In the title compound, the pyridine ring is fused to acrylic acid, forming an almost planar structure with an E-configuration about the double bond. In the crystal, O—H⋯N and C—H⋯O interactions together with π–π stacking interactions lead to the formation of the three-dimensional structure.
Keywords: crystal structure, (E)-3-(pyridin-4-yl)acrylic acid, supramolecular analysis
Abstract
The title compound, C8H7NO2, crystallizes as prismatic colourless crystals in space group P
, with one molecule in the asymmetric unit. The pyridine ring is fused to acrylic acid, forming an almost planar structure with an E-configuration about the double bond with a torsion angle of −6.1 (2)°. In the crystal, strong O—H⋯N interactions link the molecules, forming chains along the [101] direction. Weak C—H⋯O interactions link adjacent chains along the [100] direction, generating an R
2
2(14) homosynthon. Finally, π–π stacking interactions lead to the formation of the three-dimensional structure. The supramolecular analysis was supported by Hirshfeld surface and two-dimensional fingerprint plot analysis, indicating that the most abundant contacts are associated with H⋯H, O⋯H/H⋯O, N⋯H/H⋯N and C⋯H/H⋯C interactions.
1. Chemical context
Cinnamic acid and its derivatives have been used in several applications related to medicinal chemistry (Deng et al., 2023 ▸), organic synthesis (Chen et al., 2020 ▸), and coordination chemistry (Zhou et al., 2016 ▸). Cinnamic acids are reactive molecules due to possessing an unsaturated carbonyl moiety, which can be considered a Michael acceptor and benzene ring. Both make it possible to modify them, resulting in synthetic cinnamic acid derivatives with a broad range of biological properties, including antibacterial (Ruwizhi & Aderibigbe, 2020 ▸) antituberculosis (Teixeira et al., 2020 ▸), antimalarial (Fonte et al., 2023 ▸), antidiabetic (Adisakwattana, 2017 ▸; Feng et al., 2022 ▸), anticancer (Feng et al., 2022 ▸), antifungal (Liu et al., 2024 ▸), Alzheimer’s treatment (Drakontaeidi & Pontiki, 2024 ▸), antioxidant (Nouni et al., 2023 ▸), and cosmetic (Gunia-Krzyżak et al., 2018 ▸). Among the various types of cinnamic acids documented, 4-pyridylacrylic acid (4-Hpya) is considered a highly valuable ligand because of several structural characteristics that make it suitable for the construction of coordination compounds. These characteristics include multiple coordination sites, which enable the formation of higher-dimensional structures, and versatile coordination modes to form different structures (Khalfaoui et al., 2021 ▸). On the other hand, its capacity to function as both a hydrogen-bond donor and acceptor facilitates the creation of intricate hydrogen-bonded networks (Jiao et al., 2007 ▸; Zhu et al., 2005 ▸).
2. Structural commentary
The title compound crystallizes in space group P
with one molecule per asymmetric unit (Fig. 1 ▸). The pyridinic ring is fused to acrylic acid, forming an almost planar structure with an E-configuration about the double bond, with a C8—C4—C3—C2 torsion angle of −6.1 (2)°.
Figure 1.
The molecule of (E)-3-(pyridin-4-yl)acrylic acid compound with displacement ellipsoids drawn at the 50% probability level.
3. Supramolecular features
In the crystal, strong O1—H1⋯N1 interactions link the molecules, forming chains along the [101] direction (Fig. 2 ▸
a, Table 1 ▸). Adjacent chains are linked along the [100] direction through weak C—H⋯O interactions, generating an
(14) homosynthon (Fig. 2 ▸
b). Finally, the three-dimensional supramolecular structure is finally formed by slipped π–π stacking interactions (Hunter & Sanders, 1990 ▸) between the pyridinic rings (N1/C4–C8) with distances of 3.8246 (10) Å, and π–π stacking interactions of the acrylic double bond (C2=C3) of 3.4322 (10)Å (Fig. 2 ▸
c). An interaction between the nitrogen atom of the pyridinic ring, N1, and the double bond of the acrylic group with a distance of 3.4044 (13) Å is also observed.
Figure 2.
Supramolecular interactions in the title compound. (a) O—H⋯N interactions forming chains, (b) two chains joined by C—H⋯O interactions and (c) π–π stacking interactions between the pyridine rings and the acrylic group.
Table 1. Hydrogen-bond geometry (Å, °).
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
---|---|---|---|---|
O1—H1⋯N1i | 0.99 (3) | 1.63 (3) | 2.6147 (18) | 177 (3) |
C5—H5⋯O2ii | 0.93 | 2.57 | 3.336 (2) | 140 |
Symmetry codes: (i)
; (ii)
.
A Hirshfeld surface analysis was performed to confirm, visualise and quantify the supramolecular interactions present in title compound. The Hirshfeld surface mapped over d norm and 2D fingerprint plots (Spackman & Jayatilaka, 2009 ▸) were generated using Crystal Explorer 17 (Spackman, et al., 2021 ▸). Fig. 3 ▸ shows the strongest interactions as red spots. These are associated with the donor and acceptor atoms, in this case for the O—H⋯N interaction. The weakest interactions, associated with the C—H⋯O contacts, are shown as white areas. These interactions were quantified through the fingerprint plots, indicating that the most abundant contacts are associated with H⋯H interactions (36.2%) while O⋯H/H⋯O, N⋯H/H⋯N and C⋯H/H⋯C interactions represent 27.8%, 8.7% and 10.7%, respectively. These results show that crystal packing is governed mainly by dispersion and electrostatic interactions.
Figure 3.
Hirshfeld surface and fingerprint plot analysis for the title compound.
4. Database survey
A search of the Cambridge Structural Database (Version 2023.3.0; Groom et al., 2016 ▸) using Conquest (Bruno et al., 2002 ▸) found seven entries for (E)-3-(pyridin-4-yl)acrylic acid derivative molecules. In all cases, the protonation of the nitrogen atom in the pyridine ring leads to the formation of pyridinium salts. These include halides (Hu, 2010 ▸; Kole et al., 2010 ▸), trifluoroacetate (Kole et al., 2010 ▸), hydrogen sulfate (Kole et al., 2010 ▸), perchlorate and hexafluorophosphate (Kole et al., 2011 ▸).
5. Synthesis and crystallization
The synthesis of (E)-3-(pyridin-4-yl)acrylic acid compound was performed following the procedure reported by Kudelko et al. (2015 ▸) for the synthesis of 3-(pyridyl)acrylic acids (Fig. 4 ▸). In a 25 mL flat-bottomed flask, 728 mg of malonic acid (0.335 mmol) and 300 mg of 4-pyridincarboxyaldehyde (0.33 5 mmol) were mixed with 2 ml of pyridine. The reaction mixture was refluxed under constant stirring for 3 h. The reaction synthesis was ice-cooled, and then drops of 37% HCl were added until precipitate formation was observed. The obtained solid was separated by filtration and washed with acetone. The solid product was recrystallized by slow water evaporation, giving a colourless crystalline powder and small prismatic crystals in 97.9% yield.
Figure 4.
Reaction scheme for obtaining (E)-3-(pyridin-4-yl)acrylic acid.
6. Refinement
Crystal data, data collection and structure refinement details are summarized in Table 2 ▸. The O-bound hydrogen atom (H1) was found in electron density maps and freely refined. C-bound hydrogen atoms were positioned geometrically and refined using a riding model [C—H = 0.93 Å, U iso(H) = 1.2U eq(C)].
Table 2. Experimental details.
Crystal data | |
Chemical formula | C8H7NO2 |
M r | 149.15 |
Crystal system, space group | Triclinic, P
![]() |
Temperature (K) | 291 |
a, b, c (Å) | 6.6279 (15), 7.3272 (12), 8.2308 (15) |
α, β, γ (°) | 67.271 (17), 83.403 (17), 73.006 (17) |
V (Å3) | 352.57 (13) |
Z | 2 |
Radiation type | Cu Kα |
μ (mm−1) | 0.85 |
Crystal size (mm) | 0.09 × 0.06 × 0.05 |
Data collection | |
Diffractometer | SuperNova, Dual, Cu at home/near, Atlas |
Absorption correction | Multi-scan (CrysAlis PRO; Rigaku OD, 2021 ▸) |
T min, T max | 0.831, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3635, 1461, 1243 |
R int | 0.035 |
(sin θ/λ)max (Å−1) | 0.631 |
Refinement | |
R[F 2 > 2σ(F 2)], wR(F 2), S | 0.049, 0.153, 1.04 |
No. of reflections | 1461 |
No. of parameters | 104 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.14, −0.27 |
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989024002627/ex2082sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989024002627/ex2082Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989024002627/ex2082Isup3.cml
CCDC reference: 2341592
Additional supporting information: crystallographic information; 3D view; checkCIF report
supplementary crystallographic information
Crystal data
C8H7NO2 | F(000) = 156 |
Mr = 149.15 | Dx = 1.405 Mg m−3 |
Triclinic, P1 | Melting point: 553 K |
a = 6.6279 (15) Å | Cu Kα radiation, λ = 1.54184 Å |
b = 7.3272 (12) Å | Cell parameters from 1657 reflections |
c = 8.2308 (15) Å | θ = 6.8–74.9° |
α = 67.271 (17)° | µ = 0.85 mm−1 |
β = 83.403 (17)° | T = 291 K |
γ = 73.006 (17)° | Prismatic, colourless |
V = 352.57 (13) Å3 | 0.09 × 0.06 × 0.05 mm |
Z = 2 |
Data collection
SuperNova, Dual, Cu at home/near, Atlas diffractometer | 1461 independent reflections |
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source | 1243 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.035 |
Detector resolution: 10.6144 pixels mm-1 | θmax = 76.6°, θmin = 5.8° |
ω scans | h = −8→7 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2021) | k = −8→9 |
Tmin = 0.831, Tmax = 1.000 | l = −10→10 |
3635 measured reflections |
Refinement
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.049 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.153 | w = 1/[σ2(Fo2) + (0.0977P)2 + 0.0215P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
1461 reflections | Δρmax = 0.14 e Å−3 |
104 parameters | Δρmin = −0.27 e Å−3 |
Special details
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
x | y | z | Uiso*/Ueq | ||
O1 | 0.48195 (18) | 0.6974 (2) | 0.64537 (15) | 0.0609 (4) | |
O2 | 0.63738 (19) | 0.8136 (2) | 0.79722 (16) | 0.0669 (4) | |
C2 | 0.3116 (2) | 0.7317 (2) | 0.89960 (18) | 0.0484 (4) | |
H2 | 0.211812 | 0.676180 | 0.879516 | 0.058* | |
N1 | −0.20475 (19) | 0.72846 (17) | 1.42131 (15) | 0.0504 (4) | |
C5 | 0.1186 (2) | 0.8159 (2) | 1.31387 (18) | 0.0490 (4) | |
H5 | 0.228403 | 0.862808 | 1.329376 | 0.059* | |
C4 | 0.1149 (2) | 0.76641 (18) | 1.16689 (16) | 0.0426 (3) | |
C7 | −0.2089 (2) | 0.6805 (2) | 1.28079 (19) | 0.0507 (4) | |
H7 | −0.320055 | 0.632669 | 1.269716 | 0.061* | |
C1 | 0.4937 (2) | 0.75386 (19) | 0.77647 (17) | 0.0477 (4) | |
C3 | 0.2868 (2) | 0.7884 (2) | 1.03649 (18) | 0.0456 (3) | |
H3 | 0.386535 | 0.847081 | 1.051782 | 0.055* | |
C8 | −0.0552 (2) | 0.6991 (2) | 1.15114 (18) | 0.0483 (4) | |
H8 | −0.065343 | 0.666782 | 1.054192 | 0.058* | |
C6 | −0.0433 (3) | 0.7943 (2) | 1.43650 (18) | 0.0524 (4) | |
H6 | −0.038863 | 0.827444 | 1.534078 | 0.063* | |
H1 | 0.600 (4) | 0.713 (4) | 0.561 (3) | 0.099 (8)* |
Atomic displacement parameters (Å2)
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0601 (7) | 0.0851 (8) | 0.0546 (6) | −0.0366 (6) | 0.0209 (5) | −0.0374 (5) |
O2 | 0.0631 (7) | 0.0930 (9) | 0.0644 (7) | −0.0440 (6) | 0.0193 (5) | −0.0389 (6) |
C2 | 0.0493 (8) | 0.0521 (7) | 0.0490 (8) | −0.0225 (6) | 0.0125 (6) | −0.0213 (6) |
N1 | 0.0545 (7) | 0.0513 (6) | 0.0463 (6) | −0.0184 (5) | 0.0129 (5) | −0.0197 (5) |
C5 | 0.0523 (8) | 0.0528 (7) | 0.0489 (7) | −0.0218 (6) | 0.0056 (6) | −0.0225 (6) |
C4 | 0.0457 (7) | 0.0396 (6) | 0.0405 (7) | −0.0122 (5) | 0.0055 (5) | −0.0139 (5) |
C7 | 0.0482 (7) | 0.0572 (7) | 0.0524 (7) | −0.0224 (6) | 0.0101 (6) | −0.0233 (6) |
C1 | 0.0508 (7) | 0.0488 (7) | 0.0451 (7) | −0.0201 (5) | 0.0097 (5) | −0.0167 (5) |
C3 | 0.0455 (7) | 0.0468 (6) | 0.0450 (7) | −0.0168 (5) | 0.0058 (5) | −0.0161 (5) |
C8 | 0.0513 (7) | 0.0552 (7) | 0.0453 (7) | −0.0202 (6) | 0.0075 (5) | −0.0240 (5) |
C6 | 0.0621 (9) | 0.0553 (7) | 0.0458 (7) | −0.0199 (6) | 0.0091 (6) | −0.0249 (6) |
Geometric parameters (Å, º)
O1—C1 | 1.3135 (17) | C5—C4 | 1.3954 (18) |
O1—H1 | 0.98 (3) | C5—C6 | 1.386 (2) |
O2—C1 | 1.2110 (19) | C4—C3 | 1.4729 (19) |
C2—H2 | 0.9300 | C4—C8 | 1.392 (2) |
C2—C1 | 1.4887 (18) | C7—H7 | 0.9300 |
C2—C3 | 1.322 (2) | C7—C8 | 1.384 (2) |
N1—C7 | 1.3374 (18) | C3—H3 | 0.9300 |
N1—C6 | 1.332 (2) | C8—H8 | 0.9300 |
C5—H5 | 0.9300 | C6—H6 | 0.9300 |
C1—O1—H1 | 113.5 (14) | C8—C7—H7 | 118.6 |
C1—C2—H2 | 118.9 | O1—C1—C2 | 112.14 (13) |
C3—C2—H2 | 118.9 | O2—C1—O1 | 124.20 (13) |
C3—C2—C1 | 122.27 (14) | O2—C1—C2 | 123.65 (13) |
C6—N1—C7 | 117.87 (12) | C2—C3—C4 | 125.60 (14) |
C4—C5—H5 | 120.4 | C2—C3—H3 | 117.2 |
C6—C5—H5 | 120.4 | C4—C3—H3 | 117.2 |
C6—C5—C4 | 119.18 (13) | C4—C8—H8 | 120.2 |
C5—C4—C3 | 119.41 (13) | C7—C8—C4 | 119.52 (12) |
C8—C4—C5 | 117.36 (12) | C7—C8—H8 | 120.2 |
C8—C4—C3 | 123.22 (12) | N1—C6—C5 | 123.17 (12) |
N1—C7—H7 | 118.6 | N1—C6—H6 | 118.4 |
N1—C7—C8 | 122.88 (14) | C5—C6—H6 | 118.4 |
N1—C7—C8—C4 | 1.3 (2) | C3—C2—C1—O2 | 4.3 (2) |
C5—C4—C3—C2 | 174.27 (12) | C3—C4—C8—C7 | 179.26 (12) |
C5—C4—C8—C7 | −1.2 (2) | C8—C4—C3—C2 | −6.1 (2) |
C4—C5—C6—N1 | −0.2 (2) | C6—N1—C7—C8 | −0.8 (2) |
C7—N1—C6—C5 | 0.3 (2) | C6—C5—C4—C3 | −179.79 (12) |
C1—C2—C3—C4 | −178.21 (11) | C6—C5—C4—C8 | 0.6 (2) |
C3—C2—C1—O1 | −176.96 (13) |
Hydrogen-bond geometry (Å, º)
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N1i | 0.99 (3) | 1.63 (3) | 2.6147 (18) | 177 (3) |
C5—H5···O2ii | 0.93 | 2.57 | 3.336 (2) | 140 |
Symmetry codes: (i) x+1, y, z−1; (ii) −x+1, −y+2, −z+2.
Hydrogen bonds and interactions geometry, (Å, °)
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N1i | 0.990 (3) | 1.630 (3) | 2.61470 (18) | 177.0 (3) |
C5—H5···O2ii | 0.9300 | 2.5700 | 3.3360 (2) | 140.00 |
Cp1···Cp1 | 3.82460 (10) | |||
Cp2···Cp2 | 3.43220 (10) | |||
N1···Cp1 | 3.40440 (13) |
Funding Statement
The authors all acknowledge the Universidad Santiago de Cali and Dirección General de Investigaciones for funding this research under call No. 01–2024 and projects 939–621121-3307 and 934–621122-3427. RD acknowledges the Vicerectoria de Investigaciones of Universidad del Cauca for 2024 internal call, project No. ID-6161. MM is grateful for support from the Facultad de Ciencias and Departamento de Química at Universidad de los Andes, Bogotá, Colombia.
References
- Adisakwattana, S. (2017). Nutrients, 9, 163. [DOI] [PMC free article] [PubMed]
- Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. [DOI] [PubMed]
- Chen, L., Zhang, L., Yan, G. & Huang, D. (2020). Asia. J. Org. Chem. 9, 842–862.
- Deng, H., Xu, Q., Guo, H.-Y., Huang, X., Chen, F., Jin, L., Quan, Z.-S. & Shen, Q.-K. (2023). Phytochemistry, 206, 113532. [DOI] [PubMed]
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Drakontaeidi, A. & Pontiki, E. (2024). Int. J. Mol. Sci. 25, 582. [DOI] [PMC free article] [PubMed]
- Feng, L.-S., Cheng, J.-B., Su, W.-Q., Li, H.-Z., Xiao, T., Chen, D.-A. & Zhang, Z.-L. (2022). Arch. Pharm. 355, 2200052.
- Fonte, M., Fontinha, D., Moita, D., Caño-Prades, O., Avalos-Padilla, Y., Fernàndez-Busquets, X., Prudêncio, M., Gomes, P. & Teixeira, C. (2023). Eur. J. Med. Chem. 258, 115575. [DOI] [PubMed]
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Gunia–Krzyżak, A., Słoczyńska, K., Popiół, J., Koczurkiewicz, P., Marona, H. & Pękala, E. (2018). Int. J. Cosmet. Sci. 40, 356–366. [DOI] [PubMed]
- Hunter, C. A. & Sanders, J. K. M. (1990). J. Am. Chem. Soc. 112, 5535–5534.
- Hu, D.-Y. (2010). Acta Cryst. E66, o1639. [DOI] [PMC free article] [PubMed]
- Jiao, C. M., Zhang, W. H., Tang, X. Y., Liu, L. L., Zhang, Y. & Lang, J. P. (2007). Inorg. Chem. Commun. 10, 975–978.
- Khalfaoui, O., Beghidja, A., Beghidja, C., Guari, Y., Larionova, J. & Long, J. (2021). Polyhedron, 207, 115366.
- Kole, G. K., Tan, G. K. & Vittal, J. J. (2010). Org. Lett. 12, 128–131. [DOI] [PubMed]
- Kole, G. K., Tan, G. K. & Vittal, J. J. (2011). Org. Lett. 76(19), 7860–7865. [DOI] [PubMed]
- Kudelko, A., Jasiak, K. & Ejsmont, K. (2015). Monatsh. Chem. 146, 303–311. [DOI] [PMC free article] [PubMed]
- Liu, H., Cai, C., Zhang, X., Li, W., Ma, Z., Feng, J., Liu, X. & Lei, P. (2024). J. Agric. Food Chem. 72, 2492–2500. [DOI] [PubMed]
- Nouni, C., Theodosis-Nobelos, P. & Rekka, E. A. (2023). Molecules, 28, 6732. [DOI] [PMC free article] [PubMed]
- Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Ruwizhi, N. & Aderibigbe, B. A. (2020). Int. J. Mol. Sci. 21, 5712. [DOI] [PMC free article] [PubMed]
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
- Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
- Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. [DOI] [PMC free article] [PubMed]
- Teixeira, C., Ventura, C., Gomes, J. R. B., Gomes, P. & Martins, F. (2020). Molecules, 25, 456. [DOI] [PMC free article] [PubMed]
- Zhou, K., Feng, Z., Shen, J., Wu, B., Luo, X., Jiang, S., Li, L. & Zhou, X. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 158, 29–33. [DOI] [PubMed]
- Zhu, Y. J., Chen, J. X., Zhang, W. H., Ren, Z. G., Zhang, Y., Lang, J. P. & Ng, S. W. (2005). J. Organomet. Chem. 690, 3479–3487.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989024002627/ex2082sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989024002627/ex2082Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989024002627/ex2082Isup3.cml
CCDC reference: 2341592
Additional supporting information: crystallographic information; 3D view; checkCIF report