The molecular and crystal structure of the bromidotetrakis[5-(prop-2-en-1-ylsulfanyl)-1,3,4-thiadiazol-2-amine-κN 3]copper(II) bromide complex was studied and Hirshfeld surfaces and fingerprint plots were generated to investigate the various intermolecular interactions.
Keywords: crystal structure; copper(II); 1,3,4-thiadiazole; hydrogen bonding; Hirshfeld surface analysis
Abstract
A novel cationic complex, bromidotetrakis[5-(prop-2-en-1-ylsulfanyl)-1,3,4-thiadiazol-2-amine-κN 3]copper(II) bromide, [CuBr](C5H7N3S2)4Br, was synthesized. The complex crystallizes with fourfold molecular symmetry in the tetragonal space group P4/n. The CuII atom exhibits a square-pyramidal coordination geometry. The Cu atom is located centrally within the complex, being coordinated by four nitrogen atoms from four AAT molecules, while a bromine anion is located at the apex of the pyramid. The amino H atoms of AAT interact with bromine from the inner and outer spheres, forming a two-dimensional network in the [100] and [010] directions. Hirshfeld surface analysis reveals that 33.7% of the intermolecular interactions are from H⋯H contacts, 21.2% are from S⋯H/H⋯S contacts, 13.4% are from S⋯S contacts and 11.0% are from C⋯H/H⋯C, while other contributions are from Br⋯H/H⋯Br and N⋯H/H⋯N contacts.
1. Chemical context
Nitrogen-containing heterocycles are a promising class of ligands for the synthesis of transition-metal complexes that are strongly responsive to the changes in external conditions (Lavrenova et al., 2023 ▸). Derivatives of 1,3,4-thiadiazole represent a relatively new class of compounds that demonstrate a broad array of biological activities, making them of significant interest to various fields in medicinal chemistry and pharmacology worldwide (Gowramma et al., 2018 ▸; Kaviarasan et al., 2020 ▸; Upadhyay & Mishra, 2017 ▸; Yusuf et al., 2008 ▸). 1,3,4-Thiadiazole derivatives exhibit many biological properties, such as antimicrobial (Li et al., 2014 ▸; Chen et al., 2019 ▸), antituberculosis (Foroumadi et al., 2004 ▸; Kolavi et al., 2006 ▸), antioxidant (Jakovljević et al., 2017 ▸; Swapna et al., 2013 ▸), anticancer (Altıntop et al., 2018 ▸; Aliabadi, 2016 ▸), herbicidal (Wang et al., 2011 ▸) and antifungal (Chen et al., 2007 ▸; Karaburun et al., 2018 ▸) activities. In addition, a limited number of studies mention the utilization of diverse thiadiazoles as ligands in the synthesis of biologically active metal complexes (Huxel et al., 2015 ▸; Chandra et al., 2015 ▸; Hangan et al., 2015 ▸).
The strong complexing capability of thiadiazole derivatives is associated with the existence of numerous sulfur and nitrogen atoms and the distinctiveness of its structure, specifically, the presence of unshared electron pairs and donor characteristics. They generate complexes with elements whose ions possess partially vacant d-orbitals or occupied d-orbitals and a low positive charge, exhibiting various polyhedral structures. In this context, investigating the complex-forming properties of thiadiazole derivatives is pertinent in delineating the characteristics of the molecular and electronic structure of the original ligands and the stereochemistry of the coordination polyhedron (Hassan et al., 2018 ▸). This study focuses on the synthesis, examination of the structure, and characteristics of the [Cu(L)4Br]Br complex, where L is 2-amino-5-allylthio-1,3,4-thiadiazole (AAT), employing single-crystal X-ray diffraction (SC-XRD).
2. Structural commentary
The crystals of [Cu(AAT)4Br]Br possess an ionic-molecular structure. The complex crystallizes in the fourfold tetragonal system, space group P4/n, and the asymmetric unit comprises one molecule of 2-amino-5-allylthio-1,3,4-thiadiazole (AAT), one Cu2+ ion with a multiplicity of 0.25, and Br− ions in two positions with multiplicities of 0.25 each. The Br− ions occupy special positions on fourfold axes, and this symmetry transformation generates the formula unit. In [Cu(AAT)4Br]Br, the copper atom exhibits a square-pyramidal geometry and its coordination sphere includes four nitrogen atoms (N2) from the heterocyclic ligands and a bromine anion at the top of the pyramid. These nitrogen atoms lie in one plane. The planar AAT molecules are nearly perpendicular to this plane, exhibiting a slight twist of the Br1CuN2 planes. All the amino groups are in a syn arrangement. One of the Br− ions is integrated into the inner coordination sphere, while the second Br- ion resides in the outer sphere (Fig. 1 ▸). As a result, the inner coordination sphere of the complex takes the shape of a tetragonal pyramid, where the basal positions are filled by nitrogen atoms from the 2-amino-5-allylthio-1,3,4-thiadiazole ligands, and the apical position is occupied by the Br− ion.
Figure 1.
Molecular structure of the complex [Cu(AAT)4Br]Br. Displacement ellipsoids are shown with 20% probability level for clarity. Symmetry codes: (a) −x, y, z; (b) −
− y, x, z; (c) −
− x,
− y, z; (d) −y,
− x, z.
The Cu—Br bond length in the compound measures 2.7474 (7) Å, closely resembling the Cu—Br distance in the [CuL 4Br2](H2O)2 molecule, which is 2.9383 Å (Berezin et al., 2018 ▸). Apparently, the binding of the Br− ion into the inner coordination sphere induces a distortion of the CuN4 plane. The effect of this distortion is to the reduce N—Cu—N coordination angles [88.446 (18) and 161.04 (11)°], in contrast to the angles of 90 and 180° expected in an ideal square-planar structure. The sum of bond angles at the Cu atom is 353.8°. The Cu atom deviates from the (N2)4 plane toward Br− by 0.333 Å. The length of the Cu—N coordination bonds is 2.0206 (17) Å, similar to those bonds in analogous complexes. For instance, in nitrato-tetrakis(2-amino-5-ethyl-1,3,4-thiadiazole)copper(II) nitrate, the average Cu—N bond length is 2.003 Å (Kadirova et al., 2008 ▸), aligning with the sum of the covalent radii of Cu and N.
Additionally, the Br1 atom participates in the formation of an intramolecular hydrogen bond with hydrogen atoms of four amino groups NH2 simultaneously (Table 1 ▸). By comparing the structures of some complexes based on 2-amino-1,3,4-thiadiazole derivatives, we see that copper(II) bromide, in contrast to chlorides and acetates of cobalt(II) and zinc(II) (Camí et al., 2005 ▸; Song et al., 2012 ▸; Wang et al., 2009 ▸; Kadirova et al., 2008 ▸; Ishankhodzhaeva et al., 2000 ▸, 2001 ▸), exhibits a distinct behavior when reacted with 2-amino-5-allylthio-1,3,4-thiadiazole under identical conditions. Instead of forming a tetrahedral molecular complex as might be anticipated from analytical data, copper(II) bromide forms the tetragonal–pyramidal cationic complex [Cu(AAT)4Br]Br.
Table 1. Hydrogen-bond geometry (Å, °).
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
---|---|---|---|---|
N3—H3A⋯Br1 | 0.86 | 2.52 | 3.3265 (1) | 157 |
N3—H3B⋯Br2 | 0.86 | 2.54 | 3.3685 (1) | 162 |
C5A—H5AA⋯Br1i | 0.93 | 3.03 | 3.95 (2) | 175 |
Symmetry code: (i)
.
3. Supramolecular features
In the crystal structure of [Cu(AAT)4Br]Br, in addition to the aforementioned intramolecular hydrogen bonds, there exist intermolecular hydrogen bonds. The second bromide ion, positioned in the outer sphere, forms a hydrogen bond with the second (not participating in the intramolecular hydrogen bond) hydrogen atom of the amino group N3H2 (Table 1 ▸). The outer-sphere Br2 ion also resides on the fourfold axis, resulting in the generation of a layer in the crystal perpendicular to the fourfold axis due to this symmetry transformation. As a result, in the crystal packing, the cationic coordination complexes form columns along the [001] crystallographic axis (Fig. 2 ▸). The bromine anions of the outer sphere of the complex are located between the columns due to the formation of the N3—H3B⋯Br2 intermolecular hydrogen bonds with the amino groups of the ligand (Table 1 ▸).
Figure 2.
Packing of [Cu(AAT)4Br]Br complex molecules in the crystal structure in projections along the (a) b and (b) c crystallographic axis. Hydrogen bonds are indicated by blue dashed lines.
The interaction energies of the secondary interactions system within the structure were calculated using the HF method (HF/3-21G) in CrystalExplorer17 (Spackman et al., 2021 ▸). Although these calculations may not yield precise values for an ionic interaction, they effectively highlight the direction of strong interactions. The result shows the total energy (E tot), which is the sum of the Coulombic (E ele), polar (E pol), dispersion (E dis) and repulsive (E rep) contributions. The four energy components were scaled in the total energy (E tot = 1.019E ele + 0651E pol + 0901E dis + 0.811E rep). The interaction energies were investigated for a 3.8 Å cluster around the reference molecule. The calculation reveals two stronger interactions within the neighbouring molecules. The strongest interaction total energy (E tot) is −112.5 kJ mol−1 (∼-27 kcal mol−1), with the polar (−30.1 kJ mol−1), dispersion (−123.3 kJ mol−1), Coulombic (−58.5 kJ mol−1) and repulsive (96.0 kJ mol−1) energies (with green colour) (Fig. 3 ▸).
Figure 3.
Interaction energy calculations within the structure were performed using the HF method (HF/3–21 G) (CrystalExplorer17; Spackman et al., 2021 ▸. The thickness of the tube represents the value of the energy. The distribution of the interactions according to type shows strong interactions along the crystallographic a-axis direction (the largest values are represented here). The total energy framework (in blue) and its two main components, dispersion (in green) and Coulombic energy (in red), are shown for a cluster around a reference molecule also exhibit stronger interactions along the crystallographic a-axis direction.
4. Hirshfeld surface analysis
To further investigate the intermolecular interactions present in the title compound, a Hirshfeld surface analysis was performed, and the two-dimensional (2D) fingerprint plots were generated with CrystalExplorer17 (Spackman et al., 2021 ▸). Fig. 4 ▸ shows the three-dimensional (3D) Hirshfeld surfaces of the complex with d norm (normalized contact distance) plotted. The hydrogen-bond interactions given in Table 1 ▸ play a key role in the molecular packing of the complex. The overall 2D fingerprint plot and those delineated into H⋯H, S⋯H/H⋯S, S⋯S, C⋯H/H⋯C, Br⋯H/H⋯Br and N⋯H/H⋯N interactions are shown in Fig. 5 ▸. The percentage contributions to the Hirshfeld surfaces from the various interatomic contacts are as follows: H⋯H 33.7%, S⋯H/H⋯S 21.2%, S⋯S 13.4, C⋯H/H⋯C 11%, Br⋯H/H⋯Br 9.2% and N⋯H/H⋯N 7.8%. Other minor contributions to the Hirshfeld surface are: S⋯C/C⋯S 1.9% and Br⋯S/S⋯Br 1.6%.
Figure 4.
Views of the three-dimensional Hirshfeld surface of the complex [Cu(AAT)4Br]+ cation plotted over d norm in views along the (a) [110] and (b) [001] directions.
Figure 5.
Contributions of the various contacts to the two-dimensional fingerprint plots built using the Hirshfeld surfaces of the title complex.
5. Database survey
A survey of the Cambridge Structural Database (CSD, version 5.43, update of March 2022; Groom et al., 2016 ▸) revealed that nearly a hundred crystal structures had been reported for complexes of 2-amino-1,3,4-thiadiazole derivatives and a number of metal ions, including Mn, Fe, Co, Ni, Cu, Zn, Mo, Ag, Pd, Cd, Sn, Re, Pt, Au and Hg, twelve of which are for Cu complexes. Six structures exhibit tetragonal–pyramidal polyhedra (HONDOG, Torambetov et al., 2019 ▸; RUFQIT, Kadirova et al., 2008 ▸; SUZVOY, SUZVUE, Lynch & Ewington, 2001 ▸; XIGWIU, Camí et al., 2005 ▸; ZEKWOE, Gurbanov, et al., 2018 ▸). In seven structures, AAT is attached to metal ions, making p-complexes (ODAPOC, Slyvka et al., 2022 ▸; CEDSEM, Slyvka, 2017a ▸; ESIBUG, Slyvka et al., 2021 ▸; HAJLUC, Ardan et al., 2017 ▸; HAJMAJ, HAJMIR, Ardan et al., 2017 ▸; YEBNAX, Slyvka, 2017b ▸). However, no complexes of CuBr2 based on 2-amino-1,3,4-thiadiazole derivatives have been documented in the CSD.
6. Synthesis and crystallization
The ligand 2-amino-5-allylthio-1,3,4-thiadiazole (AAT) was synthesized by the method of Toshmurodov et al. (2016 ▸), yield: 93%, m.p. = 388–390 K. CuBr2·4H2O (0.296g, 1 mmol) was added under continuous stirring to a solution of AAT (0.692 g, 4 mmol) dissolved in 10 ml of methanol. The resulting dark-green solution was stirred for 3 h and was then left to stand at room temperature. After one week, green crystals suitable for X-ray diffraction were obtained (yield 86%) by the slow evaporation of the solvent, m.p. = 458–460 K.
7. Refinement
Crystal data, data collection and structure refinement details are summarized in Table 2 ▸. H atoms were positioned geometrically (N—H = 0.86 Å, C—H = 0.83–0.97 Å) and refined as riding with U iso(H) = 1.2U eq(C, N).
Table 2. Experimental details.
Crystal data | |
Chemical formula | [CuBr(C5H7N3S2)4]Br |
M r | 916.38 |
Crystal system, space group | Tetragonal, P4/n |
Temperature (K) | 293 |
a, c (Å) | 12.69368 (9), 11.35879 (13) |
V (Å3) | 1830.24 (3) |
Z | 2 |
Radiation type | Cu Kα |
μ (mm−1) | 7.95 |
Crystal size (mm) | 0.12 × 0.08 × 0.03 |
Data collection | |
Diffractometer | XtaLAB Synergy, Single source at home/near, HyPix3000 |
Absorption correction | Multi-scan (CrysAlis PRO; Rigaku OD, 2020 ▸) |
T min, T max | 0.626, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 18450, 1746, 1597 |
R int | 0.036 |
(sin θ/λ)max (Å−1) | 0.609 |
Refinement | |
R[F 2 > 2σ(F 2)], wR(F 2), S | 0.025, 0.065, 1.05 |
No. of reflections | 1746 |
No. of parameters | 118 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.26, −0.28 |
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989024002652/ny2003sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989024002652/ny2003Isup2.hkl
CCDC reference: 2341909
Additional supporting information: crystallographic information; 3D view; checkCIF report
supplementary crystallographic information
Crystal data
[CuBr(C5H7N3S2)4]Br | Dx = 1.663 Mg m−3 |
Mr = 916.38 | Cu Kα radiation, λ = 1.54184 Å |
Tetragonal, P4/n | Cell parameters from 9121 reflections |
a = 12.69368 (9) Å | θ = 3.5–70.8° |
c = 11.35879 (13) Å | µ = 7.95 mm−1 |
V = 1830.24 (3) Å3 | T = 293 K |
Z = 2 | Block, green |
F(000) = 918 | 0.12 × 0.08 × 0.03 mm |
Data collection
XtaLAB Synergy, Single source at home/near, HyPix3000 diffractometer | 1597 reflections with I > 2σ(I) |
Detector resolution: 10.0000 pixels mm-1 | Rint = 0.036 |
ω scans | θmax = 69.9°, θmin = 3.9° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2020) | h = −15→15 |
Tmin = 0.626, Tmax = 1.000 | k = −11→15 |
18450 measured reflections | l = −13→13 |
1746 independent reflections |
Refinement
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.025 | w = 1/[σ2(Fo2) + (0.0273P)2 + 0.9257P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.065 | (Δ/σ)max < 0.001 |
S = 1.05 | Δρmax = 0.26 e Å−3 |
1746 reflections | Δρmin = −0.28 e Å−3 |
118 parameters | Extinction correction: SHELXL-2016/6 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.00018 (7) |
Special details
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Br1 | 0.750000 | 0.750000 | 1.01564 (4) | 0.04943 (15) | |
Br2 | 0.250000 | 0.750000 | 1.000000 | 0.05616 (16) | |
Cu1 | 0.750000 | 0.750000 | 0.77377 (5) | 0.03890 (16) | |
S1 | 0.39660 (5) | 0.70986 (6) | 0.72047 (6) | 0.06176 (19) | |
S2 | 0.42895 (6) | 0.65094 (8) | 0.46657 (7) | 0.0831 (3) | |
N2 | 0.59625 (14) | 0.71817 (14) | 0.74447 (16) | 0.0470 (4) | |
N1 | 0.57992 (14) | 0.68882 (16) | 0.62785 (18) | 0.0544 (5) | |
N3 | 0.50405 (16) | 0.7637 (2) | 0.9157 (2) | 0.0739 (7) | |
H3A | 0.560992 | 0.775718 | 0.954484 | 0.089* | |
H3B | 0.443808 | 0.771729 | 0.949189 | 0.089* | |
C1 | 0.50915 (16) | 0.73279 (18) | 0.8039 (2) | 0.0500 (5) | |
C2 | 0.48136 (19) | 0.6828 (2) | 0.6037 (2) | 0.0574 (6) | |
C3 | 0.5494 (3) | 0.6360 (3) | 0.3816 (3) | 0.0984 (11) | |
H3BC | 0.580640 | 0.704195 | 0.365145 | 0.118* | 0.5 |
H3BD | 0.600153 | 0.593336 | 0.423967 | 0.118* | 0.5 |
H3AA | 0.600532 | 0.688177 | 0.406669 | 0.118* | 0.5 |
H3AB | 0.579095 | 0.566715 | 0.395347 | 0.118* | 0.5 |
C5A | 0.5337 (16) | 0.5753 (12) | 0.1730 (17) | 0.143 (7) | 0.5 |
H5AA | 0.587593 | 0.612982 | 0.136912 | 0.171* | 0.5 |
H5AB | 0.492013 | 0.529830 | 0.128742 | 0.171* | 0.5 |
C4 | 0.5259 (9) | 0.6502 (7) | 0.2475 (9) | 0.104 (3) | 0.5 |
H4 | 0.516751 | 0.720330 | 0.226229 | 0.125* | 0.5 |
C4A | 0.5181 (8) | 0.5852 (11) | 0.2749 (8) | 0.112 (3) | 0.5 |
H4A | 0.461720 | 0.541488 | 0.293578 | 0.134* | 0.5 |
C5 | 0.5187 (14) | 0.6021 (18) | 0.1813 (12) | 0.154 (8) | 0.5 |
H5A | 0.526312 | 0.529967 | 0.192763 | 0.185* | 0.5 |
H5B | 0.504113 | 0.628295 | 0.106619 | 0.185* | 0.5 |
Atomic displacement parameters (Å2)
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.05153 (19) | 0.05153 (19) | 0.0452 (3) | 0.000 | 0.000 | 0.000 |
Br2 | 0.04993 (19) | 0.04993 (19) | 0.0686 (3) | 0.000 | 0.000 | 0.000 |
Cu1 | 0.0362 (2) | 0.0362 (2) | 0.0443 (3) | 0.000 | 0.000 | 0.000 |
S1 | 0.0387 (3) | 0.0791 (4) | 0.0675 (4) | 0.0015 (3) | −0.0065 (3) | 0.0060 (3) |
S2 | 0.0637 (4) | 0.1138 (7) | 0.0718 (5) | −0.0029 (4) | −0.0179 (4) | −0.0189 (4) |
N2 | 0.0405 (9) | 0.0489 (10) | 0.0517 (10) | −0.0013 (8) | −0.0029 (8) | 0.0008 (8) |
N1 | 0.0450 (10) | 0.0610 (12) | 0.0573 (11) | −0.0041 (9) | −0.0020 (8) | −0.0070 (9) |
N3 | 0.0430 (11) | 0.121 (2) | 0.0573 (13) | 0.0096 (12) | 0.0002 (9) | −0.0060 (13) |
C1 | 0.0388 (11) | 0.0538 (12) | 0.0574 (13) | 0.0016 (9) | −0.0018 (9) | 0.0079 (10) |
C2 | 0.0489 (13) | 0.0608 (14) | 0.0626 (15) | −0.0020 (11) | −0.0058 (11) | −0.0008 (11) |
C3 | 0.084 (2) | 0.131 (3) | 0.080 (2) | −0.004 (2) | −0.0020 (18) | −0.023 (2) |
C5A | 0.168 (13) | 0.095 (7) | 0.165 (16) | −0.031 (7) | 0.075 (10) | −0.020 (7) |
C4 | 0.173 (9) | 0.068 (5) | 0.070 (6) | −0.034 (5) | 0.017 (5) | 0.007 (4) |
C4A | 0.117 (7) | 0.141 (10) | 0.077 (6) | 0.013 (7) | 0.024 (5) | −0.019 (6) |
C5 | 0.121 (9) | 0.30 (2) | 0.038 (4) | 0.016 (12) | −0.010 (5) | −0.005 (8) |
Geometric parameters (Å, º)
Br1—Cu1 | 2.7474 (7) | C3—H3BC | 0.9700 |
Cu1—N2i | 2.0206 (17) | C3—H3BD | 0.9700 |
Cu1—N2 | 2.0206 (17) | C3—H3AA | 0.9700 |
Cu1—N2ii | 2.0206 (17) | C3—H3AB | 0.9700 |
Cu1—N2iii | 2.0206 (17) | C3—C4 | 1.562 (11) |
S1—C1 | 1.739 (2) | C3—C4A | 1.429 (10) |
S1—C2 | 1.742 (3) | C5A—H5AA | 0.9300 |
S2—C2 | 1.741 (3) | C5A—H5AB | 0.9300 |
S2—C3 | 1.818 (4) | C5A—C4A | 1.181 (19) |
N2—N1 | 1.392 (3) | C4—H4 | 0.9300 |
N2—C1 | 1.308 (3) | C4—C5 | 0.973 (18) |
N1—C2 | 1.283 (3) | C4A—H4A | 0.9300 |
N3—H3A | 0.8600 | C5—H5A | 0.9300 |
N3—H3B | 0.8600 | C5—H5B | 0.9300 |
N3—C1 | 1.331 (3) | ||
N2i—Cu1—Br1 | 99.48 (5) | S2—C3—H3BC | 110.7 |
N2iii—Cu1—Br1 | 99.48 (5) | S2—C3—H3BD | 110.7 |
N2ii—Cu1—Br1 | 99.48 (5) | S2—C3—H3AA | 109.6 |
N2—Cu1—Br1 | 99.48 (5) | S2—C3—H3AB | 109.6 |
N2ii—Cu1—N2iii | 88.446 (18) | H3BC—C3—H3BD | 108.8 |
N2ii—Cu1—N2 | 88.446 (18) | H3AA—C3—H3AB | 108.1 |
N2iii—Cu1—N2i | 88.446 (18) | C4—C3—S2 | 110.2 (5) |
N2i—Cu1—N2 | 88.445 (18) | C4—C3—H3AA | 109.6 |
N2ii—Cu1—N2i | 161.04 (11) | C4—C3—H3AB | 109.6 |
N2iii—Cu1—N2 | 161.04 (11) | C4A—C3—S2 | 105.3 (5) |
C1—S1—C2 | 86.58 (11) | C4A—C3—H3BC | 110.7 |
C2—S2—C3 | 100.25 (14) | C4A—C3—H3BD | 110.7 |
N1—N2—Cu1 | 110.74 (13) | H5AA—C5A—H5AB | 120.0 |
C1—N2—Cu1 | 134.66 (16) | C4A—C5A—H5AA | 120.0 |
C1—N2—N1 | 113.76 (18) | C4A—C5A—H5AB | 120.0 |
C2—N1—N2 | 111.4 (2) | C3—C4—H4 | 112.8 |
H3A—N3—H3B | 120.0 | C5—C4—C3 | 134.4 (15) |
C1—N3—H3A | 120.0 | C5—C4—H4 | 112.8 |
C1—N3—H3B | 120.0 | C3—C4A—H4A | 106.8 |
N2—C1—S1 | 112.94 (18) | C5A—C4A—C3 | 146.4 (13) |
N2—C1—N3 | 125.1 (2) | C5A—C4A—H4A | 106.8 |
N3—C1—S1 | 121.96 (17) | C4—C5—H5A | 120.0 |
S2—C2—S1 | 119.40 (14) | C4—C5—H5B | 120.0 |
N1—C2—S1 | 115.33 (19) | H5A—C5—H5B | 120.0 |
N1—C2—S2 | 125.3 (2) | ||
Cu1—N2—N1—C2 | −170.89 (17) | C1—S1—C2—S2 | −178.55 (17) |
Cu1—N2—C1—S1 | 168.95 (12) | C1—S1—C2—N1 | 1.2 (2) |
Cu1—N2—C1—N3 | −9.9 (4) | C1—N2—N1—C2 | 0.2 (3) |
S2—C3—C4—C5 | −103 (2) | C2—S1—C1—N2 | −1.01 (18) |
S2—C3—C4A—C5A | 148 (2) | C2—S1—C1—N3 | 177.9 (2) |
N2—N1—C2—S1 | −1.0 (3) | C2—S2—C3—C4 | −158.1 (4) |
N2—N1—C2—S2 | 178.68 (17) | C2—S2—C3—C4A | 166.4 (6) |
N1—N2—C1—S1 | 0.7 (2) | C3—S2—C2—S1 | 178.11 (19) |
N1—N2—C1—N3 | −178.2 (2) | C3—S2—C2—N1 | −1.6 (3) |
Symmetry codes: (i) y, −x+3/2, z; (ii) −y+3/2, x, z; (iii) −x+3/2, −y+3/2, z.
Hydrogen-bond geometry (Å, º)
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3A···Br1 | 0.86 | 2.52 | 3.3265 (1) | 157 |
N3—H3B···Br2 | 0.86 | 2.54 | 3.3685 (1) | 162 |
C5A—H5AA···Br1iv | 0.93 | 3.03 | 3.95 (2) | 175 |
Symmetry code: (iv) x, y, z−1.
Funding Statement
This work was supported by Uzbekistan Ministry of Higher Education, Science and Innovation.
References
- Aliabadi, A. (2016). Anticancer Agents Med. Chem. 16, 1301–1314. [DOI] [PubMed]
- Altıntop, M. D., Sever, B., Özdemir, A., Ilgın, S., Atlı, Ö., Turan-Zitouni, G. & Kaplancıklı, Z. A. (2018). Anticancer Agents Med. Chem. 18, 1606–1616. [DOI] [PubMed]
- Ardan, B., Kinzhybalo, V., Slyvka, Y., Shyyka, O., Luk’yanov, M., Lis, T. & Mys’kiv, M. (2017). Acta Cryst. C73, 36–46. [DOI] [PubMed]
- Berezin, A. S., Ivanova, A. D., Komarov, V. Y., Nadolinny, V. A. & Lavrenova, L. G. (2018). New J. Chem. 42, 4902–4908.
- Camí, G. E., Liu González, M., Sanz Ruiz, F. & Pedregosa, J. C. (2005). J. Phys. Chem. Solids, 66, 936–945.
- Chandra, S., Gautam, S., Rajor, H. K. & Bhatia, R. (2015). Spectrochim. Acta A Mol. Biomol. Spectrosc. 137, 749–760. [DOI] [PubMed]
- Chen, C. J., Song, B. A., Yang, S., Xu, G. F., Bhadury, P. S., Jin, L. H., Hu, D. Y., Li, Q. Z., Liu, F., Xue, W., Lu, P. & Chen, Z. (2007). Bioorg. Med. Chem. 15, 3981–3989. [DOI] [PubMed]
- Chen, J., Yi, C., Wang, S., Wu, S., Li, S., Hu, D. & Song, B. (2019). Bioorg. Med. Chem. Lett. 29, 1203–1210. [DOI] [PubMed]
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Foroumadi, A., Soltani, F., Jabini, R., Moshafi, M. H. & Rasnani, F. M. (2004). Arch. Pharm. Res. 27, 502–506. [DOI] [PubMed]
- Gowramma, B., Praveen, T. K., Gomathy, S., Kalirajan, R., Babu, B. & Krishnavenic, N. (2018). Curr. Bioact. Compd. 14, 309–316.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Gurbanov, A. V., Mahmoudi, G., Guedes da Silva, M. F. C., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Inorg. Chim. Acta, 471, 130–136.
- Hangan, A. C., Turza, A., Stan, R. L., Stefan, R. & Oprean, L. S. (2015). Russ. J. Coord. Chem. 41, 395–404.
- Hassan, A. E., Shaaban, I. A., Abuelela, A. M., Zoghaib, W. M. & Mohamed, T. A. (2018). J. Coord. Chem. 71, 2814–2830.
- Huxel, T., Demeshko, S. & Klingele, J. (2015). Z. Anorg. Allge Chem. 641, 1711–1717.
- Ishankhodzhaeva, M. M., Kadyrova, S. A., Talipov, S. A., Ibragimov, B. T., Fun, K. K., Sundara Razh, S. S. & Parpiev, N. A. (2001). Russ. J. Gen. Chem. 71, 1066–1069.
- Ishankhodzhaeva, M. M., Umarov, B. B., Kadyrova, Sh. A., Parpiev, N. A., Makhkamov, K. K. & Talipov, S. A. (2000). Russ. J. Gen. Chem. 70, 1113–1119.
- Jakovljević, K., Matić, I. Z., Stanojković, T., Krivokuća, A., Marković, V., Joksović, M. D., Mihailović, N., Nićiforović, M. & Joksović, L. (2017). Bioorg. Med. Chem. Lett. 27, 3709–3715. [DOI] [PubMed]
- Kadirova, Sh. A., Ishankhodzhaeva, M. M., Parpiev, N. A., Tozhiboev, A., Tashkhodzhaev, B. & Karimov, Z. (2008). Russ. J. Gen. Chem. 78, 2398–2402.
- Karaburun, A., Acar Çevik, U., Osmaniye, D., Sağlık, B., Kaya Çavuşoğlu, B., Levent, S. & Kaplancıklı, Z. (2018). Molecules, 23, 3129. https://doi.org/10.3390/molecules23123129
- Kaviarasan, L., Gowramma, B., Kalirajan, R., Mevithra, M. & Chandralekha, S. (2020). J. Iran. Chem. Soc. 17, 2083–2094.
- Kolavi, G., Hegde, V., Khazi, I. & Gadad, P. (2006). Bioorg. Med. Chem. 14, 3069–3080. [DOI] [PubMed]
- Lavrenova, L. G., Sukhikh, T. S., Glinskaya, L. A., Trubina, S. V., Zvereva, V. V., Lavrov, A. N., Klyushova, L. S. & Artem’ev, A. V. (2023). Int. J. Mol. Sci. 24, 13024. [DOI] [PMC free article] [PubMed]
- Li, P., Shi, L., Yang, X., Yang, L., Chen, X. W., Wu, F., Shi, Q. C., Xu, W. M., He, M., Hu, D. Y. & Song, B. A. (2014). Bioorg. Med. Chem. Lett. 24, 1677–1680. [DOI] [PubMed]
- Lynch, D. E. & Ewington, J. (2001). Acta Cryst. C57, 1032–1035. [DOI] [PubMed]
- Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
- Slyvka, Y. (2017a). Visnyk Lviv Univ. Ser. Chem. 58, 172.
- Slyvka, Y., Kinzhybalo, V., Shyyka, O. & Mys’kiv, M. (2021). Acta Cryst. C77, 249–256. [DOI] [PubMed]
- Slyvka, Y. I. (2017b). J. Struct. Chem. 58, 356–357.
- Slyvka, Y. I., Goreshnik, E. A., Pokhodylo, N. T. & Mys’kiv, M. G. (2022). J. Chem. Crystallogr. 52, 205–213.
- Song, Y., Ji, Y.-F., Kang, M.-Y. & Liu, Z.-L. (2012). Acta Cryst. E68, m772. [DOI] [PMC free article] [PubMed]
- Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. [DOI] [PMC free article] [PubMed]
- Swapna, M., Premakumari, C., Nagi Reddy, S., Padmaja, A. & Padmavathi, V. (2013). Chem. Pharm. Bull. 61, 611–617. [DOI] [PubMed]
- Torambetov, B., Kadirova, S., Toshmurodov, T., Ashurov, J. M., Parpiev, N. A. & Ziyaev, A. (2019). Acta Cryst. E75, 1239–1242. [DOI] [PMC free article] [PubMed]
- Toshmurodov, T. T., Ziyaev, A. A., Elmuradov, B. Zh., Ismailova, D. S. & Kurbanova, E. R. (2016). J. Chem. Chem. Sci. 6, 199–204.
- Upadhyay, P. K. & Mishra, P. (2017). Rasayan J. Chem. 10, 254–262.
- Wang, P., Wan, R., Wang, B., Han, F. & Wang, Y. (2009). Acta Cryst. E65, m1086. [DOI] [PMC free article] [PubMed]
- Wang, T., Miao, W., Wu, S., Bing, G., Zhang, X., Qin, Z., Yu, H., Qin, X. & Fang, J. (2011). Chin. J. Chem. 29, 959–967.
- Yusuf, M., Khan, R. A. & Ahmed, B. (2008). Bioorg. Med. Chem. 16, 8029–8034. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989024002652/ny2003sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989024002652/ny2003Isup2.hkl
CCDC reference: 2341909
Additional supporting information: crystallographic information; 3D view; checkCIF report