.cif (640.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989024002652/ny2003Isup2.hkl

e-80-00408-Isup2.hkl (141KB, hkl)

CCDC reference: 2341909

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

[CuBr(C5H7N3S2)4]Br Dx = 1.663 Mg m3
Mr = 916.38 Cu Kα radiation, λ = 1.54184 Å
Tetragonal, P4/n Cell parameters from 9121 reflections
a = 12.69368 (9) Å θ = 3.5–70.8°
c = 11.35879 (13) Å µ = 7.95 mm1
V = 1830.24 (3) Å3 T = 293 K
Z = 2 Block, green
F(000) = 918 0.12 × 0.08 × 0.03 mm

Data collection

XtaLAB Synergy, Single source at home/near, HyPix3000 diffractometer 1597 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1 Rint = 0.036
ω scans θmax = 69.9°, θmin = 3.9°
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2020) h = −15→15
Tmin = 0.626, Tmax = 1.000 k = −11→15
18450 measured reflections l = −13→13
1746 independent reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.025 w = 1/[σ2(Fo2) + (0.0273P)2 + 0.9257P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.065 (Δ/σ)max < 0.001
S = 1.05 Δρmax = 0.26 e Å3
1746 reflections Δρmin = −0.28 e Å3
118 parameters Extinction correction: SHELXL-2016/6 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.00018 (7)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Br1 0.750000 0.750000 1.01564 (4) 0.04943 (15)
Br2 0.250000 0.750000 1.000000 0.05616 (16)
Cu1 0.750000 0.750000 0.77377 (5) 0.03890 (16)
S1 0.39660 (5) 0.70986 (6) 0.72047 (6) 0.06176 (19)
S2 0.42895 (6) 0.65094 (8) 0.46657 (7) 0.0831 (3)
N2 0.59625 (14) 0.71817 (14) 0.74447 (16) 0.0470 (4)
N1 0.57992 (14) 0.68882 (16) 0.62785 (18) 0.0544 (5)
N3 0.50405 (16) 0.7637 (2) 0.9157 (2) 0.0739 (7)
H3A 0.560992 0.775718 0.954484 0.089*
H3B 0.443808 0.771729 0.949189 0.089*
C1 0.50915 (16) 0.73279 (18) 0.8039 (2) 0.0500 (5)
C2 0.48136 (19) 0.6828 (2) 0.6037 (2) 0.0574 (6)
C3 0.5494 (3) 0.6360 (3) 0.3816 (3) 0.0984 (11)
H3BC 0.580640 0.704195 0.365145 0.118* 0.5
H3BD 0.600153 0.593336 0.423967 0.118* 0.5
H3AA 0.600532 0.688177 0.406669 0.118* 0.5
H3AB 0.579095 0.566715 0.395347 0.118* 0.5
C5A 0.5337 (16) 0.5753 (12) 0.1730 (17) 0.143 (7) 0.5
H5AA 0.587593 0.612982 0.136912 0.171* 0.5
H5AB 0.492013 0.529830 0.128742 0.171* 0.5
C4 0.5259 (9) 0.6502 (7) 0.2475 (9) 0.104 (3) 0.5
H4 0.516751 0.720330 0.226229 0.125* 0.5
C4A 0.5181 (8) 0.5852 (11) 0.2749 (8) 0.112 (3) 0.5
H4A 0.461720 0.541488 0.293578 0.134* 0.5
C5 0.5187 (14) 0.6021 (18) 0.1813 (12) 0.154 (8) 0.5
H5A 0.526312 0.529967 0.192763 0.185* 0.5
H5B 0.504113 0.628295 0.106619 0.185* 0.5

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.05153 (19) 0.05153 (19) 0.0452 (3) 0.000 0.000 0.000
Br2 0.04993 (19) 0.04993 (19) 0.0686 (3) 0.000 0.000 0.000
Cu1 0.0362 (2) 0.0362 (2) 0.0443 (3) 0.000 0.000 0.000
S1 0.0387 (3) 0.0791 (4) 0.0675 (4) 0.0015 (3) −0.0065 (3) 0.0060 (3)
S2 0.0637 (4) 0.1138 (7) 0.0718 (5) −0.0029 (4) −0.0179 (4) −0.0189 (4)
N2 0.0405 (9) 0.0489 (10) 0.0517 (10) −0.0013 (8) −0.0029 (8) 0.0008 (8)
N1 0.0450 (10) 0.0610 (12) 0.0573 (11) −0.0041 (9) −0.0020 (8) −0.0070 (9)
N3 0.0430 (11) 0.121 (2) 0.0573 (13) 0.0096 (12) 0.0002 (9) −0.0060 (13)
C1 0.0388 (11) 0.0538 (12) 0.0574 (13) 0.0016 (9) −0.0018 (9) 0.0079 (10)
C2 0.0489 (13) 0.0608 (14) 0.0626 (15) −0.0020 (11) −0.0058 (11) −0.0008 (11)
C3 0.084 (2) 0.131 (3) 0.080 (2) −0.004 (2) −0.0020 (18) −0.023 (2)
C5A 0.168 (13) 0.095 (7) 0.165 (16) −0.031 (7) 0.075 (10) −0.020 (7)
C4 0.173 (9) 0.068 (5) 0.070 (6) −0.034 (5) 0.017 (5) 0.007 (4)
C4A 0.117 (7) 0.141 (10) 0.077 (6) 0.013 (7) 0.024 (5) −0.019 (6)
C5 0.121 (9) 0.30 (2) 0.038 (4) 0.016 (12) −0.010 (5) −0.005 (8)

Geometric parameters (Å, º)

Br1—Cu1 2.7474 (7) C3—H3BC 0.9700
Cu1—N2i 2.0206 (17) C3—H3BD 0.9700
Cu1—N2 2.0206 (17) C3—H3AA 0.9700
Cu1—N2ii 2.0206 (17) C3—H3AB 0.9700
Cu1—N2iii 2.0206 (17) C3—C4 1.562 (11)
S1—C1 1.739 (2) C3—C4A 1.429 (10)
S1—C2 1.742 (3) C5A—H5AA 0.9300
S2—C2 1.741 (3) C5A—H5AB 0.9300
S2—C3 1.818 (4) C5A—C4A 1.181 (19)
N2—N1 1.392 (3) C4—H4 0.9300
N2—C1 1.308 (3) C4—C5 0.973 (18)
N1—C2 1.283 (3) C4A—H4A 0.9300
N3—H3A 0.8600 C5—H5A 0.9300
N3—H3B 0.8600 C5—H5B 0.9300
N3—C1 1.331 (3)
N2i—Cu1—Br1 99.48 (5) S2—C3—H3BC 110.7
N2iii—Cu1—Br1 99.48 (5) S2—C3—H3BD 110.7
N2ii—Cu1—Br1 99.48 (5) S2—C3—H3AA 109.6
N2—Cu1—Br1 99.48 (5) S2—C3—H3AB 109.6
N2ii—Cu1—N2iii 88.446 (18) H3BC—C3—H3BD 108.8
N2ii—Cu1—N2 88.446 (18) H3AA—C3—H3AB 108.1
N2iii—Cu1—N2i 88.446 (18) C4—C3—S2 110.2 (5)
N2i—Cu1—N2 88.445 (18) C4—C3—H3AA 109.6
N2ii—Cu1—N2i 161.04 (11) C4—C3—H3AB 109.6
N2iii—Cu1—N2 161.04 (11) C4A—C3—S2 105.3 (5)
C1—S1—C2 86.58 (11) C4A—C3—H3BC 110.7
C2—S2—C3 100.25 (14) C4A—C3—H3BD 110.7
N1—N2—Cu1 110.74 (13) H5AA—C5A—H5AB 120.0
C1—N2—Cu1 134.66 (16) C4A—C5A—H5AA 120.0
C1—N2—N1 113.76 (18) C4A—C5A—H5AB 120.0
C2—N1—N2 111.4 (2) C3—C4—H4 112.8
H3A—N3—H3B 120.0 C5—C4—C3 134.4 (15)
C1—N3—H3A 120.0 C5—C4—H4 112.8
C1—N3—H3B 120.0 C3—C4A—H4A 106.8
N2—C1—S1 112.94 (18) C5A—C4A—C3 146.4 (13)
N2—C1—N3 125.1 (2) C5A—C4A—H4A 106.8
N3—C1—S1 121.96 (17) C4—C5—H5A 120.0
S2—C2—S1 119.40 (14) C4—C5—H5B 120.0
N1—C2—S1 115.33 (19) H5A—C5—H5B 120.0
N1—C2—S2 125.3 (2)
Cu1—N2—N1—C2 −170.89 (17) C1—S1—C2—S2 −178.55 (17)
Cu1—N2—C1—S1 168.95 (12) C1—S1—C2—N1 1.2 (2)
Cu1—N2—C1—N3 −9.9 (4) C1—N2—N1—C2 0.2 (3)
S2—C3—C4—C5 −103 (2) C2—S1—C1—N2 −1.01 (18)
S2—C3—C4A—C5A 148 (2) C2—S1—C1—N3 177.9 (2)
N2—N1—C2—S1 −1.0 (3) C2—S2—C3—C4 −158.1 (4)
N2—N1—C2—S2 178.68 (17) C2—S2—C3—C4A 166.4 (6)
N1—N2—C1—S1 0.7 (2) C3—S2—C2—S1 178.11 (19)
N1—N2—C1—N3 −178.2 (2) C3—S2—C2—N1 −1.6 (3)

Symmetry codes: (i) y, −x+3/2, z; (ii) −y+3/2, x, z; (iii) −x+3/2, −y+3/2, z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N3—H3A···Br1 0.86 2.52 3.3265 (1) 157
N3—H3B···Br2 0.86 2.54 3.3685 (1) 162
C5A—H5AA···Br1iv 0.93 3.03 3.95 (2) 175

Symmetry code: (iv) x, y, z−1.

Funding Statement

This work was supported by Uzbekistan Ministry of Higher Education, Science and Innovation.

References

  1. Aliabadi, A. (2016). Anticancer Agents Med. Chem. 16, 1301–1314. [DOI] [PubMed]
  2. Altıntop, M. D., Sever, B., Özdemir, A., Ilgın, S., Atlı, Ö., Turan-Zitouni, G. & Kaplancıklı, Z. A. (2018). Anticancer Agents Med. Chem. 18, 1606–1616. [DOI] [PubMed]
  3. Ardan, B., Kinzhybalo, V., Slyvka, Y., Shyyka, O., Luk’yanov, M., Lis, T. & Mys’kiv, M. (2017). Acta Cryst. C73, 36–46. [DOI] [PubMed]
  4. Berezin, A. S., Ivanova, A. D., Komarov, V. Y., Nadolinny, V. A. & Lavrenova, L. G. (2018). New J. Chem. 42, 4902–4908.
  5. Camí, G. E., Liu González, M., Sanz Ruiz, F. & Pedregosa, J. C. (2005). J. Phys. Chem. Solids, 66, 936–945.
  6. Chandra, S., Gautam, S., Rajor, H. K. & Bhatia, R. (2015). Spectrochim. Acta A Mol. Biomol. Spectrosc. 137, 749–760. [DOI] [PubMed]
  7. Chen, C. J., Song, B. A., Yang, S., Xu, G. F., Bhadury, P. S., Jin, L. H., Hu, D. Y., Li, Q. Z., Liu, F., Xue, W., Lu, P. & Chen, Z. (2007). Bioorg. Med. Chem. 15, 3981–3989. [DOI] [PubMed]
  8. Chen, J., Yi, C., Wang, S., Wu, S., Li, S., Hu, D. & Song, B. (2019). Bioorg. Med. Chem. Lett. 29, 1203–1210. [DOI] [PubMed]
  9. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  10. Foroumadi, A., Soltani, F., Jabini, R., Moshafi, M. H. & Rasnani, F. M. (2004). Arch. Pharm. Res. 27, 502–506. [DOI] [PubMed]
  11. Gowramma, B., Praveen, T. K., Gomathy, S., Kalirajan, R., Babu, B. & Krishnavenic, N. (2018). Curr. Bioact. Compd. 14, 309–316.
  12. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  13. Gurbanov, A. V., Mahmoudi, G., Guedes da Silva, M. F. C., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Inorg. Chim. Acta, 471, 130–136.
  14. Hangan, A. C., Turza, A., Stan, R. L., Stefan, R. & Oprean, L. S. (2015). Russ. J. Coord. Chem. 41, 395–404.
  15. Hassan, A. E., Shaaban, I. A., Abuelela, A. M., Zoghaib, W. M. & Mohamed, T. A. (2018). J. Coord. Chem. 71, 2814–2830.
  16. Huxel, T., Demeshko, S. & Klingele, J. (2015). Z. Anorg. Allge Chem. 641, 1711–1717.
  17. Ishankhodzhaeva, M. M., Kadyrova, S. A., Talipov, S. A., Ibragimov, B. T., Fun, K. K., Sundara Razh, S. S. & Parpiev, N. A. (2001). Russ. J. Gen. Chem. 71, 1066–1069.
  18. Ishankhodzhaeva, M. M., Umarov, B. B., Kadyrova, Sh. A., Parpiev, N. A., Makhkamov, K. K. & Talipov, S. A. (2000). Russ. J. Gen. Chem. 70, 1113–1119.
  19. Jakovljević, K., Matić, I. Z., Stanojković, T., Krivokuća, A., Marković, V., Joksović, M. D., Mihailović, N., Nićiforović, M. & Joksović, L. (2017). Bioorg. Med. Chem. Lett. 27, 3709–3715. [DOI] [PubMed]
  20. Kadirova, Sh. A., Ishankhodzhaeva, M. M., Parpiev, N. A., Tozhiboev, A., Tashkhodzhaev, B. & Karimov, Z. (2008). Russ. J. Gen. Chem. 78, 2398–2402.
  21. Karaburun, A., Acar Çevik, U., Osmaniye, D., Sağlık, B., Kaya Çavuşoğlu, B., Levent, S. & Kaplancıklı, Z. (2018). Molecules, 23, 3129. https://doi.org/10.3390/molecules23123129
  22. Kaviarasan, L., Gowramma, B., Kalirajan, R., Mevithra, M. & Chandralekha, S. (2020). J. Iran. Chem. Soc. 17, 2083–2094.
  23. Kolavi, G., Hegde, V., Khazi, I. & Gadad, P. (2006). Bioorg. Med. Chem. 14, 3069–3080. [DOI] [PubMed]
  24. Lavrenova, L. G., Sukhikh, T. S., Glinskaya, L. A., Trubina, S. V., Zvereva, V. V., Lavrov, A. N., Klyushova, L. S. & Artem’ev, A. V. (2023). Int. J. Mol. Sci. 24, 13024. [DOI] [PMC free article] [PubMed]
  25. Li, P., Shi, L., Yang, X., Yang, L., Chen, X. W., Wu, F., Shi, Q. C., Xu, W. M., He, M., Hu, D. Y. & Song, B. A. (2014). Bioorg. Med. Chem. Lett. 24, 1677–1680. [DOI] [PubMed]
  26. Lynch, D. E. & Ewington, J. (2001). Acta Cryst. C57, 1032–1035. [DOI] [PubMed]
  27. Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.
  28. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  29. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  30. Slyvka, Y. (2017a). Visnyk Lviv Univ. Ser. Chem. 58, 172.
  31. Slyvka, Y., Kinzhybalo, V., Shyyka, O. & Mys’kiv, M. (2021). Acta Cryst. C77, 249–256. [DOI] [PubMed]
  32. Slyvka, Y. I. (2017b). J. Struct. Chem. 58, 356–357.
  33. Slyvka, Y. I., Goreshnik, E. A., Pokhodylo, N. T. & Mys’kiv, M. G. (2022). J. Chem. Crystallogr. 52, 205–213.
  34. Song, Y., Ji, Y.-F., Kang, M.-Y. & Liu, Z.-L. (2012). Acta Cryst. E68, m772. [DOI] [PMC free article] [PubMed]
  35. Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. [DOI] [PMC free article] [PubMed]
  36. Swapna, M., Premakumari, C., Nagi Reddy, S., Padmaja, A. & Padmavathi, V. (2013). Chem. Pharm. Bull. 61, 611–617. [DOI] [PubMed]
  37. Torambetov, B., Kadirova, S., Toshmurodov, T., Ashurov, J. M., Parpiev, N. A. & Ziyaev, A. (2019). Acta Cryst. E75, 1239–1242. [DOI] [PMC free article] [PubMed]
  38. Toshmurodov, T. T., Ziyaev, A. A., Elmuradov, B. Zh., Ismailova, D. S. & Kurbanova, E. R. (2016). J. Chem. Chem. Sci. 6, 199–204.
  39. Upadhyay, P. K. & Mishra, P. (2017). Rasayan J. Chem. 10, 254–262.
  40. Wang, P., Wan, R., Wang, B., Han, F. & Wang, Y. (2009). Acta Cryst. E65, m1086. [DOI] [PMC free article] [PubMed]
  41. Wang, T., Miao, W., Wu, S., Bing, G., Zhang, X., Qin, Z., Yu, H., Qin, X. & Fang, J. (2011). Chin. J. Chem. 29, 959–967.
  42. Yusuf, M., Khan, R. A. & Ahmed, B. (2008). Bioorg. Med. Chem. 16, 8029–8034. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989024002652/ny2003sup1.cif

e-80-00408-sup1.cif (640.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989024002652/ny2003Isup2.hkl

e-80-00408-Isup2.hkl (141KB, hkl)

CCDC reference: 2341909

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES