Skip to main content
Scientific Reports logoLink to Scientific Reports
. 2024 Apr 6;14:8074. doi: 10.1038/s41598-024-58245-x

The 3-component mixture of power distributions under Bayesian paradigm with application of life span of fatigue fracture

Tahir Abbas 2, Muhammad Tahir 1,, Muhammad Abid 3,, Samavia Munir 3, Sajid Ali 4
PMCID: PMC10997644  PMID: 38580684

Abstract

Mixture distributions are naturally extra attractive to model the heterogeneous environment of processes in reliability analysis than simple probability models. This focus of the study is to develop and Bayesian inference on the 3-component mixture of power distributions. Under symmetric and asymmetric loss functions, the Bayes estimators and posterior risk using priors are derived. The presentation of Bayes estimators for various sample sizes and test termination time (a fact of time after that test is terminated) is examined in this article. To assess the performance of Bayes estimators in terms of posterior risks, a Monte Carlo simulation along with real data study is presented.

Keywords: Bayesian estimation, Power distribution, Prior distribution, Posterior risk, Symmetric and asymmetric loss functions, Censored data

Subject terms: Engineering, Mathematics and computing

Introduction

The power distribution is frequently proposed to study the electrical element reliability (Saleem et al.1) and in many practical situations, it provides a good fit to data as compared to other distributions, e.g., Rayleigh or gamma distribution. We considered this particular distribution due to skewed nature and applied in different fields like electrical engineering (Amanulla et al.2), reliability analysis (Shahzad et al.3), city population sizes, stock prices fluctuation, magnitude of earthquakes (Parsa and Murty4) and average wealth of a country's citizens etc. However, simple probability distribution may not be well fitted due to heterogeneous environment of reliability data. Therefore, mixture distributions of some suitable distributions are interesting to model the heterogeneous environment of procedures in reliability study. For instance, if the values randomly picked from this population are invented to be considered from three different probability distribution, 3-components mixture of that distribution is recommended. Use of a mixture distribution becomes unavoidable when values are not given for every distribution rather for the overall mixture distribution, so-called direct use of mixture distributions. Li5 and Li and Sedransk6 discussed type-I mixture distribution (mixture of probability distributions from the same family) and type-II mixture distribution (mixture of probability distributions from various family).

Many researchers have analyzed 2-component mixture models of different probability distributions and applied them to various real life problems under classical and Bayesian framework. Similar to 2-component mixture distribution, some researchers have studied the situations where data are taken from a 3-component mixture distribution. For illustration, in order to know amount of failure because of a definite reason of failure and to expand industrial procedure, Acheson and McElwee7 separated electrical tube failures into three types of flaws, namely, gaseous flaws, mechanical flaws, and usual deterioration of the cathode. Davis8 also described a mixture data on lifetimes of different parts composed from aircraft failure. Also, Tahir et al.9 used the real life mixture data on three parts, namely, Combination of Transformers, Transmitter Tube and Combination of Relays. Haq and Al-Omari10 studied the mixture of three Rayleigh distributions using type-I censored data under different scenarios. The application of such methodologies can further be seen in Luo et al.11, Wang et al.12 and Zhou et al.13. Thus, the practical significance of 3-component mixtures of distributions is evident to the cited literature.

Because of time and price restrictions, it is difficult proceed the testing till end value. Consequently, the observations larger than fixed test termination time are retained equally censored observations. It is stating that censoring is an asset of data and it is usually used in real lifetime tests. The practical reason of censoring is stated in Romeu14, Gijbels15 and Kalbfleisch and Prentice16.

Inspired by wide application of mixture distributions, here we define a mixture of the power distributions for capable modeling of practical data under Bayesian paradigm. Different types of loss functions and priors will be assumed to derive Bayes estimators along with posterior risks.

The 3-component mixture of power distributions (3-CMPD) has following pdf and survival function:

fy;Θ=p1f1y+p2f2y+1-p1-p2f3y,0<y<1, 1
Sy;Θ=p1S1y+p2S2y+1-p1-p2S3y. 2

where λ1,λ2 and λ3 are component parameters, p1 and p2 are mixing proportions and

Θ=λ1,λ2,λ3,p1,p2. 3

The pdf fmy and the survival function Smy of the mth component, m=1,2,3, are written as:

fmy=λmyλm-1andSmy=1-yλm,λm>0. 4

Sampling structure for likelihood function

Suppose a data consists of n values from the 3-CMPD are taken in a real life test with fixed t (test termination time). Let y1,y2,...,yu be the values that can be observed and remaining n-u greatest values are taken as censored, that is, their failure time cannot be noted. So, y1=y11,...,y1u1, y2=y21,...,y2u2 and y3=y31,...,y3u3 are failed data representing to 1st, 2nd and 3rd subpopulations. Remaining of the data which are greater than yu taken to be censored from each subpopulation, while the numbers u1, u2 and u3 of failed values can be taken from 1st, 2nd and 3rd subpopulations. Rest of the n1-u1, n2-u2 and n3-u3 values are picked as censored data from three subpopulations, whereas u=u1+u2+u3. Using the type-I right censored data, y=y1=y11,...,y1u1, y2=y21,...,y2u2, y3=y31,...,y3u3, the likelihood function is:

LΘ;yw=1u1p1f1y1ww=1u2p2f2y2ww=1u31-p1-p2f3y3wStn-r, 5

On simplification, the likelihood function is:

LΘ;yi=0n-uj=0ik=0j-1in-uiijjkexp-λ1i-jln1t+w=1u1ln1y1w×exp-λ2j-kln1t+w=1u2ln1y2wexp-λ3kln1t+w=1u3ln1y3w×λ11λ22λ33p1i-j+u1p2j-k+u21-p1-p2k+u3 6

Posterior distributions assuming different priors

In this section, using the non-informative priors (NIPs) and informative prior (IP), the posterior distributions of parameters are derived.

Posterior distribution assuming uniform prior (UP)

If no prior or additional prior knowledge is given, the use of UP and JP (Jeffreys’ prior) as NIPs are recommended in Bayesian estimation. We assume the uniform (0,) for component parameter λm(m=1,2,3) and the uniform (0,1) for the proportion parameter ps(s=1,2). The joint prior distribution is π1Θ1. Thus, the joint posterior distribution given censored data y is:

q1Θy=LΘ;yπ1ΘΨLΘ;yπ1ΘdΘ. 7
q1Θy=i=0n-uj=0ik=0j-1in-uiijjkexp-B11λ1exp-B21λ2exp-B31λ3p1A01-1p2B01-11-p1-p2C01-1Ω1λ11-A11λ21-A21λ31-A31, 8

where A11=1+u1, A21=1+u2, A31=1+u3, B11=i-jln1t+w=1u1ln1y1w, B21=j-kln1t+w=1u2ln1y2w, B31=kln1t+w=1u3ln1y3w, A01=i+u1+1-j, B01=j+u2+1-k, C01=k+u3+1,Ω1=i=0n-uj=0ik=0j-1in-uiijjkΓA11ΓA21ΓA31B11-A11B21-A21B31-A31BA01,B01,C01.

After simplification, the marginal posterior distributions are derived as:

g1λ1y=1Ω1i=0n-uj=0ik=0j-1in-uiijjkBA01,C01BB01,A01+C01ΓA21ΓA31B21-A21B31-A31λ1A11-1exp-B11λ1 9
g1λ2y=1Ω1i=0n-uj=0ik=0j-1in-uiijjkBA01,C01BB01,A01+C01ΓA11ΓA31B11-A11B31-A31λ2A21-1exp-B21λ2 10
g1λ3y=1Ω1i=0n-uj=0ik=0j-1in-uiijjkBA01,C01BB01,A01+C01ΓA21ΓA31B11-A11B21-A21λ3A31-1exp-B31λ3 11
g1p1y=1Ω1i=0n-uj=0ik=0j-1in-uiijjkΓA11ΓA21ΓA31B11-A11B21-A21B31-A31BB01,C01p1A01-11-p1B01+C01-1 12
g1p2y=1Ω1i=0n-uj=0ik=0j-1in-uiijjkΓA11ΓA21ΓA31B11-A11B21-A21B31-A31BA01,C01p2B01-11-p2A01+C01-1. 13

Posterior distribution assuming Jeffreys’ prior (JP)

Jeffreys17,18 suggested a formula for finding the JP as: pλm-E2lnLλmymλm21/2, where -E2lnLλmymλm2 is Fisher’s information. Here, we take prior distributions of ps(s=1,2) are uniform (0,1). So, the joint posterior distribution given censored data y using π2Θ1λ1λ2λ3 as joint prior distribution is:

q2Θy=i=0n-uj=0ik=0j-1in-uiijjkexp-B12λ1exp-B22λ2exp-B32λ3p1A02-1p2B02-11-p1-p2C02-1Ω2λ11-A12λ21-A22λ31-A32, 14

where A12=u1, A22=u2, A32=u3, B12=i-jln1t+w=1u1ln1y1w, B22=j-kln1t+w=1u2ln1y2w, B32=kln1t+w=1u3ln1y3w, A02=i-j+u1+1, B02=j-k+u2+1, C02=k+u3+1, Ω2=i=0n-uj=0ik=0j-1in-uiijjkB12-A12B22-A22B32-A32ΓA12ΓA22ΓA32BA02,B02,C02.

The marginal posterior distributions are derived as:

g2λ1y=1Ω2i=0n-uj=0ik=0j-1in-uiijjkBA02,C02BB02,A02+C02ΓA22ΓA32B22-A22B32-A32λ1A12-1exp-B12λ1 15
g2λ2y=1Ω2i=0n-uj=0ik=0j-1in-uiijjkBA02,C02BB02,A02+C02ΓA12ΓA32B12-A12B32-A32λ2A22-1exp-B22λ2 16
g2λ3y=1Ω2i=0n-uj=0ik=0j-1in-uiijjkBA02,C02BB02,A02+C02ΓA22ΓA32B12-A12B22-A22λ3A32-1exp-B32λ3 17
g2p1y=1Ω2i=0n-uj=0ik=0j-1in-uiijjkΓA12ΓA22ΓA32B12-A12B22-A22B32-A32BB02,C02p1A02-11-p1B02+C02-1 18
g2p2y=1Ω2i=0n-uj=0ik=0j-1in-uiijjkΓA12ΓA22ΓA32B12-A12B22-A22B32-A32BA02,C02p2B02-11-p2A02+C02-1. 19

Posterior distribution assuming the Informative prior

As an IP, we assume Gammaam,bm for parameter λm and BivariateBetaa,b,c for the proportion parameter ps. The joint prior distribution is:

π3Θ=b11Γa1b22Γa2b33Γa31Ba,b,ce-b1λ1λ11-a1e-b2λ2λ21-a2e-b3λ3λ31-a3p1a-1p2b-11-p1-p2c-1. 20

So, the joint posterior distribution given censored data y is:

q3Θy=i=0n-uj=0ik=0j-1in-uiijjkexp-B13λ1exp-B23λ2exp-B33λ3p1A03-1p2B03-11-p1-p2C03-1Ω3λ11-A13λ21-A23λ31-A33, 21

where A13=a1+u1, B13=w=1u1ln1y1w+i-jln1t+b1, A23=a2+u2, B23=w=1u2ln1y2w+j-kln1t+b2, A33=a3+u3, B33=w=1u3ln1y3w+kln1t+b3, A03=i-j+u1+a, B03=j-k+u2+b, C03=k+u3+c,Ω3=i=0n-uj=0ik=0j-1in-uiijjkBA03,B03,C03ΓA13ΓA23ΓA33B13-A13B23-A23B33-A33.

The marginal posterior distributions are derived as:

g3λ1y=1Ω3i=0n-uj=0ik=0j-1in-uiijjkBA03,C03BB03,A03+C03ΓA23ΓA33B23-A23B33-A33λ1A13-1exp-B13λ1 22
g3λ2y=1Ω3i=0n-uj=0ik=0j-1in-uiijjkBA03,C03BB03,A03+C03ΓA13ΓA33B13-A13B33-A33λ2A23-1exp-B23λ2 23
g3λ3y=1Ω3i=0n-uj=0ik=0j-1in-uiijjkBA03,C03BB03,A03+C03ΓA23ΓA33B13-A13B23-A23λ3A33-1exp-B33λ3 24
g3p1y=1Ω3i=0n-uj=0ik=0j-1in-uiijjkΓA13ΓA23ΓA33B13-A13B23-A23B33-A33BB03,C03p1A03-11-p1B03+C03-1 25
g3p2y=1Ω3i=0n-uj=0ik=0j-1in-uiijjkΓA13ΓA23ΓA33B13-A13B23-A23B33-A33BA03,C03p2B03-11-p2A03+C03-1. 26

Bayesian estimation using loss functions

Here, we derived the Bayes estimators (BEs) and their respective posterior risks (PRs) using Squared error loss function (SELF) and quadratic loss function (QLF) as symmetric loss functions, whereas, DeGroot loss function (DLF) and precautionary loss function (PLF) as asymmetric loss functions. The SELF, PLF and DLF introduced by Legendre19, Norstrom20 and DeGroot21, respectively. For a given posterior, the general expressions of the BEs and PRs are presented in Table 1.

Table 1.

The BEs and PRs under loss functions.

Loss function =Lλ,ω BE =ω^ PR =ρω^
SELF=λ-ω2 Eλ Varλ
QLF=λ-ω2λ Eλ-1Eλ-2 1-Eλ-1Eλ-2
PLF=λ-ω2ω Eλ21/2 2Eλ2-2Eλ
DLF=λ-ωω2 Eλ2Eλ VarλEλ2

Expressions for BEs and PRs using SELF

After simplification, the closed form expressions of BEs and PRs are given below:

λ^1=1Ωvi=0n-uj=0ik=0j-1in-uiijjkBA0v,C0vBB0v,A0v+C0vB1v-A1v+1ΓA1v+1B2v-A2vΓA2vB3v-A3vΓA3v 27
λ^2=1Ωvi=0n-uj=0ik=0j-1in-uiijjkBA0v,C0vBB0v,A0v+C0vB1v-A1vΓA1vB2v-A2v+1ΓA2v+1B3v-A3vΓA3v 28
λ^3=1Ωvi=0n-uj=0ik=0j-1in-uiijjkBA0v,C0vBB0v,A0v+C0vB1v-A1vΓA1vB2v-A2vΓA2vB3v-A3v+1ΓA3v+1 29
p^1=1Ωvi=0n-uj=0ik=0j-1in-uiijjkBB0v,C0vBA0v+1,B0v+C0vB1v-A1vΓA1vB2v-A2vΓA2vB3v-A3vΓA3v 30
p^2=1Ωvi=0n-uj=0ik=0j-1in-uiijjkBA0v,C0vBB0v+1,A0v+C0vB1v-A1vΓA1vB2v-A2vΓA2vB3v-A3vΓA3v 31
ρλ^1=1Ωvi=0n-uj=0ik=0j-1in-uiijjkBA0v,C0vBB0v,A0v+C0vB1v-A1v+2ΓA1v+2B2v-A2vΓA2vB3v-A3vΓA3v-λ^12 32
ρλ^2=1Ωvi=0n-uj=0ik=0j-1in-uiijjkBA0v,C0vBB0v,A0v+C0vB1v-A1vΓA1vB2v-A2v+2ΓA2v+2B3v-A3vΓA3v-λ^22 33
ρλ^3=1Ωvi=0n-uj=0ik=0j-1in-uiijjkBA0v,C0vBB0v,A0v+C0vB1v-A1vΓA1vB2v-A2vΓA2vB3v-A3v+2ΓA3v+2-λ^32 34
ρp^1=1Ωvi=0n-uj=0ik=0j-1in-uiijjkBB0v,C0vBA0v+2,B0v+C0vB1v-A1vΓA1vB2v-A2vΓA2vB3v-A3vΓA3v-p^12 35
ρp^2=1Ωvi=0n-uj=0ik=0j-1in-uiijjkBA0v,C0vBB0v+2,A0v+C0vB1v-A1vΓA1vB2v-A2vΓA2vB3v-A3vΓA3v-p^22, 36

where v=1, v=2 and v=3 for the UP, JP and IP, respectively.

Also, the BEs and PRs under other three loss functions can also be derived. For sake of shortness, we have not given these derived BEs and PRs but presented upon request to the corresponding author.

Elicitation of hyperparameters

Elicitation is a process used to enumerate a person’s prior professional knowledge about some unidentified quantity of concern which can be used to improvement any values which we may have. In Bayesian analysis, specification and elicitation of hyperparameters of prior density is a common difficulty. For different statistical models, different procedures for specification of opinions to elicit hyperparameters of prior distribution have been established.

Aslam22 suggested different methods which are depend upon the prior predictive distribution (PPD). In his study, one method based on prior predictive probabilities (PPPs) for elicitation of hyperparameters is used. The rule of evaluation is to link PPD with professional’s evaluation of this distribution and to select hyperparameters which make evaluation agree narrowly with a part of family. So, subsequent the rules of probability the professional would be consistent in elicitation of the probabilities. A few conflicts may arise which are not significant. A function Φξ1,ξ2=minξ1,ξ2zpz-p0zpz2 can be applied to elicit the hyperparameters ξ1 and ξ2, where p0z represent the elicited PPPs and pz denote the PPPs considered by hyperparameters ξ1 and ξ2. For elicitation, the above equations are simplified numerically in Mathematica. A method depend upon PPPs is considered to elicit the hyperparameters of the IP In this study.

Elicitation of hyperparameters

Using the IP π3Θ, the PPD is define as:

py=0101-p2000fyΘπ3Θdλ1dλ2dλ3dp1dp2 37

After substitution and simplification, the PPD is obtained as:

py=aa1b11yb1-lnya1+1+ba2b22yb2-lnya2+1+ca3b33yb3-lnya3+11a+b+c. 38

Using the above PPD (22), nine integrals based on limits of Y, i.e., 0.05y0.15, 0.15y0.25, 0.25y0.35, 0.35y0.45, 0.45y0.55, 0.55y0.65, 0.65y0.750.75y0.85 and 0.85y0.95 are considered with associated predictive probabilities 0.08, 0.07, 0.06, 0.06, 0.065, 0.07, 0.08, 0.09 and 0.10, respectively. It is stating that predictive probabilities may have been taken from professional(s) as their belief related to likelihood of given intervals. Now, to elicit the hyperparameters, the above equations are solved numerically using Mathematica software. From the above methodology, the values of hyperparameters are a1=0.9379, b1=0.8332, a2=0.7530, b2=0.6344, a3=0.5335, b3=0.4339, a=2.4950, b=2.5060 and c=2.0200.

Monte Carlo simulation study

From the Bayes estimators’ expressions, it is clear that analytical assessments between BEs (using priors and loss functions) are not suitable. Therefore, the Monte Carlo simulation study is used to assess the presentation of BEs under various loss functions and priors. Moreover, the presentation of BEs has been checked under sample sizes and test termination time. We calculated the BEs and PRs of a 3-CMPD through a Monte Carlo simulation as:

  1. From given 3-component mixture distribution, a sample consists of np1, np2 and n1-p1-p2 values out of n values is taken randomly from f1y,f1y and f3y, respectively.

  2. Select values which are larger than t as the censored values. The selection of t has been prepared in such a way that there is approximately 10% to 30% censoring rate in resultant data.

  3. Find the simulated Bayes estimates and posterior risks as ω^=1500i=1500ω^i and ρω^=1500i=1500ρω^i, where Bayes estimates ω^i and posterior risks ρω^i of a parameter say ω are determine assuming censored values by solving (21)-(30).

  4. Repeat steps 1–3 for n=30,50,100, λ1,λ2,λ3,p1,p2=0.4,0.3,0.2,0.5,0.3 and t=0.9,0.6.

The simulated results have been arranged in Tables 2, 3, 4, 5, 6, 7, 8, 9. From Tables 2, 3, 4, 5, 6, 7, 8, 9, it is revealed that the extent of under-estimation of all five parameters assuming priors under SELF, QLF, PLF and DLF is larger for smaller n as compared to larger n for fixed t. Assuming fixed n, a similar trend is observed for smaller t as compared to larger t. It is also observed that PRs had inverse relationship with n, i.e., PRS decreased by increasing n (cf. Tables 2, 3, 4, 5, 6, 7, 8, 9). Also, it is noticed that PRs had inverse relationship with t, i.e., PRS increased by decreasing t (cf. Table 2, 3, 4, 5, 6, 7, 8, 9).

Table 2.

The BEs and PRs under SELF with parameters λ1=0.4,λ2=0.3,λ3=0.2,p1=0.5,p2=0.3.

t n Priors Bes
λ^1 λ^2 λ^3 p^1 p^2
00.9 30 UP 0.460571 0.371987 0.279892 0.483369 0.303464
JP 0.421334 0.337086 0.238015 0.483630 0.303647
IP 0.439631 0.349391 0.267096 0.470931 0.297692
50 UP 0.428565 0.344971 0.244023 0.489830 0.302109
JP 0.416763 0.317347 0.225465 0.489892 0.302432
IP 0.424941 0.337344 0.236809 0.481912 0.298489
100 UP 0.411619 0.317893 0.222464 0.490724 0.300301
JP 0.409768 0.313031 0.209039 0.494604 0.300767
IP 0.412008 0.310983 0.214546 0.487511 0.303163
t n Priors PRs
00.9 30 UP 0.014584 0.016074 0.014424 0.007565 0.006397
JP 0.012990 0.014721 0.011995 0.007568 0.006406
IP 0.010828 0.012329 0.009833 0.006742 0.005794
50 UP 0.007471 0.008203 0.006217 0.004773 0.004025
JP 0.007396 0.007380 0.005875 0.004775 0.004028
IP 0.007195 0.006987 0.004932 0.004366 0.003749
100 UP 0.003277 0.003147 0.002560 0.001767 0.001389
JP 0.003164 0.003053 0.002322 0.002111 0.001964
IP 0.002965 0.002585 0.002241 0.001812 0.000512

Table 3.

The BEs and PRs under QLF with parameters λ1=0.4,λ2=0.3,λ3=0.2,p1=0.5,p2=0.3.

t n Priors BEs
λ^1 λ^2 λ^3 p^1 p^2
00.9 30 UP 0.409332 0.296448 0.205024 0.448644 0.256064
JP 0.374016 0.260241 0.158113 0.448952 0.257166
IP 0.37478 0.280769 0.162495 0.414561 0.281108
50 UP 0.404965 0.298157 0.196683 0.469611 0.273964
JP 0.375158 0.277423 0.177027 0.469289 0.273502
IP 0.389487 0.284741 0.195654 0.460878 0.289203
100 UP 0.397235 0.301619 0.199885 0.485041 0.286571
JP 0.389547 0.286446 0.187141 0.481864 0.292576
IP 0.394696 0.29089 0.197311 0.460970 0.292947
t n Priors PRs
00.9 30 UP 0.068407 0.114832 0.169667 0.038115 0.085381
JP 0.073221 0.12879 0.205113 0.038198 0.085509
IP 0.064485 0.105065 0.184883 0.035298 0.071540
50 UP 0.040769 0.068318 0.102349 0.021992 0.050101
JP 0.042589 0.073490 0.113484 0.022016 0.050244
IP 0.039444 0.065186 0.097374 0.021095 0.045039
100 UP 0.012794 0.030941 0.049970 0.009186 0.024403
JP 0.014569 0.077602 0.070874 0.014523 0.061045
IP 0.012888 0.029994 0.030352 0.003537 0.019648

Table 4.

The BEs and PRs under PLF with parameters λ1=0.4,λ2=0.3,λ3=0.2,p1=0.5,p2=0.3.

t n Priors BEs
λ^1 λ^2 λ^3 p^1 p^2
00.9 30 UP 0.473699 0.392311 0.305913 0.490801 0.313692
JP 0.438033 0.363620 0.260598 0.491943 0.313734
IP 0.454581 0.374621 0.244704 0.478091 0.309406
50 UP 0.440035 0.357303 0.252612 0.494011 0.309304
JP 0.422166 0.334364 0.229331 0.494023 0.309486
IP 0.431558 0.351277 0.238926 0.48492 0.307309
100 UP 0.419892 0.325579 0.223074 0.497226 0.304248
JP 0.412053 0.314160 0.219033 0.498013 0.304786
IP 0.407296 0.318637 0.22410 0.487496 0.297906
t n Priors PRs
00.9 30 UP 0.028845 0.038201 0.040083 0.015539 0.020761
JP 0.028336 0.037192 0.039420 0.015563 0.020797
IP 0.027668 0.035907 0.038064 0.014211 0.018355
50 UP 0.016763 0.021748 0.021856 0.009720 0.013170
JP 0.016717 0.021648 0.021716 0.009723 0.013189
IP 0.016634 0.020992 0.021519 0.009087 0.012122
100 UP 0.007254 0.011063 0.009877 0.005781 0.006787
JP 0.007116 0.011043 0.009716 0.005793 0.006799
IP 0.006623 0.009812 0.010062 0.002167 0.002596

Table 5.

The BEs and PRs under DLF with parameters λ1=0.4,λ2=0.3,λ3=0.2,p1=0.5,p2=0.3.

t n Priors BEs
λ^1 λ^2 λ^3 p^1 p^2
00.9 30 UP 0.475799 0.408498 0.328774 0.497876 0.324916
JP 0.453221 0.379994 0.282826 0.498166 0.325052
IP 0.479645 0.388532 0.485623 0.481371 0.320722
50 UP 0.447385 0.362848 0.268714 0.498202 0.315081
JP 0.431255 0.345394 0.250602 0.499222 0.316196
IP 0.443268 0.35825 0.249059 0.486872 0.31360
100 UP 0.423969 0.309154 0.232522 0.499439 0.304887
JP 0.408204 0.308525 0.222283 0.499570 0.307329
IP 0.46566 0.339404 0.220779 0.487407 0.303426
t n Priors PRs
00.9 30 UP 0.059920 0.092535 0.126891 0.031455 0.065101
JP 0.063718 0.101989 0.145478 0.031471 0.065119
IP 0.056857 0.086621 0.118705 0.027287 0.056657
50 UP 0.037738 0.059984 0.084845 0.019510 0.042297
JP 0.039147 0.063918 0.092344 0.029497 0.042385
IP 0.036388 0.046964 0.081050 0.018664 0.038305
100 UP 0.023765 0.029997 0.039085 0.011914 0.015394
JP 0.024099 0.035941 0.042387 0.019640 0.035477
IP 0.021539 0.026378 0.026626 0.009967 0.014975

Table 6.

The BEs and PRs under SELF with parameters λ1=0.4,λ2=0.3,λ3=0.2,p1=0.5,p2=0.3.

t n Priors BEs
λ^1 λ^2 λ^3 p^1 p^2
00.6 30 UP 0.502471 0.442411 0.405401 0.452371 0.311201
JP 0.457120 0.409812 0.359421 0.460127 0.310249
IP 0.468013 0.418756 0.365487 0.447627 0.314527
50 UP 0.470024 0.390246 0.332946 0.467520 0.309874
JP 0.432190 0.356914 0.304978 0.469985 0.309988
IP 0.439901 0.359983 0.315912 0.450714 0.290121
100 UP 0.446031 0.345217 0.271345 0.474198 0.305891
JP 0.420101 0.338241 0.248127 0.472561 0.306467
IP 0.425713 0.334251 0.259467 0.463786 0.293456
t n Priors PRs
00.6 30 0.234102 0.270027 0.269914 0.098421 0.089452
0.230075 0.246321 0.224612 0.100294 0.092146
0.194201 0.204672 0.17981 0.075614 0.069845
50 0.169821 0.182791 0.154681 0.057842 0.042374
0.156789 0.163087 0.132472 0.061247 0.042987
0.110781 0.119897 0.104894 0.039872 0.030214
100 0.086794 0.089814 0.067841 0.030918 0.021814
0.079012 0.071237 0.032789 0.032179 0.022935
0.024509 0.026127 0.020914 0.018974 0.010594

Table 7.

The BEs and PRs under QLF with parameters λ1=0.4,λ2=0.3,λ3=0.2,p1=0.5,p2=0.3.

t n Priors BEs
λ^1 λ^2 λ^3 p^1 p^2
00.6 30 UP 0.415721 0.252012 0.155527 0.412341 0.231452
JP 0.437801 0.244725 0.148792 0.415782 0.239854
IP 0.438952 0.250868 0.150901 0.405271 0.256971
50 UP 0.410216 0.268754 0.170264 0.438427 0.246923
JP 0.368754 0.250011 0.165734 0.431798 0.250314
IP 0.371548 0.257467 0.170012 0.420122 0.260341
100 UP 0.398754 0.287906 0.185954 0.462346 0.268917
JP 0.370241 0.275914 0.176458 0.469867 0.269898
IP 0.379985 0.280347 0.180647 0.450012 0.278142
t n Priors PRs
00.6 30 UP 0.389534 0.47132 0.52641 0.152346 0.268674
JP 0.412567 0.511230 0.665234 0.167714 0.280122
IP 0.365491 0.442657 0.547889 0.123645 0.219850
50 UP 0.302145 0.387564 0.402651 0.112340 0.185501
JP 0.324598 0.425661 0.445620 0.123324 0.193325
IP 0.268746 0.356001 0.378991 0.109875 0.166887
100 UP 0.187564 0.275694 0.359870 0.075688 0.1234560
JP 0.200344 0.299810 0.376900 0.098860 0.168985
IP 0.142354 0.246010 0.293312 0.046772 0.102360

Table 8.

The BEs and PRs under PLF with parameters λ1=0.4,λ2=0.3,λ3=0.2,p1=0.5,p2=0.3.

t n Priors BEs
λ^1 λ^2 λ^3 p^1 p^2
00.6 30 UP 0.535624 0.475234 0.440038 0.426920 0.333670
JP 0.469201 0.442113 0.411126 0.429875 0.340140
IP 0.475001 0.449919 0.420031 0.402210 0.330118
50 UP 0.495002 0.429570 0.369986 0.440028 0.324542
JP 0.4552477 0.403319 0.336792 0.446988 0.329987
IP 0.463200 0.420301 0.343001 0.432100 0.321003
100 UP 0.4564233 0.389906 0.276901 0.463651 0.318224
JP 0.446681 0.355620 0.269841 0.469795 0.320345
IP 0.440021 0.360028 0.274005 0.453327 0.311455
t n Priors PRs
00.6 30 UP 0.385501 0.451123 0.506724 0.125470 0.183321
JP 0.374562 0.435670 0.467705 0.135432 0.170122
IP 0.347701 0.394551 0.412200 0.113367 0.143774
50 UP 0.225432 0.317739 0.386672 0.080443 0.125990
JP 0.220101 0.293301 0.366011 0.089964 0.129987
IP 0.199920 0.254332 0.304441 0.067300 0.106673
100 UP 0.143544 0.226401 0.244312 0.055420 0.080021
JP 0.136610 0.217943 0.224577 0.056011 0.088709
IP 0.105773 0.163374 0.229943 0.034661 0.053318

Table 9.

The BEs and PRs under DLF with parameters λ1=0.4,λ2=0.3,λ3=0.2,p1=0.5,p2=0.3.

t n Priors BEs
λ^1 λ^2 λ^3 p^1 p^2
00.6 30 UP 0.614231 0.530024 0.483540 0.416600 0.382451
JP 0.574220 0.493455 0.438801 0.424322 0.394551
IP 0.601124 0.503371 0.546788 0.409701 0.380052
50 UP 0.536788 0.450774 0.411580 0.436321 0.366014
JP 0.510114 0.427113 0.404551 0.439975 0.374402
IP 0.530047 0.429989 0.326741 0.417330 0.355001
100 UP 0.473310 0.376775 0.320046 0.463007 0.330767
JP 0.460124 0.366609 0.319344 0.463551 0.355771
IP 0.493320 0.400311 0.315664 0.458771 0.328003
t n Priors PRs
00.6 30 UP 0.365771 0.453304 0.503378 0.167012 0.323752
JP 0.402257 0.474830 0.558332 0.175506 0.340057
IP 0.346681 0.417745 0.479010 0.130221 0.278700
50 UP 0.277740 0.361421 0.426609 0.117452 0.217740
JP 0.289918 0.368892 0.457200 0.139820 0.227327
IP 0.256744 0.317054 0.374450 0.105881 0.175584
100 UP 0.193221 0.256772 0.303054 0.084452 0.135421
JP 0.207784 0.266681 0.337451 0.106671 0.158544
IP 0.168406 0.214771 0.273341 0.053347 0.098557

In case of choosing an appropriate prior, it is observed that IP materializes as an efficient prior because of lesser related PR as compared to NIP for estimating all five parameters under both symmetric and asymmetric loss functions (cf. Tables 2, 3, 4, 5, 6, 7, 8, 9). Also, it is noticed that JP (UP) emerges as a greater efficient because of smaller related PR as compared to UP (JP) for estimating component (proportion) parameters using both SELF and PLF (cf. Tables 2 and 6 vs Tables 4 and 8). Moreover, the UP is more efficient prior as compared to the JP under QLF and DLF due to smaller PR. On the other hand, the presentation of SELF is better than remaining three loss functions for estimating all parameters (cf. Tables 2 and 6).

It is also noticed that selection of an appropriate prior and loss function does not depend t. It is worth mentioning that our prior or loss function selection criterion is a posterior risk, i.e., we consider a loss function or prior the best if it yields minimum posterior risk as compared to others.

A real-life application

Here, the analysis of a lifetime data to explain the procedure for practical situations is presented. Gómez et al.23 stated a lifetime data on exhaustion fracture of Kevlar 373/epoxy with respect to fix pressure at 90% pressure level till all had expired. Gómez et al.23 showed that data x can be modeled with an exponential mixture model. However, the y=exp-x as a transformation of an exponentially distributed data x provides the power random variable and we can use the resulting data to describe the proposed Bayesian analysis. The lifetime data are divided into three groups of values with 26 values from 1st subpopulation, next 25 values from 2nd subpopulation, and the last 25 values from 3rd subpopulation. To use type-I censored samplings, we used the 3.4 as a censoring time and noted down the x1=x11,...,x1u1, x2=x21,...,x2u2 and x3=x31,...,x3u3 failed values from subpopulations I, II and III, respectively. The remaining values, which were greater than 3.4, have been taken censored values from each subpopulation. At the end of test, we have the following numbers of failed values, u1=22, u2=22 and u3=21. The remaining n-u=11 values were assumed censored values, whereas u=65 were the uncensored values, such that u=u1+u2+u3. The data have been summarized as below:

n=76,u=65,n-u=11,u1=22,w=1u1ln1y1w=w=1u1x1w=31.2771
u2=22,w=1u2ln1y2w=w=1u2x2w=32.3513,u3=21,w=1u3ln1y3w=w=iu3x3w=30.1508.

Here n-u=11, therefore we have 14.5% approximately censored data. BEs and PRs are given in following Table 10.

Table 10.

The BEs and PRs using the real life data.

Loss function Prior BEs
λ^1 λ^2 λ^3 p^1 p^2
SELF UP 0.761517 0.737372 0.755910 0.338405 0.338013
JP 0.731365 0.708214 0.724613 0.338424 0.338007
IP 0.770563 0.745674 0.761989 0.340009 0.339795
QLF UP 0.700854 0.678693 0.692959 0.318327 0.317936
JP 0.670828 0.649641 0.661789 0.318343 0.317925
IP 0.711381 0.68806 0.699831 0.32191 0.321699
PLF UP 0.776576 0.751934 0.771529 0.343172 0.342781
JP 0.746384 0.722740 0.740190 0.343193 0.342776
IP 0.785259 0.759976 0.777414 0.344328 0.344113
DLF UP 0.791932 0.766784 0.787471 0.348007 0.347616
JP 0.761711 0.737564 0.756103 0.348029 0.347612
IP 0.800235 0.774552 0.793152 0.348702 0.348486
PRs
SELF UP 0.023162 0.021687 0.023858 0.003249 0.003245
JP 0.022864 0.021534 0.023746 0.003250 0.003246
IP 0.022194 0.020786 0.022818 0.002956 0.002953
QLF UP 0.041448 0.041408 0.043413 0.031014 0.031051
JP 0.043140 0.043109 0.045282 0.031019 0.031059
IP 0.039902 0.040155 0.042487 0.0277038 0.027716
PLF UP 0.030117 0.029124 0.031238 0.009535 0.009536
JP 0.030037 0.029052 0.031155 0.009537 0.009538
IP 0.0293917 0.0286036 0.0308504 0.0086376 0.00863644
DLF UP 0.038406 0.038356 0.040079 0.027591 0.027625
JP 0.039839 0.039794 0.041648 0.027596 0.027631
IP 0.037079 0.037283 0.039289 0.024928 0.024940

It is noticed that from the results, given in Table 10, are appropriate with the results given in simulation study section. The presentation of the BEs using IP is shown better than NIP as a result of smaller associated PRs for estimating all parameters under the different symmetric and asymmetric loss functions. Also, the BEs assuming JP (UP) is observed more suitable prior than UP (JP) based on smaller PRs for estimating component (proportion) parameters under SELF and PLF (SELF, QLF, PLF and DLF). In addition, it is revealed that the SELF is preferable to PLF, QLF and DLF due to minimum PRs for estimating all parameters.

Further to see how well the 3-CMPD performs as compared to other existing 3-component mixture distributions, we take 3-component mixture of exponential distributions (3-CMED), 3-component mixture of Burr type-XII distributions (3-CMBD), 3-component mixture of Rayleigh distributions (3-CMRD), and 3-CMPD. The Akaike information criterion (AIC) and Bayesian information criterion (BIC) are used to check their relative performance using the life span of fatigue fracture data. The AIC and BIC precise the relative loss of evidence so the lesser values of AIC and BIC reveal the best distribution. The AIC and BIC can be determined as: AIC=2k-2ln(L) and BIC=kln(n)-2ln(L), where, L = likelihood value of given data, k = number of parameters in distribution and n = number of observations in data.

It is observed from the results, given in Table 11, our proposed mixture distribution provides the least values of AIC and BIC as compared to the other mixture distributions and fits the best on the life span of fatigue fracture data. Also, the p-value of Kolmogorov-Smirnov (KS) test also indicates the proposed model fits better than the rest models.

Table 11.

AIC and BIC for different mixture distributions.

Mixture distributions AIC BIC P-value (KS)
3-CMED 438.4067 428.4067 0.7865
3-CMBD 495.3025 485.3025 0.6754
3-CMRD 1324.493 1314.493 0.5745
3-CMPD 130.8868 120.8868 0.8245

Conclusion and recommendation

In this article, a 3-CMPD using type-I right censored sample was developed to model lifetime mixture data using the Bayesian approach. Assuming the availability of IP and NIP under symmetric and asymmetric loss functions, the algebraic expressions of the BEs and PRs have also been presented. To assess the relative performance of BEs across different n with a fixed t, a comprehensive Monte Carlo simulation study has been performed. In addition to this, a real-life application has also been discussed to show the utility of the proposed methodology. From the results presented in the previous sections, we observed that as n increased, the BEs approached to their true value. To be more precise, smaller (larger) n results in larger (smaller) extent of under and/or over estimation at fixed value of t. We also noticed that the posterior risk decreased by increasing n. Finally, it is revealed that for a Bayesian analysis of 3-CMPD, the IP can be used to estimate component and proportion parameters under SELF. In future, the performance of the predictive distribution and predictive interval can be assessed. Also, other censoring schemes, like progressive and interval, can be used to develop mixture models in Bayesian framework.

Author contributions

"T.A. M.T. and M.A. wrote the main manuscript text and S.M. and S.A prepared Tables 1-5. All authors reviewed the manuscript".

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Competing interests

The authors declare no competing interests.

Footnotes

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Contributor Information

Muhammad Tahir, Email: tahir.stat@pu.edu.pk.

Muhammad Abid, Email: mabid@gcuf.edu.pk.

References

  • 1.Saleem M, Aslam M, Economou P. On the Bayesian analysis of the mixture of power function distribution using the complete and the censored sample. J. Appl. Stat. 2010;37(1):25–40. doi: 10.1080/02664760902914557. [DOI] [Google Scholar]
  • 2.Amanulla B, Chakrabarti S, Singh SN. Reconfiguration of power distribution systems considering reliability and power loss. IEEE Trans. Power Deliv. 2012;27(2):918–926. doi: 10.1109/TPWRD.2011.2179950. [DOI] [Google Scholar]
  • 3.Shahzad MN, Asghar Z, Shehzad F, Shahzadi M. Parameter estimation of power function distribution with TL-moments. Revista Colombiana de Estadística. 2015;38(2):321–334. doi: 10.15446/rce.v38n2.51663. [DOI] [Google Scholar]
  • 4.Parsa AR, Murty GS. Power-laws and applications to earthquake populations. Pure Appl. Geophys. 1996;147:455–466. doi: 10.1007/BF00878838. [DOI] [Google Scholar]
  • 5.Li LA. Decomposition Theorems, Conditional Probability, and Finite Mixtures Distributions. State University; 1983. [Google Scholar]
  • 6.Li LA, Sedransk N. Mixtures of distributions: A topological approach. Ann. Stat. 1988;16(4):1623–1634. doi: 10.1214/aos/1176351057. [DOI] [Google Scholar]
  • 7.Acheson MA, McElwee EM. Concerning the reliability of electron tubes. Sylvania Technol. 1951;4:1204–1206. [Google Scholar]
  • 8.Davis DJ. An analysis of some failure data. J. Am. Stat. Assoc. 1952;47:113–150. doi: 10.1080/01621459.1952.10501160. [DOI] [Google Scholar]
  • 9.Tahir M, Aslam M, Hussain Z. On the Bayesian analysis of 3-componen mixture of exponential distribution under different loss functions. Hacettepe J. Math. Stat. 2016;45:609–628. [Google Scholar]
  • 10.Haq A, Al-Omari AI. Bayes estimation and prediction of a three component mixture of Rayleigh distribution under type-I censoring. Revista Investigacion Operacional. 2016;37:22–37. [Google Scholar]
  • 11.Luo C, Shen L, Xu A. Modelling and estimation of system reliability under dynamic operating environments and lifetime ordering constraints. Reliab. Eng. Syst. Saf. 2022;218:1–9. doi: 10.1016/j.ress.2021.108136. [DOI] [Google Scholar]
  • 12.Wang, W., Cui, Z., Chen, R., Wang, Y. & Zhao, X. Regression analysis of clustered panel count data with additive mean models. Stat. Pap. 1–22 (2023).
  • 13.Zhou, S., Xu, A., Tang, Y. & Shen, L. Fast Bayesian inference of reparameterized gamma process with random effects. IEEE Trans. Reliab. 78, 1–14 (2023).
  • 14.Romeu LJ. Censored data. Strateg. Arms Reduct. Treaty. 2004;11(3):1–8. [Google Scholar]
  • 15.Gijbels I. Censored data. Wiley Interdiscip. Rev. Comput. Stat. 2010;2(2):178–188. doi: 10.1002/wics.80. [DOI] [Google Scholar]
  • 16.Kalbfleisch JD, Prentice RL. The Statistical Analysis of Failure Time Data. Wiley; 2011. [Google Scholar]
  • 17.Jeffreys H. An invariant form for the prior probability in estimation problems. Proc. R. Soc. Lond. Math. Phys. Sci. 1946;186(1007):453–461. doi: 10.1098/rspa.1946.0056. [DOI] [PubMed] [Google Scholar]
  • 18.Jeffreys H. Theory of probability. Claredon Press; 1961. [Google Scholar]
  • 19.Legendre AM. Nouvelles méthodes pour la détermination des orbites des comètes: appendice sur la méthode des moindres carŕes. Courcier; 1806. [Google Scholar]
  • 20.Norstrom JG. The use of precautionary loss function in risk analysis. IEEE Trans. Reliab. 1996;45:400–403. doi: 10.1109/24.536992. [DOI] [Google Scholar]
  • 21.DeGroot MH. Optimal Statistical Decision. Wiley; 2005. [Google Scholar]
  • 22.Aslam M. An application of prior predictive distribution to elicit the prior density. J. Stat. Theory Appl. 2014;2:70–83. [Google Scholar]
  • 23.Gómez YM, Bolfarine H, Gómez HW. A new extension of the exponential distribution. Revista Colombiana de Estadística. 2014;37:25–34. doi: 10.15446/rce.v37n1.44355. [DOI] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.


Articles from Scientific Reports are provided here courtesy of Nature Publishing Group

RESOURCES