ABSTRACT
Time-correlated single photon counting (TCSPC) coupled with confocal microscopy is a versatile biophysical tool that enables real-time monitoring of biomolecular dynamics across many timescales. With TCSPC, Fluorescence correlation spectroscopy (FCS) and pulsed interleaved excitation-Förster resonance energy transfer (PIE-FRET) are collected simultaneously on diffusing molecules to extract diffusion characteristics and proximity information. This article is a guide to calibrating FCS and PIE-FRET measurements with several biological samples including liposomes, streptavidin-coated quantum dots, proteins, and nucleic acids for reliable determination of diffusion coefficients and FRET efficiency. The FRET efficiency results are also compared to surface-attached single molecules using fluorescence lifetime imaging microscopy (FLIM-FRET). Combining the methods is a powerful approach to revealing mechanistic details of biological processes and pathways.
Full Text Availability
The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.
