Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2024 Mar 27:2024.03.22.586298. [Version 1] doi: 10.1101/2024.03.22.586298

Unusual lineage plasticity revealed by YY1 knockout in pro-B cells

Sarmistha Banerjee, Sulagna Sanyal, Suchita Hodawadekar, Sarah Naiyer, Nasreen Bano, Anupam Banerjee, Joshua Rhoades, Dawei Dong, David Allman, Michael L Atchison
PMCID: PMC10996465  PMID: 38586061

Abstract

During B cell development, cells progress through multiple developmental stages with the pro-B cell stage defining commitment to the B cell lineage. YY1 is a ubiquitous transcription factor that is capable of both activation and repression functions. We find here that knockout of YY1 at the pro-B cell stage eliminates B lineage commitment. YY1 knockout pro-B cells can generate T lineage cells in vitro using the OP9- DL4 feeder system, as well as in vivo after injection into sub-lethally irradiated Rag1 -/- mice. These T lineage-like cells lose their B lineage transcript profile and gain a T cell lineage profile. Single cell-RNA-seq experiments showed that as YY1 knockout pro-B cells transition into T lineage cells, various cell clusters adopt transcript profiles representing a multiplicity of hematopoietic lineages indicating unusual lineage plasticity. Given the ubiquitous nature of YY1 and its dual activation and repression functions, YY1 likely regulates commitment in multiple cell lineages.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES