Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2024 Mar 26;80(Pt 4):423–429. doi: 10.1107/S2056989024002445

Crystal structure, Hirshfeld surface analysis, calculations of crystal voids, inter­action energy and energy frameworks as well as density functional theory (DFT) calculations of 3-[2-(morpholin-4-yl)eth­yl]-5,5-di­phenyl­imidazolidine-2,4-dione

Houda Lamssane a,*, Amal Haoudi a, Badr Eddine Kartah b, Ahmed Mazzah c, Joel T Mague d, Tuncer Hökelek e, Youssef Kandri Rodi a, Nada Kheira Sebbar f,b
Editor: M Weilg
PMCID: PMC10993604  PMID: 38584744

In the title mol­ecule, the imidazolidine ring slightly deviates from planarity and the morpholine ring exhibits the usual chair conformation. In the crystal, N—H⋯O and C—H⋯O hydrogen bonds form helical chains of mol­ecules extending parallel to the c axis that are connected by C—H⋯π(ring) inter­actions into a tri-periodic network.

Keywords: crystal structure, imidazolidinedione, hydrogen bond, C—H⋯π(ring) inter­action

Abstract

In the title mol­ecule, C21H23N3O3, the imidazolidine ring slightly deviates from planarity and the morpholine ring exhibits the chair conformation. In the crystal, N—H⋯O and C—H⋯O hydrogen bonds form helical chains of mol­ecules extending parallel to the c axis that are connected by C—H⋯π(ring) inter­actions. A Hirshfeld surface analysis reveals that the most important contributions for the crystal packing are from H⋯H (55.2%), H⋯C/C⋯H (22.6%) and H⋯O/O⋯H (20.5%) inter­actions. The volume of the crystal voids and the percentage of free space were calculated to be 236.78 Å3 and 12.71%, respectively. Evaluation of the electrostatic, dispersion and total energy frameworks indicates that the stabilization is dominated by the nearly equal electrostatic and dispersion energy contributions. The DFT-optimized mol­ecular structure at the B3LYP/6-311 G(d,p) level is compared with the experimentally determined mol­ecular structure in the solid state. Moreover, the HOMO–LUMO behaviour was elucidated to determine the energy gap.

1. Chemical context

The investigation of compounds comprising the hydantoin moiety has gained inter­est in the quest for the development of new drugs because of their similarity to natural amino acids (Śladowska et al., 2016). Such compounds show various pharmacological properties, including anti­bacterial (Pandeya et al., 2000; Sangeetha et al., 2016), anti­convulsant (Emami et al., 2021), anti­diabetic (Salem et al., 2018), anti­tumor (Żesławska et al., 2021), anti­nociceptive and anti-inflammatory (Abdel-Aziz et al., 2016; da Silva Guerra et al., 2011) activities. One of the foremost pharmaceutical drugs in the hydantoin class is phenytoin, also known as 5,5-di­phenyl­hydantoin (systematic name: 5,5-di­phenyl­imidazolidine-2,4-dione). This compound and its derivatives are considered to be potential pharmaceutical agents due to their extended shelf life. However, their optimum efficacy depends on how easily they break down in the body (Al-Nuzal et al., 2018). With respect to the biological importance of phenytoin, we were inter­ested in the synthesis of a new derivative thereof, viz. 3-[2-(morpholin-4-yl)eth­yl]-5,5-di­phenyl­imidazolidine-2,4-di­one, (I), C21H23N3O3, through an alkyl­ation reaction under the conditions of phase transfer catalysis. We report here the mol­ecular and crystal structures as well as the Hirshfeld surface analysis of this compound, as well as inter­molecular inter­action energies, energy frameworks, and a comparison of the experimentally determined mol­ecular structure in the solid state with that of an optimized structure obtained by density functional theory (DFT). 1.

2. Structural commentary

The mol­ecular structure of (I) is displayed in Fig. 1. The imidazolidine ring deviates from planarity (root-mean-square deviation of the fitted atoms = 0.0273 Å) with atoms C1 and N2 being displaced by 0.0359 (7) and −0.0359 (7) Å, respectively, from the mean plane. The C4–C9 and C10–C15 benzene rings are inclined to the above plane by 76.55 (4) and 65.07 (4)°, respectively. The N1—C2, N1—C3 and N2—C3 distances are 1.367 (2), 1.406 (2) and 1.348 (2) Å. The sums of the bond angles about N1 and N2 of 360.0 and 359° indicate that the lone electron pairs at the nitro­gen atoms are involved in N→C π bonding. The morpholine ring adopts a chair conformation [puckering parameters (Cremer & Pople, 1975): Q = 0.5831 (14) Å, θ = 176.90 (14)°, φ = 339 (3)°].

Figure 1.

Figure 1

The title mol­ecule with the labelling scheme and displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

In the crystal of (I), N2—H2⋯O1 and C14—H14⋯O2 hydrogen bonds (Table 1) form helical chains of mol­ecules extending parallel to the c axis (Fig. 2). Individual mol­ecules are connected by weak C12—H12⋯Cg3 and C18—H18BCg3 inter­actions (Table 1) into a tri-periodic network (Fig. 3), which appears to have small pores in agreement with the calculation of a relatively small void space (vide infra).

Table 1. Hydrogen-bond geometry (Å, °).

Cg3 is the centroid of the C4–C9 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O3i 0.91 (1) 1.95 (1) 2.8560 (15) 179 (2)
C12—H12⋯Cg3ii 0.95 2.62 3.5576 (15) 169
C18—H18BCg3iii 0.99 2.65 3.5726 (14) 155

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic .

Figure 2.

Figure 2

A portion of one helical chain in the crystal structure viewed along the b axis. N—H⋯O and C—H⋯O hydrogen bonds are depicted by violet and black dashed lines, respectively. Non-inter­acting hydrogen atoms are omitted for clarity.

Figure 3.

Figure 3

The crystal packing viewed along the a axis with N—H⋯O and C—H⋯O hydrogen bonds depicted by violet and black dashed lines, respectively, and with C—H⋯π(ring) inter­actions depicted by green dashed lines. Non-inter­acting hydrogen atoms are omitted for clarity.

4. Hirshfeld surface analysis

In order to visualize the inter­molecular inter­actions in the crystal of (I), a Hirshfeld surface (HS) analysis (Hirshfeld, 1977; Spackman & Jayatilaka, 2009) was carried out using CrystalExplorer (Spackman et al., 2021). In the HS plotted over d norm (Fig. 4), the white surface indicates contacts with distances equal to the sum of van der Waals radii and the red and blue colours indicate distances shorter (in close contact) or longer (distant contact) than the sum of the van der Waals radii, respectively (Venkatesan et al., 2016). The bright-red spots on the surface indicate the roles of adjacent atoms as the respective donors and/or acceptors and they also appear as blue and red regions corresponding to positive (hydrogen-bond donors) and negative (hydrogen-bond acceptors) potentials on the HS mapped over electrostatic potential (Spackman et al., 2008; Jayatilaka et al., 2005), as shown in Fig. 5. The shape-index of the HS is a tool to visualize ππ stacking by the presence of adjacent red and blue triangles. However, Fig. 6 clearly suggests that there are no ππ inter­actions in the crystal structure of (I). The overall two-dimensional fingerprint plot, Fig. 7 a, and those delineated into H⋯H, H⋯C/C⋯H, H⋯O/O⋯H and H⋯N/N⋯H (McKinnon et al., 2007) are illustrated in Fig. 7 be, respectively, together with their relative contributions to the Hirshfeld surface. The most abundant inter­action is H⋯H, contributing with 55.2% to the overall crystal packing, which is reflected in Fig. 7 b as widely scattered points of high density due to the large hydrogen content with the tip at d e = d i = 1.10 Å. The H⋯C/C⋯H contacts, contributing with 22.6% to the overall crystal packing, are shown in Fig. 7 c with the tips at d e + d i = 2.74 Å and are attributed to C—H⋯π inter­actions. The symmetrical pair of spikes in the fingerprint plot delineated into H⋯O/O⋯H contacts with the tips at d e + d i = 1.84 Å (Fig. 7 d) make a 20.5% contribution to the HS. Finally, the tiny pair of spikes with the tips at d e + d i = 2.70 Å in the fingerprint plot delineated into H⋯N/N⋯H contacts (Fig. 7 e) contributes only 1.7% to the HS.

Figure 4.

Figure 4

View of the three-dimensional Hirshfeld surface of (I) plotted over d norm.

Figure 5.

Figure 5

View of the three-dimensional Hirshfeld surface of (I) plotted over electrostatic potential energy using the STO-3 G basis set at the Hartree–Fock level of theory. Hydrogen-bond donors and acceptors are shown as blue and red regions around the atoms corresponding to positive and negative potentials, respectively.

Figure 6.

Figure 6

Hirshfeld surface of the title compound plotted over shape-index.

Figure 7.

Figure 7

The full two-dimensional fingerprint plots for (I), showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯C/C⋯H, (d) H⋯O/O⋯H and (e) H⋯N/N⋯H inter­actions. The d i and d e values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

The nearest neighbour coordination environment of a mol­ecule can be determined from the colour patches on the HS based on how close to other mol­ecules they are. The Hirshfeld surface representations with the function d norm plotted onto the surface are shown for the H⋯H, H⋯C/C⋯H and H⋯O/O⋯H inter­actions in Fig. 8 ac. The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯C/C⋯H and H⋯O/O⋯H inter­actions suggest that van der Waals inter­actions and hydrogen-bonding inter­actions play the major roles in the crystal packing (Hathwar et al., 2015).

Figure 8.

Figure 8

Hirshfeld surface patches plotted onto the surface for (a) H⋯H, (b) H⋯C/C⋯H and (c) H⋯O/O⋯H inter­actions.

5. Crystal voids

The strength of the crystal packing is important for determining the response to an applied mechanical force. If significant voids are present in the crystal, the mol­ecules are not tightly packed and a small amount of applied external mechanical force may easily break the crystal. To check the mechanical stability of the crystal, a void analysis was performed by adding up the electron densities of the spherically symmetric atoms contained in the asymmetric unit (Turner et al., 2011). The void surface is defined as an isosurface of the procrystal electron density and is calculated for the whole unit cell where the void surface meets the boundary of the unit cell, and capping faces are generated to create an enclosed volume. The volume of the crystal voids (Fig. 9 a,b) and the percentage of free space in the unit cell were calculated as 236.78 Å3 and 12.71%.

Figure 9.

Figure 9

Graphical views of voids in the crystal packing of (I), (a) along the a axis and (b) along the c axis.

6. Inter­action energy calculations and energy frameworks

The inter­molecular inter­action energies were calculated using the CE–B3LYP/6–31G(d,p) energy model available in CrystalExplorer (Spackman et al., 2021) where a cluster of mol­ecules is generated by applying crystallographic symmetry operations with respect to a selected central mol­ecule within a radius of 3.8 Å (Turner et al., 2014). The total inter­molecular energy (E tot) is the sum of electrostatic (E ele), polarization (E pol), dispersion (E dis) and exchange-repulsion (E rep) energies (Turner et al., 2015) with scale factors of 1.057, 0.740, 0.871 and 0.618, respectively (Mackenzie et al., 2017). Hydrogen-bonding inter­action energies (in kJ mol−1) were calculated to be −50.2(E ele), −12.7 (E pol), −27.6 (E dis), 58.2 (E rep) and −50.5 (E tot) for N2—H2⋯O3 and −17.4 (E ele), −3.7 (E pol), −56.2 (E dis), 43.2 (E rep) and −43.4 (E tot)] for C14—H14⋯O2. Energy frameworks combine the calculation of inter­molecular inter­action energies with a graphical representation of their magnitude (Turner et al., 2015). Energies between mol­ecular pairs are represented as cylinders joining the centroids of pairs of mol­ecules with the cylinder radius proportional to the relative strength of the corresponding inter­action energy. Energy frameworks were constructed for E ele (red cylinders), E dis (green cylinders) and E tot (blue cylinders) and are displayed in Fig. 10 ac. The evaluation of the electrostatic, dispersion and total energy frameworks indicate that the stabilization is dominated by nearly equal electrostatic and dispersion energy contributions in the crystal structure of (I).

Figure 10.

Figure 10

The energy frameworks for a cluster of mol­ecules of (I) viewed down the b axis, showing (a) electrostatic energy, (b) dispersion energy and (c) total energy diagrams. The cylindrical radius is proportional to the relative strength of the corresponding energies and they were adjusted to the same scale factor of 80 with cut-off value of 5 kJ mol-1 within 2×2×2 unit cells.

7. DFT calculations

The optimization of the mol­ecular gas-phase structure of (I) was conducted using density functional theory (DFT) with the B3LYP functional and 6-311G(d,p) basis-set calculations, as implemented in GAUSSIAN09 (Becke, 1993; Frisch et al., 2009). The comparison between theoretical and experimental results revealed good agreement (Table 2). Essential parameters, such as the highest-occupied mol­ecular orbital (HOMO) serving as an electron donor and the lowest-unoccupied mol­ecular orbital (LUMO) acting as an electron acceptor, were examined, whereby a small energy gap indicates high mol­ecular polarizability and reactivity. Numerical parameters of E HOMO, E LUMO, electronegativity (χ), hardness (η), potential (μ), electrophilicity (ω), and softness (σ) are detailed in Table 3. The values of χ and η are particularly significant for assessing both reactivity and stability. The electron transition from the HOMO to the LUMO energy level is shown in Fig. 11. Both the HOMO and LUMO are localized in the mol­ecular plane. The energy band gap (E = E LUMO − E HOMO) is approximately 4.62 eV, with frontier mol­ecular orbital (FMO) energies, E HOMO and E LUMO, determined as −5.36 and −0.73 eV, respectively.

Table 2. Comparison of the selected (X-ray and DFT) geometric data (Å, °).

Bonds/angles X-ray B3LYP/6–311G(d,p)
O1—C2 1.2105 (15) 1.221
O2—C3 1.2183 (15) 1.223
O3—C20 1.4306 (19) 1.445
N1—C2 1.3670 (16) 1.357
N1—C3 1.4058 (16) 1.420
N2—C3 1.3485 (16) 1.338
N2—H2 0.910 (12) 0.920
N3—C17 1.4568 (16) 1.464
C20—O3—C19 110.21 (11) 111.25
C3—N2—C1 113.03 (10) 114.18
N2—C1—C4 112.19 (9) 112.69
N2—C1—C10 110.29 (9) 110.87
N2—C1—C2 100.70 (9) 100.98
O1—C2—N1 126.69 (12) 125.98
O2—C3—N2 128.46 (13) 128.52
O2—C3—N1 124.27 (12) 124.75
N2—C3—N1 107.27 (10) 107.64

Table 3. Calculated energies.

Mol­ecular Energy (a.u.) (eV) Compound (I)
Total Energy, TE (eV) –32761.48
E HOMO (eV) –5.36
E LUMO (eV) –0.73
Gap, ΔE (eV) 4.62
Dipole moment, μ (Debye) 2.406
Ionization potential, I (eV) –5.36
Electron affinity, A –0.73
Electro negativity, χ –3.04
Hardness, η –2.31
Electrophilicity index, ω –2.00
Softness, σ 0.35
Fraction of electrons transferred, ΔN –2.17

Figure 11.

Figure 11

The energy band gap of the title compound.

8. Database survey

A search of the Cambridge Structural Database (CSD; Groom et al., 2016; updated January 2024) with the fragment (II) (Fig. 12) gave ten hits, one of which (LUHFID; Ooms et al., 2002) is the same as (I) except for having a bromine atom at the 4-position of each phenyl ring. Here, the C—N distances in the ring are similar, indicating delocalization of the π electrons. Although the morpholine ring also adopts a chair conformation, the large displacement ellipsoids for the constituent atoms indicate at least considerable librational motion and likely some degree of positional disorder. The remaining matches have R = H (FEHPUG; Guerrab et al., 2017a ), Me (WEMQUD; Guerrab et al., 2017c and WEMQUD01; Trišovic et al., 2019), Et (QENBET; Guerrab et al., 2018a ), –(CH2)2Me (GEMSOG; Guerrab et al., 2017b ), –(CH2)3Me (QENBOD; Guerrab et al., 2018b ), –(CH2)5Me (QAGPAT; Guerrab et al., 2020), –(CH2)7Me (PAJMAS; Guerrab et al., 2022) and Br (NIBMOE; Guerrab et al., 2023). In all cases, the five-membered ring is close to planarity and the nitro­gen lone pairs are involved in N→C π bonding.

Figure 12.

Figure 12

The mol­ecular moiety used for the CSD search procedure.

9. Synthesis and crystallization

In a flask, phenytoin (0.5 g, 1.98 mmol) was mixed with 4-(2-chloro­eth­yl)morpholine hydro­chloride (0.37 g, 1.01 mmol) in DMF (20 ml) in the presence of potassium carbonate (0.41 g, 2.96 mmol) and tetra-n-butyl­ammonium bromide (BTBA, 0.07 g, 0.22 mmol). The reaction mixture was agitated for 48 h at room temperature, followed by removal of the solvent under reduced pressure. The residue was purified by recrystallization from methanol. Yield: 85%, R f: 0.17 (ethyl acetate/hexa­ne: 1/2), m.p. 363 K, LCMS (ESI): 366.1812 [M+H+], 1H NMR (CDCl3-300 MHz): δ (ppm) 7.36–7.47 (m, 10H, HAr); 7.08 (s, 1H, NH), 3.72 (t, 2H, CH2, 3 J H–H = 6 MHz), 3.60 (t, 4H, CH2, 3 J H–H = 6 MHz), 2.65 (t, 2H, CH2, 3 J H–H = 6 MHz), 2.50 (t, 4H, CH2, 3 J H–H = 6 MHz), 13C NMR (CDCl3 −75 MHz): δ (ppm) 173.71, 156.65 (C=O); 139.26, 70.19 (Cq); 126.88-128.80 (CHAr); 66.83, 55.26, 53.32, 35.66 (CH2). UV–Visible Wavelength (nm) λmax: 286 in di­chloro­methane.

10. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4. H atoms attached to C atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and were included as riding contributions with isotropic displacement parameters 1.2–1.5 times those of the attached atoms. The H atom attached to N2 was found in a difference-Fourier map and refined with a distance of 0.91 (1) Å. Two reflections, 111 and 011, affected by the beamstop were omitted from the final refinement.

Table 4. Experimental details.

Crystal data
Chemical formula C21H23N3O3
M r 365.42
Crystal system, space group Orthorhombic, P212121
Temperature (K) 150
a, b, c (Å) 8.4440 (3), 14.3013 (5), 15.4233 (6)
V3) 1862.52 (12)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.28 × 0.18 × 0.17
 
Data collection
Diffractometer Bruker D8 QUEST PHOTON 3 diffractometer
Absorption correction Numerical (SADABS; Krause et al., 2015)
T min, T max 0.98, 0.98
No. of measured, independent and observed [I > 2σ(I)] reflections 142315, 7105, 6502
R int 0.052
(sin θ/λ)max−1) 0.771
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.037, 0.097, 1.07
No. of reflections 7105
No. of parameters 247
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.29, −0.19
Absolute structure Flack x determined using 2747 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter 0.12 (18)

Computer programs: APEX4 and SAINT (Bruker, 2021), SHELXT (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ), DIAMOND (Brandenburg & Putz, 2012), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2020).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989024002445/wm5711sup1.cif

e-80-00423-sup1.cif (4MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989024002445/wm5711Isup2.hkl

e-80-00423-Isup2.hkl (564.5KB, hkl)
e-80-00423-Isup3.cdx (3.1KB, cdx)

Supporting information file. DOI: 10.1107/S2056989024002445/wm5711Isup3.cdx

e-80-00423-Isup4.cml (7.5KB, cml)

Supporting information file. DOI: 10.1107/S2056989024002445/wm5711Isup4.cml

CCDC reference: 2340426

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C21H23N3O3 Dx = 1.303 Mg m3
Mr = 365.42 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121 Cell parameters from 9478 reflections
a = 8.4440 (3) Å θ = 2.8–33.0°
b = 14.3013 (5) Å µ = 0.09 mm1
c = 15.4233 (6) Å T = 150 K
V = 1862.52 (12) Å3 Block, colourless
Z = 4 0.28 × 0.18 × 0.17 mm
F(000) = 776

Data collection

Bruker D8 QUEST PHOTON 3 diffractometer 7105 independent reflections
Radiation source: fine-focus sealed tube 6502 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.052
Detector resolution: 7.3910 pixels mm-1 θmax = 33.2°, θmin = 2.8°
φ and ω scans h = −13→13
Absorption correction: numerical (SADABS; Krause et al., 2015) k = −22→22
Tmin = 0.98, Tmax = 0.98 l = −23→23
142315 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.037 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.053P)2 + 0.2332P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max < 0.001
7105 reflections Δρmax = 0.29 e Å3
247 parameters Δρmin = −0.19 e Å3
1 restraint Absolute structure: Flack x determined using 2747 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: dual Absolute structure parameter: 0.12 (18)

Special details

Experimental. The diffraction data were obtained from 13 sets of frames, each of width 0.5° in ω or φ, collected with scan parameters determined by the "strategy" routine in APEX4. The scan time was 10 sec/frame.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å) and were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. That attached to nitrogen was placed in a location derived from a difference map and refined with a DFIX 0.91 0.01 instruction. Two reflections affected by the beamstop were omitted from the final refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.39043 (13) 0.39185 (7) 0.33591 (7) 0.0263 (2)
O2 0.66443 (13) 0.37492 (8) 0.59106 (7) 0.0278 (2)
O3 0.95278 (13) 0.37405 (8) 0.16772 (6) 0.0265 (2)
N1 0.54354 (13) 0.36178 (7) 0.45643 (7) 0.01860 (19)
N2 0.50404 (13) 0.49047 (8) 0.53375 (7) 0.01892 (19)
H2 0.518 (2) 0.5333 (12) 0.5767 (10) 0.028*
N3 0.80935 (12) 0.33366 (8) 0.33144 (7) 0.01897 (19)
C1 0.42318 (14) 0.50910 (8) 0.45190 (7) 0.01579 (19)
C2 0.44728 (14) 0.41472 (8) 0.40476 (8) 0.0177 (2)
C3 0.58023 (14) 0.40760 (9) 0.53453 (8) 0.0191 (2)
C4 0.24609 (14) 0.52644 (8) 0.46447 (8) 0.0175 (2)
C5 0.16580 (16) 0.48701 (9) 0.53445 (9) 0.0226 (2)
H5 0.222361 0.451978 0.576640 0.027*
C6 0.00231 (18) 0.49893 (10) 0.54266 (11) 0.0296 (3)
H6 −0.052435 0.471165 0.589914 0.036*
C7 −0.07996 (17) 0.55110 (12) 0.48207 (12) 0.0331 (3)
H7 −0.191083 0.559368 0.487913 0.040*
C8 −0.00078 (18) 0.59125 (11) 0.41300 (11) 0.0308 (3)
H8 −0.057409 0.627726 0.371901 0.037*
C9 0.16234 (16) 0.57833 (10) 0.40347 (9) 0.0233 (2)
H9 0.216069 0.604987 0.355331 0.028*
C10 0.50534 (14) 0.58919 (8) 0.40337 (8) 0.01677 (19)
C11 0.51864 (16) 0.67518 (9) 0.44551 (8) 0.0221 (2)
H11 0.473587 0.683179 0.501458 0.026*
C12 0.59746 (18) 0.74927 (9) 0.40608 (10) 0.0264 (3)
H12 0.607929 0.807213 0.435648 0.032*
C13 0.66094 (17) 0.73867 (10) 0.32348 (10) 0.0267 (3)
H13 0.713846 0.789458 0.296334 0.032*
C14 0.64681 (18) 0.65389 (11) 0.28097 (9) 0.0276 (3)
H14 0.689747 0.646667 0.224429 0.033*
C15 0.56972 (16) 0.57888 (10) 0.32074 (8) 0.0234 (2)
H15 0.561162 0.520695 0.291395 0.028*
C16 0.60778 (16) 0.27040 (9) 0.43367 (9) 0.0226 (2)
H16A 0.546571 0.244049 0.384678 0.027*
H16B 0.596317 0.227562 0.483704 0.027*
C17 0.78214 (15) 0.27672 (9) 0.40832 (9) 0.0211 (2)
H17A 0.842599 0.303505 0.457389 0.025*
H17B 0.823018 0.212874 0.397594 0.025*
C18 0.97742 (15) 0.35809 (9) 0.32419 (8) 0.0207 (2)
H18A 1.041537 0.300511 0.318035 0.025*
H18B 1.012307 0.391079 0.377290 0.025*
C19 1.00178 (18) 0.42037 (10) 0.24594 (9) 0.0248 (2)
H19A 0.940012 0.478672 0.253294 0.030*
H19B 1.115096 0.437442 0.241412 0.030*
C20 0.79025 (19) 0.34662 (12) 0.17402 (9) 0.0300 (3)
H20A 0.759366 0.312437 0.120832 0.036*
H20B 0.722946 0.403102 0.178463 0.036*
C21 0.76244 (18) 0.28487 (11) 0.25229 (9) 0.0275 (3)
H21A 0.648961 0.267850 0.255688 0.033*
H21B 0.824646 0.226537 0.246373 0.033*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0291 (5) 0.0253 (5) 0.0245 (4) 0.0031 (4) −0.0078 (4) −0.0074 (4)
O2 0.0265 (5) 0.0329 (5) 0.0241 (4) 0.0036 (4) −0.0062 (4) 0.0087 (4)
O3 0.0301 (5) 0.0309 (5) 0.0183 (4) −0.0040 (4) 0.0023 (4) 0.0015 (4)
N1 0.0176 (4) 0.0177 (4) 0.0204 (4) 0.0023 (3) 0.0009 (4) 0.0018 (3)
N2 0.0198 (4) 0.0217 (4) 0.0153 (4) 0.0013 (4) −0.0035 (4) −0.0007 (3)
N3 0.0169 (4) 0.0219 (4) 0.0181 (4) −0.0002 (4) 0.0000 (4) 0.0025 (4)
C1 0.0148 (5) 0.0178 (5) 0.0148 (4) 0.0005 (4) −0.0015 (4) −0.0007 (4)
C2 0.0159 (5) 0.0177 (5) 0.0193 (5) 0.0007 (4) 0.0000 (4) −0.0009 (4)
C3 0.0158 (5) 0.0228 (5) 0.0187 (5) −0.0012 (4) 0.0002 (4) 0.0043 (4)
C4 0.0152 (5) 0.0169 (4) 0.0202 (5) 0.0003 (4) −0.0004 (4) −0.0016 (4)
C5 0.0205 (5) 0.0199 (5) 0.0273 (6) −0.0007 (4) 0.0041 (5) 0.0001 (4)
C6 0.0209 (6) 0.0281 (6) 0.0398 (8) −0.0038 (5) 0.0087 (6) −0.0057 (6)
C7 0.0148 (5) 0.0364 (7) 0.0480 (9) 0.0012 (5) 0.0002 (6) −0.0126 (7)
C8 0.0211 (6) 0.0327 (7) 0.0386 (8) 0.0062 (5) −0.0096 (6) −0.0042 (6)
C9 0.0196 (5) 0.0252 (6) 0.0250 (5) 0.0026 (5) −0.0048 (5) 0.0003 (5)
C10 0.0149 (4) 0.0189 (5) 0.0165 (4) 0.0008 (4) −0.0006 (4) 0.0005 (4)
C11 0.0248 (6) 0.0200 (5) 0.0214 (5) −0.0001 (4) 0.0027 (4) −0.0015 (4)
C12 0.0279 (6) 0.0198 (5) 0.0315 (6) −0.0018 (5) 0.0004 (5) 0.0020 (5)
C13 0.0214 (6) 0.0280 (6) 0.0305 (6) −0.0008 (5) 0.0015 (5) 0.0100 (5)
C14 0.0249 (6) 0.0354 (7) 0.0225 (5) 0.0010 (5) 0.0053 (5) 0.0060 (5)
C15 0.0239 (6) 0.0274 (6) 0.0189 (5) 0.0007 (5) 0.0030 (4) −0.0013 (4)
C16 0.0221 (6) 0.0167 (5) 0.0288 (6) 0.0022 (4) 0.0056 (5) 0.0039 (4)
C17 0.0196 (5) 0.0215 (5) 0.0223 (5) 0.0048 (4) 0.0028 (4) 0.0058 (4)
C18 0.0184 (5) 0.0246 (5) 0.0192 (5) −0.0017 (4) −0.0007 (4) 0.0021 (4)
C19 0.0273 (6) 0.0256 (6) 0.0214 (5) −0.0061 (5) 0.0010 (5) 0.0020 (5)
C20 0.0290 (7) 0.0413 (8) 0.0198 (5) −0.0061 (6) −0.0050 (5) 0.0036 (5)
C21 0.0279 (6) 0.0321 (7) 0.0224 (6) −0.0099 (5) −0.0031 (5) 0.0003 (5)

Geometric parameters (Å, º)

O1—C2 1.2105 (15) C10—C15 1.3933 (17)
O2—C3 1.2183 (15) C10—C11 1.3955 (17)
O3—C20 1.4306 (19) C11—C12 1.3912 (19)
O3—C19 1.4373 (17) C11—H11 0.9500
N1—C2 1.3670 (16) C12—C13 1.390 (2)
N1—C3 1.4058 (16) C12—H12 0.9500
N1—C16 1.4579 (16) C13—C14 1.383 (2)
N2—C3 1.3485 (16) C13—H13 0.9500
N2—C1 1.4597 (15) C14—C15 1.397 (2)
N2—H2 0.910 (12) C14—H14 0.9500
N3—C17 1.4568 (16) C15—H15 0.9500
N3—C21 1.4608 (17) C16—C17 1.5260 (18)
N3—C18 1.4658 (16) C16—H16A 0.9900
C1—C4 1.5281 (16) C16—H16B 0.9900
C1—C10 1.5342 (16) C17—H17A 0.9900
C1—C2 1.5465 (16) C17—H17B 0.9900
C4—C9 1.3913 (17) C18—C19 1.5140 (18)
C4—C5 1.3938 (17) C18—H18A 0.9900
C5—C6 1.3967 (19) C18—H18B 0.9900
C5—H5 0.9500 C19—H19A 0.9900
C6—C7 1.383 (2) C19—H19B 0.9900
C6—H6 0.9500 C20—C21 1.514 (2)
C7—C8 1.383 (2) C20—H20A 0.9900
C7—H7 0.9500 C20—H20B 0.9900
C8—C9 1.397 (2) C21—H21A 0.9900
C8—H8 0.9500 C21—H21B 0.9900
C9—H9 0.9500
C20—O3—C19 110.21 (11) C13—C12—H12 119.9
C2—N1—C3 111.86 (10) C11—C12—H12 119.9
C2—N1—C16 125.27 (11) C14—C13—C12 119.77 (13)
C3—N1—C16 122.83 (11) C14—C13—H13 120.1
C3—N2—C1 113.03 (10) C12—C13—H13 120.1
C3—N2—H2 121.6 (13) C13—C14—C15 120.34 (13)
C1—N2—H2 124.5 (13) C13—C14—H14 119.8
C17—N3—C21 111.74 (11) C15—C14—H14 119.8
C17—N3—C18 110.36 (10) C10—C15—C14 120.15 (13)
C21—N3—C18 108.22 (10) C10—C15—H15 119.9
N2—C1—C4 112.19 (9) C14—C15—H15 119.9
N2—C1—C10 110.29 (9) N1—C16—C17 111.56 (11)
C4—C1—C10 112.54 (10) N1—C16—H16A 109.3
N2—C1—C2 100.70 (9) C17—C16—H16A 109.3
C4—C1—C2 109.27 (9) N1—C16—H16B 109.3
C10—C1—C2 111.27 (9) C17—C16—H16B 109.3
O1—C2—N1 126.69 (12) H16A—C16—H16B 108.0
O1—C2—C1 126.59 (11) N3—C17—C16 113.19 (10)
N1—C2—C1 106.71 (10) N3—C17—H17A 108.9
O2—C3—N2 128.46 (13) C16—C17—H17A 108.9
O2—C3—N1 124.27 (12) N3—C17—H17B 108.9
N2—C3—N1 107.27 (10) C16—C17—H17B 108.9
C9—C4—C5 119.48 (12) H17A—C17—H17B 107.8
C9—C4—C1 119.88 (11) N3—C18—C19 109.42 (11)
C5—C4—C1 120.57 (11) N3—C18—H18A 109.8
C4—C5—C6 120.11 (13) C19—C18—H18A 109.8
C4—C5—H5 119.9 N3—C18—H18B 109.8
C6—C5—H5 119.9 C19—C18—H18B 109.8
C7—C6—C5 120.07 (14) H18A—C18—H18B 108.2
C7—C6—H6 120.0 O3—C19—C18 111.03 (11)
C5—C6—H6 120.0 O3—C19—H19A 109.4
C8—C7—C6 120.12 (13) C18—C19—H19A 109.4
C8—C7—H7 119.9 O3—C19—H19B 109.4
C6—C7—H7 119.9 C18—C19—H19B 109.4
C7—C8—C9 120.18 (14) H19A—C19—H19B 108.0
C7—C8—H8 119.9 O3—C20—C21 111.28 (12)
C9—C8—H8 119.9 O3—C20—H20A 109.4
C4—C9—C8 120.03 (14) C21—C20—H20A 109.4
C4—C9—H9 120.0 O3—C20—H20B 109.4
C8—C9—H9 120.0 C21—C20—H20B 109.4
C15—C10—C11 119.20 (11) H20A—C20—H20B 108.0
C15—C10—C1 122.93 (11) N3—C21—C20 110.21 (12)
C11—C10—C1 117.85 (10) N3—C21—H21A 109.6
C12—C11—C10 120.40 (12) C20—C21—H21A 109.6
C12—C11—H11 119.8 N3—C21—H21B 109.6
C10—C11—H11 119.8 C20—C21—H21B 109.6
C13—C12—C11 120.12 (13) H21A—C21—H21B 108.1
C3—N2—C1—C4 122.71 (11) C5—C4—C9—C8 0.5 (2)
C3—N2—C1—C10 −110.98 (12) C1—C4—C9—C8 177.51 (12)
C3—N2—C1—C2 6.63 (13) C7—C8—C9—C4 −1.2 (2)
C3—N1—C2—O1 −176.25 (13) N2—C1—C10—C15 120.60 (12)
C16—N1—C2—O1 6.2 (2) C4—C1—C10—C15 −113.30 (13)
C3—N1—C2—C1 3.02 (13) C2—C1—C10—C15 9.72 (16)
C16—N1—C2—C1 −174.56 (11) N2—C1—C10—C11 −57.84 (14)
N2—C1—C2—O1 173.71 (13) C4—C1—C10—C11 68.27 (14)
C4—C1—C2—O1 55.47 (16) C2—C1—C10—C11 −168.71 (11)
C10—C1—C2—O1 −69.40 (16) C15—C10—C11—C12 −1.04 (19)
N2—C1—C2—N1 −5.56 (12) C1—C10—C11—C12 177.46 (12)
C4—C1—C2—N1 −123.80 (10) C10—C11—C12—C13 1.3 (2)
C10—C1—C2—N1 111.33 (11) C11—C12—C13—C14 −0.6 (2)
C1—N2—C3—O2 175.70 (13) C12—C13—C14—C15 −0.3 (2)
C1—N2—C3—N1 −5.21 (14) C11—C10—C15—C14 0.14 (19)
C2—N1—C3—O2 −179.73 (12) C1—C10—C15—C14 −178.28 (12)
C16—N1—C3—O2 −2.09 (19) C13—C14—C15—C10 0.5 (2)
C2—N1—C3—N2 1.13 (14) C2—N1—C16—C17 103.66 (14)
C16—N1—C3—N2 178.77 (11) C3—N1—C16—C17 −73.66 (15)
N2—C1—C4—C9 155.69 (11) C21—N3—C17—C16 −74.95 (14)
C10—C1—C4—C9 30.62 (15) C18—N3—C17—C16 164.58 (11)
C2—C1—C4—C9 −93.51 (13) N1—C16—C17—N3 −62.76 (15)
N2—C1—C4—C5 −27.35 (15) C17—N3—C18—C19 −177.76 (11)
C10—C1—C4—C5 −152.43 (11) C21—N3—C18—C19 59.69 (14)
C2—C1—C4—C5 83.44 (13) C20—O3—C19—C18 57.57 (16)
C9—C4—C5—C6 0.58 (19) N3—C18—C19—O3 −59.72 (15)
C1—C4—C5—C6 −176.39 (12) C19—O3—C20—C21 −56.62 (17)
C4—C5—C6—C7 −1.0 (2) C17—N3—C21—C20 179.21 (12)
C5—C6—C7—C8 0.3 (2) C18—N3—C21—C20 −59.08 (15)
C6—C7—C8—C9 0.8 (2) O3—C20—C21—N3 58.29 (17)

Hydrogen-bond geometry (Å, º)

Cg3 is the centroid of the C4–C9 benzene ring.

D—H···A D—H H···A D···A D—H···A
N2—H2···O3i 0.91 (1) 1.95 (1) 2.8560 (15) 179 (2)
C12—H12···Cg3ii 0.95 2.62 3.5576 (15) 169
C18—H18B···Cg3iii 0.99 2.65 3.5726 (14) 155

Symmetry codes: (i) −x+3/2, −y+1, z+1/2; (ii) −x, y+3/2, −z+3/2; (iii) x+1, y, z.

Funding Statement

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory. TH is grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).

References

  1. Abdel-Aziz, A. A. M., El-Azab, A. S., Abou-Zeid, L. A., ElTahir, K. E. H., Abdel-Aziz, N. I., Ayyad, R. R. & Al-Obaid, A. M. (2016). Eur. J. Med. Chem. 115, 121–131. [DOI] [PubMed]
  2. Al-Nuzal, S. M. D., Al-Dulaimi, M. F. & Hassan, A. T. (2018). J. Univ. Anbar Pure Sci., 12, 38–53. https://doi.org/10.37652/juaps.2022.17150
  3. Akrad, R., Guerrab, W., Lazrak, F., Ansar, M., Taoufik, J., Mague, J. T. & Ramli, Y. (2018a). IUCrData, 3, x180934.
  4. Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.
  5. Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.
  6. Bruker (2021). APEX4 and SAINT. Bruker AXS LLC, Madison, Wisconsin, USA.
  7. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  8. Emami, S., Valipour, M., Kazemi Komishani, F., Sadati-Ashrafi, F., Rasoulian, M., Ghasemian, M., Tajbakhsh, M., Honarchian Masihi, P., Shakiba, A., Irannejad, H. & Ahangar, N. (2021). Bioorg. Chem. 112, 104943. [DOI] [PubMed]
  9. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.
  10. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  11. n
  12. Guerrab, W., Akrad, R., Ansar, M., Taoufik, J., Mague, J. T. & Ramli, Y. (2017b). IUCrData, 2, x171693.
  13. Guerrab, W., El Jemli, M., Akachar, J., Demirtaş, G., Mague, J. T., Taoufik, J., Ibrahimi, A., Ansar, M., Alaoui, K. & Ramli, Y. (2022). J. Biomol. Struct. Dynam. 40, 8765–8782. [DOI] [PubMed]
  14. Guerrab, W., El Moutaouakil Ala Allah, A., Alsubari, A., Mague, J. T. & Ramli, Y. (2023). IUCrData, 8, x230060. [DOI] [PMC free article] [PubMed]
  15. Guerrab, W., Mague, J. T. & Ramli, Y. (2020). Z. Krist. New Cryst. Struct. 235, 1425–1427.
  16. Guerrab, W., Mague, J. T., Taoufik, J. & Ramli, Y. (2018b). IUCrData, 3, x180057.
  17. Guerrab, W., Mague, J. T., Akrad, R., Ansar, M., Taoufik, J. & Ramli, Y. (2017c). IUCrData, 2, x171808.
  18. Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. [DOI] [PMC free article] [PubMed]
  19. Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.
  20. Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: http://hirshfeldsurface.net/
  21. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  22. Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587. [DOI] [PMC free article] [PubMed]
  23. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814. [DOI] [PubMed]
  24. Ooms, F., Wouters, J., Oscari, O., Happaerts, T., Bouchard, G., Carrupt, P.-A., Testa, B. & Lambert, D. M. (2002). J. Med. Chem. 45, 1748–1756. [DOI] [PubMed]
  25. Pandeya, S. N., Sriram, D., Nath, G. & De Clercq, E. (2000). Eur. J. Med. Chem. 35, 249–255. [DOI] [PubMed]
  26. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  27. Salem, M. G., Abdel Aziz, Y. M., Elewa, M., Elshihawy, H. A. & Said, M. M. (2018). Bioorg. Chem. 79, 131–144. [DOI] [PubMed]
  28. Sangeetha, P., Siva, T., Balaji, R., & Tharini2, and K. (2016). World J. Sci. and Res. 1, 26–30.
  29. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  30. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  31. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  32. Silva Guerra, A. S. H. da, do Nascimento Malta, D. J., Morais Laranjeira, L. P., Souza Maia, M. B., Cavalcanti Colaço, N., do Carmo Alves de Lima, M., Galdino, S. L., da Rocha Pitta, I. & Gonçalves-Silva, T. (2011). Int. Immunopharmacol. 11, 1816–1822. [DOI] [PubMed]
  33. Śladowska, K., Handzlik, J., Kieć-Kononowicz, K. & Mazur, L. (2016). Indian J. Exp. Biol. 54, 553–559. [PubMed]
  34. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  35. Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.
  36. Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. [DOI] [PMC free article] [PubMed]
  37. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  38. Trišović, N., Radovanović, L., Janjić, G. V., Jelić, S. T. & Rogan, J. (2019). Cryst. Growth Des. 19, 2163–2174.
  39. Turner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249–4255. [DOI] [PubMed]
  40. Turner, M. J., McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2011). CrystEngComm, 13, 1804–1813.
  41. Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738. [DOI] [PubMed]
  42. Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625–636. [DOI] [PubMed]
  43. Żesławska, E., Kucwaj-Brysz, K., Kincses, A., Spengler, G., Szymańska, E., Czopek, A., Marć, M. A., Kaczor, A., Nitek, W., Domínguez-Álvarez, E., Latacz, G., Kieć-Kononowicz, K. & Handzlik, J. (2021). Bioorg. Chem. 109, 104735. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989024002445/wm5711sup1.cif

e-80-00423-sup1.cif (4MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989024002445/wm5711Isup2.hkl

e-80-00423-Isup2.hkl (564.5KB, hkl)
e-80-00423-Isup3.cdx (3.1KB, cdx)

Supporting information file. DOI: 10.1107/S2056989024002445/wm5711Isup3.cdx

e-80-00423-Isup4.cml (7.5KB, cml)

Supporting information file. DOI: 10.1107/S2056989024002445/wm5711Isup4.cml

CCDC reference: 2340426

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES