Skip to main content
Studies in Mycology logoLink to Studies in Mycology
. 2024 Jan 10;107:1–66. doi: 10.3114/sim.2024.107.01

A review of recently introduced Aspergillus, Penicillium, Talaromyces and other Eurotiales species

CM Visagie 1,*, N Yilmaz 1, S Kocsubé 2,3, JC Frisvad 4, V Hubka 5,6, RA Samson 7, J Houbraken 7,*
PMCID: PMC11003441  PMID: 38600958

Abstract

The order Eurotiales is diverse and includes species that impact our daily lives in many ways. In the past, its taxonomy was difficult due to morphological similarities, which made accurate identification of species difficult. This situation improved and stabilised with recent taxonomic and nomenclatural revisions that modernised Aspergillus, Penicillium and Talaromyces. This was mainly due to the availability of curated accepted species lists and the publication of comprehensive DNA sequence reference datasets. This has also led to a sharp increase in the number of new species described each year with the accepted species lists in turn also needing regular updates. The focus of this study was to review the 160 species described between the last list of accepted species published in 2020 until 31 December 2022. To review these species, single-gene phylogenies were constructed and GCPSR (Genealogical Concordance Phylogenetic Species Recognition) was applied. Multi-gene phylogenetic analyses were performed to further determine the relationships of the newly introduced species. As a result, we accepted 133 species (37 Aspergillus, two Paecilomyces, 59 Penicillium, two Rasamsonia, 32 Talaromyces and one Xerochrysium), synonymised 22, classified four as doubtful and created a new combination for Paraxerochrysium coryli, which is classified in Xerochrysium. This brings the number of accepted species to 453 for Aspergillus, 12 for Paecilomyces, 535 for Penicillium, 14 for Rasamsonia, 203 for Talaromyces and four for Xerochrysium. We accept the newly introduced section Tenues (in Talaromyces), and series Hainanici (in Aspergillus sect. Cavernicolarum) and Vascosobrinhoana (in Penicillium sect. Citrina). In addition, we validate the invalidly described species Aspergillus annui and A. saccharicola, and series Annuorum (in Aspergillus sect. Flavi), introduce a new combination for Dichlaena lentisci (type of the genus) and place it in a new section in Aspergillus subgenus Circumdati, provide an updated description for Rasamsonia oblata, and list excluded and recently synonymised species that were previously accepted. This study represents an important update of the accepted species lists in Eurotiales.

Taxonomic novelties: New sections: Aspergillus section Dichlaena Visagie, Kocsubé & Houbraken. New series: Aspergillus series Annuorum J.J. Silva, B.T. Iamanaka, Frisvad. New species: Aspergillus annui J.J. Silva, M.H.P. Fungaro, Frisvad, M.H. Taniwaki & B.T. Iamanaka; Aspergillus saccharicola J.J. Silva, Frisvad, M.H.P. Fungaro, M.H. Taniwaki & B.T. Iamanaka. New combinations: Aspergillus lentisci (Durieu & Mont.) Visagie, Malloch, L. Kriegsteiner, Samson & Houbraken; Xerochrysium coryli (Crous & Decock) Visagie & Houbraken.

Citation: Visagie CM, Yilmaz N, Kocsubé S, Frisvad JC, Hubka V, Samson RA, Houbraken J (2024). A review of recently introduced Aspergillus, Penicillium, Talaromyces and other Eurotiales species. Studies in Mycology 107: 1–66. doi: 10.3114/sim.2024.107.01

Keywords: Accepted species list, Aspergillaceae, DNA barcodes, new taxa, nomenclature, Penicillaginaceae, phylogenetic species concept, Thermoascaceae, Trichocomaceae

INTRODUCTION

Eurotiales is one of the most diverse orders of fungi and includes genera such as Aspergillus, Penicillium, Paecilomyces and Talaromyces. Species identification in these speciose genera has been very difficult in the past. Recent taxonomic and nomenclatural studies have modernised the morphology-based classifications to the extent that these genera now have one of the most modern taxonomies of all fungi. The basis and main driving force for this are the so-called ‘accepted species lists’. Nomenclators such as MycoBank (https://www.mycobank.org/) list more than 3 000 names of Eurotiales. However, many of these names belong to other genera, were considered synonyms of accepted species, or remain unrecognisable because old descriptions were insufficient for recognition and/or no material is available. Knowledge of a genus at a given time was traditionally published in monographs that contained descriptions for all species and keys for their identification. Pitt (1980), in his monograph on Penicillium and its associated sexual (teleomorphic) genera Eupenicillium and Talaromyces, published a review of the recognised names and listed synonyms and excluded names that he considered indeterminate. This overview was later extended to the ‘Names in Current Use’ published by Pitt & Samson (1993) for Trichocomaceae and updated by Pitt et al. (2000). These lists were based on the morphological species concept used at the time, and did not include comments on taxonomy. The main aim of these lists was to record information on species that were ‘accepted’ in these genera, and the purpose was not to formally conserve or reject names as allowed for by the International Code of Nomenclature for algae, fungi, and plants (ICNafp; Turland et al. 2018). The authors of these lists were aware that taxonomy may change as species concepts evolve, and when new concepts were adopted, old names may be accepted in the future. This happened when Houbraken & Samson (2011) revised the taxonomy of Trichocomaceae and classified the species into three families: Aspergillaceae (Aspergillus, Hamigera, Leiothecium, Monascus, Penicilliopsis, Penicillium, Phialomyces, Sclerocleista, Warcupiella and Xeromyces), Thermoascaceae (Byssochlamys/Paecilomyces and Thermoascus) and Trichocomaceae (Rasamsonia, Sagenomella, Talaromyces, Thermomyces, and Trichocoma). They proposed the adoption of Aspergillus and Penicillium over their associated sexual genera, pre-empting the move to a single name nomenclature for fungi (McNeill et al. 2012), and reclassified several other sexual and asexual genera (e.g. Chromocleista, Eupenicillium, Eladia, Hemicarpenteles, Torulomyces and Thysanophora were considered synonymous with Penicillium). These changes were mainly based on phylogenetic analyses, which have become standard practise to study the relationships between and within these genera.

In the following years, accepted species lists for Aspergillus, Penicillium and Talaromyces were published (Samson et al. 2014, Visagie et al. 2014, Yilmaz et al. 2014), representing the first modern lists for fungi to incorporate DNA sequence data into decision-making. Several recommendations were made, from how to work with these genera or describe new species to the procedures required to identify strains more precisely, including the use of the recommended DNA barcode markers β-tubulin (BenA; for Penicillium and Talaromyces) or calmodulin (CaM; for Aspergillus). These recommendations were supported by the metadata associated with each name entry, including authority, citation, MycoBank number, type, ex-type, subgeneric classification and GenBank accession numbers for DNA sequences obtained from ex-type cultures. As with previous lists (Pitt & Samson 1993, Pitt et al. 2000), excluded names were not formally rejected. This approach, together with the wealth of reference data released, resulted in a strong backbone for these genera on which taxonomic revisions of specific groups could be built. It also facilitated the description of new species and their comparison with close relatives, leading to the description of many new species. For this reason, Houbraken et al. (2020) updated the accepted species lists of Aspergillus (increased from 339 to 446 species), Penicillium (increased from 354 to 483 species), Talaromyces (increased from 88 to 171 species) and expanded the list to include other Eurotiales (but excluding Elaphomycetaceae). Houbraken et al. (2020) also reintroduced a series classification in Aspergillus and Penicillium. This taxonomic rank provides information on what functional characters the species might have and is useful in phenotype-based identification. In addition, the current series classification makes it even easier than before to compare putative new species and their close relatives. Since 2020, 160 new species were described in Eurotiales. The focus of this study was to review these and provide comments and opinions on them.

MATERIALS AND METHODS

Phylogenetic analyses

Phylogenies were calculated for all species described since Houbraken et al. (2020), with datasets compiled to represent the genera, sections and/or series these belong to. Datasets (see Table 1 & Suppl. Table S1) were assembled using DNA reference sequences obtained from NCBIs GenBank nucleotide database (https://www.ncbi.nlm.nih.gov/genbank/) and included the internal transcribed spacer rDNA region (ITS), 28S large subunit (LSU), beta-tubulin (BenA), calmodulin (CaM), and RNA polymerase II second largest subunit (RPB2).

Table 1.

List of species described since Houbraken et al. (2020), and reviewed in the current study.

Species Strain Status Subgenus Section Series Country Substrate ITS BenA CaM RPB2 LSU Citation
Aspergillus agricola A2-A Circumdati Flavi Flavi USA Soil (maize field) - - MN987060 - - Singh et al. (2020)
BC09-F Circumdati Flavi Flavi USA Soil (maize field) - - MN987065 - - Singh et al. (2020)
C3-J Circumdati Flavi Flavi USA Soil (maize field) - - MN987059 - - Singh et al. (2020)
E13-L Circumdati Flavi Flavi USA Soil (maize field) - - MN987064 - - Singh et al. (2020)
EC37-C Circumdati Flavi Flavi USA Soil (maize field) - - MN987066 - - Singh et al. (2020)
J11-B Circumdati Flavi Flavi USA Soil (maize field) - - MN987062 - - Singh et al. (2020)
J11-C Circumdati Flavi Flavi USA Soil (maize field) - - MN987063 - - Singh et al. (2020)
J15-H Circumdati Flavi Flavi USA Soil (maize field) - - MN987061 - - Singh et al. (2020)
NRRL 66869 T Circumdati Flavi Flavi USA Soil (maize field) - - MN987053 - - Singh et al. (2020)
NRRL 66870 Circumdati Flavi Flavi USA Soil (maize field) - - MN987054 - - Singh et al. (2020)
NRRL 66871 Circumdati Flavi Flavi USA Soil (maize field) - - MN987055 - - Singh et al. (2020)
NRRL 66872 Circumdati Flavi Flavi USA Soil (maize field) - - MN987056 - - Singh et al. (2020)
NRRL 66873 Circumdati Flavi Flavi USA Soil (maize field) - - MN987057 - - Singh et al. (2020)
Sanpatong22 Circumdati Flavi Flavi USA Soil (maize field) - - MN987068 - - Singh et al. (2020)
Sukhothai 19 Circumdati Flavi Flavi USA Soil (maize field) - - MN987067 - - Singh et al. (2020)
TXA35-K Circumdati Flavi Flavi USA Soil (maize field) - - MN987058 - - Singh et al. (2020)
Ubon3 Circumdati Flavi Flavi USA Soil (maize field) - - MN987069 - - Singh et al. (2020)
Aspergillus alboluteus CBS 145854 Circumdati Flavipedes Spelaei USA Air (indoor) MW448664 MW478498 MW478512 MW478533 - Sklenář et al. (2021)
CBS 145855 T Circumdati Flavipedes Spelaei USA Air (outdoor) MW448663 MW478497 MW478511 MW478532 - Sklenář et al. (2021)
CBS 145859 Circumdati Flavipedes Spelaei USA Airconditioner MW448662 MW478496 MW478510 MW478531 - Sklenář et al. (2021)
CBS 147065 Circumdati Flavipedes Spelaei Nigeria Unknown MW448666 MW478500 MW478514 MW478535 - Sklenář et al. (2021)
CCF 5849 Circumdati Flavipedes Spelaei USA Storage room MW448665 MW478499 MW478513 MW478534 - Sklenář et al. (2021)
CMW 56637 Circumdati Flavipedes Spelaei Botswana Soil (bat cave) MW480881 MW480789 MW480707 MW480791 - Sklenář et al. (2021)
Aspergillus alboviridis CBS 142665 T Circumdati Flavipedes Spelaei Spain Dung (herbivor) LT798909 LT798936 LT798937 LT798938 - Sklenář et al. (2021)
Aspergillus annui IBT 36122 T Circumdati Flavi Annuorum Brazil Sweet paprika OP691228 ON529842 ON529841 ON529843 - Silva et al. (2022)
IBT 36123 Circumdati Flavi Annuorum Brazil Sweet paprika - ON643012 ON643060 ON642964 - Silva et al. (2022)
IBT 36124 Circumdati Flavi Annuorum Brazil Sweet paprika - - - - - Silva et al. (2022)
Aspergillus arizonicus CCF 5341 T Fumigati Fumigati Neoglabri USA Air (hospital) OK322364 OK334128 OK334127 OK334129 - Crous et al. (2021b)
Aspergillus banksianus FRR 6047 T Fumigati Fumigati Brevipedes Australia Soil under Banksia integrifolia MH280013 MT 184780 MT184786 MT184792 - Crous et al. (2020b)
Aspergillus barbosae CBS 145863 T Circumdati Terrei Terrei Brazil Indoor environment LR536042 LR031377 LR031392 LR031407 - Barbosa et al. (2018)
URM 5870 Circumdati Terrei Terrei Brazil Industrial castor cake LR536043 LR031378 LR031393 LR031408 - Barbosa et al. (2018)
URM 7011 Circumdati Terrei Terrei Brazil Soil LR536041 LR031376 LR031391 LR031406 - Barbosa et al. (2018)
Aspergillus burnettii CBS 146237 T Circumdati Flavi Alliacei Australia Soil MK429758 MT211761 MT211762 MT211763 - Gilchrist et al. (2020)
Aspergillus curvatus EMCCN2213 T Circumdati Circumdati Steyniorum Egypt Water (alkaline lake) MN006961 - - - - Al-Bedak (2020a)
Aspergillus gaarensis AUMC 11046 T Circumdati Circumdati Steyniorum Egypt Soil (lake) MN648408 - - - - Al-Bedak (2020b)
Aspergillus guangdongensis CGMCC 3.19704 T Nidulantes Ochraceorosei Funiculosi China Soil MN640760 MN635246 MN635257 MN635269 - Sun et al. (2022a)
Aspergillus guangxiensis CGMCC 3.19709 T Nidulantes Sparsi Conjuncti China Soil MN640765 MN635251 MN635262 MN635274 - Sun et al. (2022a)
CGMCC 3.19710 Nidulantes Sparsi Conjuncti China Soil MN640766 MN635252 MN635263 MN635275 - Sun et al. (2022a)
Aspergillus hainanicus CGMCC 3.20888 T Nidulantes Cavernicolarum Hainanici China Soil OM414846 OM475626 OM475630 OM475634 - Wang & Zhuang (2022b)
Aspergillus hydei KUMCC 18-0196 T Circumdati Nigri Japonici China Air (outdoor) MT152332 MT161679 MT178247 MT384370 - Doilom et al. (2020)
Aspergillus inusitatus CBS 147044 T Circumdati Flavipedes Spelaei Tunisia Soil MW448669 MW478502 MW478517 MW478542 - Sklenář et al. (2021)
Aspergillus jilinensis CGMCC 3.18132 Circumdati Terrei Terrei China Soil KX443223 KX443161 KX443192 - - Huang et al. (2020)
CGMCC 3.18134 T Circumdati Terrei Terrei China Soil KX443224 KX443162 KX443193 - - Huang et al. (2020)
Aspergillus kumbius FRR 6049 T Circumdati Circumdati Sclerotiorum Australia Soil (pasture) MT179307 MT184782 MT184788 MT184794 - Crous et al. (2020b)
Aspergillus lannaensis SDBR-CMUO 6 Nidulantes Ochraceorosei Funiculosi Thailand Soil - MW219782 MW219780 MW219784 - Boonmee et al. (2021)
SDBR-CMUO 8 T Nidulantes Ochraceorosei Funiculosi Thailand Soil - MW219783 MW219781 MW219785 - Boonmee et al. (2021)
Aspergillus lanuginosus NRRL4610 T Circumdati Flavipedes Spelaei Haiti Soil EF669604 EU014080 EF669562 EF669646 - Sklenář et al. (2021)
Aspergillus lebretii URM 8450 Cremei Cremei Wentiorum Brazil Air (outdoor) ON862927 OP672381 OP290539 OP290510 - Alves et al. (2022b)
URM 8451 T Cremei Cremei Wentiorum Brazil Air (outdoor) ON862928 OP672382 OP290540 OP290511 - Alves et al. (2022b)
Aspergillus lentisci CBS 150189 T Circumdati Dichlaena - Portugal Pistacia leaf OR142402 OR145977 OR145992 OR146003 OR142413 Present study
DTO 426-F1 Circumdati Dichlaena - Portugal Pistacia leaf OR142405 OR145976 OR145991 OR146002 OR142414 Present study
DTO 426-F2 Circumdati Dichlaena - Portugal Pistacia leaf OR142404 OR145975 OR145990 OR146001 OR142415 Present study
DTO 426-F3 Circumdati Dichlaena - Portugal Pistacia leaf OR142409 OR145978 OR145993 OR146004 OR142416 Present study
Aspergillus limoniformis CGMCC 3.19323 T Polypaecilum Polypaecilum Canini China Bat guano MK329066 MK336093 - MK335972 - Zhang et al. (2020)
LC12610 Polypaecilum Polypaecilum Canini China Bat guano MK329067 MK336094 - MK335973 - Zhang et al. (2020)
Aspergillus luteorubrus CBS 146723 T Fumigati Fumigati Fennelliarum Australia Soil MT179305 MT 184781 MT184787 MT184793 - Crous et al. (2020b)
Aspergillus magnus UAMH 1324 T Circumdati Candidi Candidi Canada Mouse ON156376 ON164570 ON164619 ON164517 - Glässnerová et al. (2022)
Aspergillus malvicolor CBS 146724 T Circumdati Circumdati Sclerotiorum Australia Soil under Arachis hypogaea MT179308 MT184784 MT184790 MT184796 - Crous et al. (2020b)
Aspergillus marneyi BRIP 71536a T Circumdati Terrei Terrei Australia Crown of Medicago sativa OL691080 OL741659 - OL741656 - Tan & Shivas (2022)
Aspergillus montoensis BRIP 71717 T Circumdati Terrei Terrei Australia Root of Vigna radiata OK441076 OK533535 - OK509073 - Tan et al. (2021)
Aspergillus nanangensis CBS 146238 T Circumdati Janorum Janorum Australia Soil MK979278 MT184783 MT184789 MT184795 - Crous et al. (2020b)
Aspergillus neoterreus CGMCC 3.20891 T Circumdati Terrei Terrei China Soil OM414849 OM475629 OM475633 OM475637 - Wang & Zhuang (2022b)
Aspergillus neotritici CBS 129260 Circumdati Candidi Candidi USA Soil ON156397 ON164591 ON164632 ON164541 - Glässnerová et al. (2022)
CBS 129307 Circumdati Candidi Candidi Unknown Soil ON156398 ON164592 ON164633 ON164542 - Glässnerová et al. (2022)
CBS 133055 Circumdati Candidi Candidi Japan Unknown ON156395 ON164587 ON164628 ON164537 - Glässnerová et al. (2022)
CBS 266.81 Circumdati Candidi Candidi India Triticum aestivum grains LT626958 EU076293 EU076305 MN969098 - Glässnerová et al. (2022)
CCF 1649 Circumdati Candidi Candidi Czech Republic Flour FR733810 LT627024 FR751427 LT627025 - Glässnerová et al. (2022)
CCF 3314 Circumdati Candidi Candidi Czech Republic Air (outdoor) FR733812 LT627022 FR751426 LT627023 - Glässnerová et al. (2022)
CCF 3853 T Circumdati Candidi Candidi Czech Republic Human toenail FR727136 FR775327 HE661598 LT627021 - Glässnerová et al. (2022)
CCF 4030 Circumdati Candidi Candidi Czech Republic Vermicompost FR733814 LT627018 FR751425 LT627019 - Glässnerová et al. (2022)
CCF 4653 Circumdati Candidi Candidi Czech Republic Human toenail HG915890 HG916674 HG916677 LT627020 - Glässnerová et al. (2022)
CCF 4658 Circumdati Candidi Candidi Czech Republic Human toenail HG915891 HG916675 HG916676 LT627026 - Glässnerová et al. (2022)
CCF 4914 Circumdati Candidi Candidi USA Air (hospital) ON156392 ON164556 ON164605 ON164503 - Glässnerová et al. (2022)
CCF 6202 Circumdati Candidi Candidi USA Air (house) ON156396 ON164588 ON164629 ON164538 - Glässnerová et al. (2022)
CCF 6397 Circumdati Candidi Candidi Czech Republic Human abdominal cavity ON156394 ON164589 ON164630 ON164539 - Glässnerová et al. (2022)
IBT 12659 Circumdati Candidi Candidi USA Soil (kangaroo rat burrow) ON156393 ON164557 ON164606 ON164504 - Glässnerová et al. (2022)
Aspergillus okavangoensis CMW 56636 T Circumdati Flavipedes Flavipedes Botswana Soil (bat cave) MW480880 MW480788 MW480706 MW480790 - Visagie et al. (2021)
Aspergillus oxumiae CCDCA11546 T Circumdati Nigri Japonici Brazil Soil under Agave sisalana MN431160 - MN531842 MN521389 - Crous et al. (2020b)
Aspergillus phialiformis CGMCC 3.19314 T Polypaecilum Polypaecilum Canini China Rock MK329068 MK336095 - MK335974 - Zhang et al. (2020)
LC12537 Polypaecilum Polypaecilum Canini China Rock MK329069 MK336096 - MK335975 - Zhang et al. (2020)
Aspergillus phialosimplex CGMCC 3.19637 T Polypaecilum Polypaecilum Canini China Plant debris MK329070 MK336097 - MK335976 - Zhang et al. (2020)
LC12625 Polypaecilum Polypaecilum Canini China Animal faeces MK329071 MK336098 - MK335977 - Zhang et al. (2020)
LC12658 Polypaecilum Polypaecilum Canini China Plant root MK329072 MK336099 - MK335978 - Zhang et al. (2020)
Aspergillus gilianyuensis CGMCC 3.20889 T Nidulantes Nidulantes Versicolores China Soil OM414847 OM475627 OM475631 OM475635 - Wang & Zhuang (2022b)
Aspergillus recifensis CBS 145864 T Circumdati Terrei Nivei Brazil Soil LR536036 LR031370 LR031385 LR031400 - Barbosa et al. (2018)
URM 2803 Circumdati Terrei Nivei Brazil Bird food LR536040 LR031375 LR031390 LR031405 - Barbosa et al. (2018)
URM 3371 Circumdati Terrei Nivei Brazil Bird food - KR051530 - - - Barbosa et al. (2018)
URM 3571 Circumdati Terrei Nivei Brazil Water from tank LR536039 LR031373 LR031388 LR031403 - Barbosa et al. (2018)
URM 5262 Circumdati Terrei Nivei Brazil Soil (rhizosphere of Croton sp) LR536037 LR031371 LR031386 LR031401 - Barbosa et al. (2018)
URM 5461 Circumdati Terrei Nivei Brazil Water from pool LR536038 LR031372 LR031387 LR031402 - Barbosa et al. (2018)
URM 6628 Circumdati Terrei Nivei Brazil Soil LR536035 LR031369 LR031384 LR031399 - Barbosa et al. (2018)
Aspergillus rouenensis CBS 149067 T Polypaecilum Polypaecilum Salinarum France Quercus bore dust of Xestobium rufovillosum ON603782 ON605641 ON653193 ON653194 - Crous et al. (2022)
CBS 149068 Polypaecilum Polypaecilum Salinarum France Quercus bore dust of Xestobium rufovillosum - ON605642 - - - Crous et al. (2022)
Aspergillus saccharicola IBT 36125 Circumdati Flavi Flavi Brazil Sugarcane - ON642978 ON643026 ON642930 - Silva et al. (2022)
IBT 36126 T Circumdati Flavi Flavi Brazil Sugarcane OP611470 ON529845 ON529844 ON529846 - Silva et al. (2022)
IBT 36127 Circumdati Flavi Flavi Brazil Sugarcane - ON642982 ON643030 ON642934 - Silva et al. (2022)
Aspergillus sakultaensis AUMC 13885 T Circumdati Flavipedes Flavipedes Egypt Water MK391495 - - - - Zhori et al. (2020)
Aspergillus sibiricus CBS 143307 T Fumigati Fumigati Unilaterales Russia Soil (cole mine) MG587008 MG722970 MG722971 MG710809 - Iliushin (2022)
Aspergillus sichuanensis CGMCC 3.19705 T Nidulantes Aenei Aenei China Soil MN640761 MN635247 MN635258 MN635270 - Sun et al. (2022a)
CGMCC 3.19706 Nidulantes Aenei Aenei China Soil MN640762 MN635248 MN635259 MN635271 - Sun et al. (2022a)
CGMCC 3.19708 Nidulantes Aenei Aenei China Soil MN640764 MN635250 MN635261 MN635273 - Sun et al. (2022a)
Aspergillus sigarelli CBS 141579 T Nidulantes Usti Calidousti China Cigarette MN640758 MN635244 MN635255 MN635267 - Sun et al. (2020c)
Aspergillus telluris CGMCC 3.19701 T Polypaecilum Polypaecilum Canini China Soil MN640767 MN635253 MN635264 MN635276 - Sun et al. (2022a)
CGMCC 3.19702 Polypaecilum Polypaecilum Canini China Soil MN640768 MN635254 MN635265 MN635277 - Sun et al. (2022a)
CGMCC 3.19703 Polypaecilum Polypaecilum Canini China Soil MN640769 MN635243 MN635266 MN635278 - Sun et al. (2022a)
Aspergillus tenebricus CBS 147048 T Circumdati Candidi Candidi South Africa Soil ON156389 ON164584 ON164623 ON164532 - Glässnerová et al. (2022)
CBS 147376 Circumdati Candidi Candidi Australia Soil ON156390 ON164585 ON164624 ON164533 - Glässnerová et al. (2022)
DTO 440-E2 Circumdati Candidi Candidi Australia Soil ON156391 ON164586 ON164625 ON164534 - Glässnerová et al. (2022)
Aspergillus tibetensis CGMCC 3.19707 T Nidulantes Aenei Aenei China Soil MN640763 MN635249 MN635260 MN635272 - Sun et al. (2022a)
Aspergillus toxicus A34-N Circumdati Flavi Flavi USA Soil (maize field) - - MN987102 - - Singh et al. (2020)
BG14-F Circumdati Flavi Flavi USA Soil (maize field) - - MN987108 - - Singh et al. (2020)
BRG3458A Circumdati Flavi Flavi USA Soil (maize field) - - MN987090 - - Singh et al. (2020)
BRG3458H Circumdati Flavi Flavi USA Soil (maize field) - - MN987095 - - Singh et al. (2020)
BRG3458J Circumdati Flavi Flavi USA Soil (maize field) - - MN987096 - - Singh et al. (2020)
BRG5138J Circumdati Flavi Flavi USA Soil (maize field) - - MN987097 - - Singh et al. (2020)
CR10-G Circumdati Flavi Flavi USA Soil (maize field) - - MN987105 - - Singh et al. (2020)
CR20-D Circumdati Flavi Flavi USA Soil (maize field) - - MN987098 - - Singh et al. (2020)
CR24-F Circumdati Flavi Flavi USA Soil (maize field) - - MN987103 - - Singh et al. (2020)
D16-J Circumdati Flavi Flavi USA Soil (maize field) - - MN987099 - - Singh et al. (2020)
D25-A-S Circumdati Flavi Flavi USA Soil (maize field) - - MN987100 - - Singh et al. (2020)
E21-B Circumdati Flavi Flavi USA Soil (maize field) - - MN987101 - - Singh et al. (2020)
EC24-C Circumdati Flavi Flavi USA Soil (maize field) - - MN987106 - - Singh et al. (2020)
EC49-L Circumdati Flavi Flavi USA Soil (maize field) - - MN987107 - - Singh et al. (2020)
J15-B Circumdati Flavi Flavi USA Soil (maize field) - - MN987104 - - Singh et al. (2020)
K44-K Circumdati Flavi Flavi USA Soil (maize field) - - MN987085 - - Singh et al. (2020)
K849-B Circumdati Flavi Flavi USA Soil (maize field) - - MN987086 - - Singh et al. (2020)
NRRL 66868 T Circumdati Flavi Flavi USA Soil (maize field) - - MN987092 - - Singh et al. (2020)
NRRL 66897 Circumdati Flavi Flavi USA Soil (maize field) - - MN987091 - - Singh et al. (2020)
NRRL 66899 Circumdati Flavi Flavi USA Soil (maize field) - - MN987093 - - Singh et al. (2020)
NRRL 66900 Circumdati Flavi Flavi USA Soil (maize field) - - MN987094 - - Singh et al. (2020)
TX04A5-B Circumdati Flavi Flavi USA Soil (maize field) - - MN987089 - - Singh et al. (2020)
TX07CB73-I Circumdati Flavi Flavi USA Soil (maize field) - - MN987087 - - Singh et al. (2020)
TXLaFeria2-F Circumdati Flavi Flavi USA Soil (maize field) - - MN987088 - - Singh et al. (2020)
Aspergillus vinaceus ITAL 47.456 T Circumdati Nigri Nigri Brazil Grapes (Vitis labrusca) MN575692 MN583579 MN583580 MN583581 - Silva et al. (2020)
Aspergillus xishaensis CGMCC 3.20890 T Circumdati Flavipedes Flavipedes China Soil OM414848 OM475628 OM475632 OM475636 - Wang & Zhuang (2022b)
Paecilomyces clematidis CBS 148466 T - - - Czech Republic Root of Clematis MZ923760 MZ927740 MZ927738 OL332316 - Spetik et al. (2022)
MEND-F-0561 - - - Czech Republic Root of Clematis MZ923761 MZ927741 MZ927739 OL332317 - Spetik et al. (2022)
Paecilomyces penicilliformis CCF 5755 T - - - USA Air (pharmacy) LR679769 LR679768 LR778299 - - Crous et al. (2020b)
CCF 6350 - - - USA Juice (peach-mango) LR736038 LR778163 LR778165 - - Crous et al. (2020b)
Paraxerochrysium coryli CBS 148314 T - - - Belgium Hazelnut (Corylus avellana) OK664748 OK651216 - OK651178 OK663787 Crous et al. (2021b)
Penicillium allaniae BRIP 74886a T Aspergilloides Exilicaulis Restrict! Australia Soil OP903476 OP921959 OP921957 OP921958 OP925816 Tan & Shivas (2022)
BRIP 74899 Aspergilloides Exilicaulis Restrict! Australia Unknown OP903475 OP921956 OP921954 OP921955 Tan & Shivas (2022)
Penicillium allsoppiae CBS 138943 T Penicillium Canescentia Canescentia South Africa Soil JX140830 JX140992 JX157384 KP016895 - Visagie & Yilmaz (2022)
CBS 138945 Penicillium Canescentia Canescentia South Africa Soil JX140822 JX141004 JX157399 KP016910 - Visagie & Yilmaz (2022)
CN 086C6 Penicillium Canescentia Canescentia South Africa Soil MW364385 MW357820 MW357831 MW357840 - Visagie & Yilmaz (2022)
CN 086C7 Penicillium Canescentia Canescentia South Africa Soil MW364386 MW357821 MW357832 MW357841 - Visagie & Yilmaz (2022)
CN 086C8 Penicillium Canescentia Canescentia South Africa Soil MW364387 MW357822 - MW357842 - Visagie & Yilmaz (2022)
Penicillium anthracinoglaciei EXF-11216 Penicillium Brevicompacta Brevicompacta Greenland Cryoconite - MT080468 MT080527 MT080509 - Perini et al. (2023)
EXF-11218 Penicillium Brevicompacta Brevicompacta Greenland Cryoconite - MT080469 MT080528 MT080510 - Perini et al. (2023)
EXF-11222 Penicillium Brevicompacta Brevicompacta Greenland Cryoconite - MT080472 MT080531 MT080511 - Perini et al. (2023)
EXF-11226 Penicillium Brevicompacta Brevicompacta Greenland Supraglacial water - MT080475 MT080534 MT080512 - Perini et al. (2023)
EXF-11230 Penicillium Brevicompacta Brevicompacta Greenland Supraglacial water - MT080479 MT080538 MT080508 - Perini et al. (2023)
EXF-11232 Penicillium Brevicompacta Brevicompacta Greenland Supraglacial water - MT080481 MT080540 MT080513 - Perini et al. (2023)
EXF-11233 Penicillium Brevicompacta Brevicompacta Greenland Supraglacial water - MT080482 MT080541 MT080514 - Perini et al. (2023)
EXF-11237 Penicillium Brevicompacta Brevicompacta Greenland Cryoconite - MT080483 MT080542 MT080515 - Perini et al. (2023)
EXF-11240 Penicillium Brevicompacta Brevicompacta Greenland Cryoconite - MT080485 MT080544 MT080516 - Perini et al. (2023)
EXF-11241 Penicillium Brevicompacta Brevicompacta Greenland Clear ice - MT080486 MT080545 MT080517 - Perini et al. (2023)
EXF-11443 T Penicillium Brevicompacta Brevicompacta Greenland Dark ice - MT080493 MT080552 MT080519 - Perini et al. (2023)
EXF-11444 Penicillium Brevicompacta Brevicompacta Greenland Dark ice - MT080494 MT080553 MT080520 - Perini et al. (2023)
EXF-11445 Penicillium Brevicompacta Brevicompacta Greenland Dark ice - MT080495 MT080554 MT080521 - Perini et al. (2023)
EXF-11448 Penicillium Brevicompacta Brevicompacta Greenland Cryoconite - MT080498 MT080557 MT080522 - Perini et al. (2023)
EXF-11451 Penicillium Brevicompacta Brevicompacta Greenland Cryoconite - MT080501 MT080560 MT080523 - Perini et al. (2023)
EXF-11453 Penicillium Brevicompacta Brevicompacta Greenland Clear ice - MT080503 MT080562 MT080524 - Perini et al. (2023)
EXF-11454 Penicillium Brevicompacta Brevicompacta Greenland Clear ice - MT080504 MT080563 MT080525 - Perini et al. (2023)
EXF-11456 Penicillium Brevicompacta Brevicompacta Greenland Clear ice - MT080506 MT080565 MT080526 - Perini et al. (2023)
Penicillium aquadulcis CNUFC JT1301 T Aspergilloides Citrina Westlingiorum Republic of Korea Water OK356194 QK105100 OK105102 - - Nguyen et al. (2021b)
CNUFC JT1302 Aspergilloides Citrina Westlingiorum Republic of Korea Water OK356195 OK105101 OK105103 - - Nguyen et al. (2021b)
Penicillium archerae BRIP 72549c T Aspergilloides Exilicaulis Restricti Australia Soil OP903477 OP921961 - OP921960 - Tan & Shivas (2022)
Penicillium aspericonidium CBS 141832 T Aspergilloides Charlesia Indica Australia Soil MT309657 MT302240 - MT302224 - Sun et al. (2021)
Penicillium ausonanum FMR 16948 T Aspergilloides Lanata-Divaricata Dalearum Spain Fluvial sediment LR655808 LR655809 LR655810 LR655811 - Torres-Garcia et al. (2022)
Penicillium barbosae URM 7705 T Aspergilloides Sclerotiorum Adametziorum Brazil Soil MW191494 MG452818 MW183245 LR898886 - Ramos et al. (2021)
URM 7824 Aspergilloides Sclerotiorum Adametziorum Brazil Soil MW191495 MG452819 MW183246 LR898887 - Ramos et al. (2021)
Penicillium cerradense UB23977 T Aspergilloides Citrina Sumatraensia Brazil Soil MT006126 MT416533 MT416534 MT416532 - Andrade et al. (2021)
DCFS6b Aspergilloides Citrina Sumatraensia Brazil Soil MT006127 MT416536 MT416537 MT416535 - Andrade et al. (2021)
Penicillium claroviride CMW 56197 T Penicillium Canescentia Atroveneta South Africa Soil MT949909 MT957414 MT957456 MT957482 - Visagie & Yilmaz (2022)
CMW 56198 Penicillium Canescentia Atroveneta South Africa Soil MT949910 MT957415 MT957457 MT957483 - Visagie & Yilmaz (2022)
Penicillium doidgeae CBS 138947 T Penicillium Canescentia Atroveneta South Africa Mite from Protea repens infructescens JX140804 JX141006 JX157413 KP016915 - Visagie & Yilmaz (2022)
CBS 138948 Penicillium Canescentia Atroveneta South Africa Mite from Protea repens infructescens JX140805 JX141007 JX157414 KP016916 - Visagie & Yilmaz (2022)
Penicillium donggangicum AS 3.15900 T Aspergilloides Lanata-Divaricata Janthinella China Soil MW946996 MZ004914 MZ004918 MW979253 - Xu et al. (2022)
Penicillium eickerii CBS 138939 T Penicillium Canescentia Canescentia South Africa Mite from Protea repens infructescens JX140824 JX140979 JX157365 KP016876 - Visagie & Yilmaz (2022)
CBS 138940 Penicillium Canescentia Canescentia South Africa Bract from Protea repens infructescens JX140825 JX140980 JX157366 KP016877 - Visagie & Yilmaz (2022)
Penicillium elizabethiae NRRL917 T Penicillium Canescentia Canescentia Scotland Soil KP016840 KJ866964 KJ867021 KP016918 - Visagie & Yilmaz (2022)
Penicillium ezekielii CBS 149115 T Aspergilloides Cinnamopurpurea Jiangxiensia Indonesia Zea mays kernels ON723772 ON920778 ON920781 ON920784 ON911289 Tan et al. (2022)
CBS 149114 Aspergilloides Cinnamopurpurea Jiangxiensia Indonesia Zea mays kernels ON723771 ON920777 ON920780 ON920783 ON911288 Tan et al. (2022)
DTO 463-A7 Aspergilloides Cinnamopurpurea Jiangxiensia Nigeria Oryza sativa kernels ON723773 ON920779 ON920782 - ON911290 Tan et al. (2022)
Penicillium ferraniaense CBS 147594 Aspergilloides Sclerotiorum Sclerotiorum Italy Compost MW694952 MW689337 MW689339 MW689341 - Crous et al. (2021a)
CBS 147595 T Aspergilloides Sclerotiorum Sclerotiorum Italy Compost MW694951 MW689336 MW689338 MW689340 - Crous et al. (2021a)
Penicillium fusiforme CBS 250.66 T Aspergilloides Charlesia Fellutana The Netherlands Unknown MT309668 MT302253 MT302220 MT302236 - Sun et al. (2021)
Penicillium gercinae URM 8348 T Aspergilloides Ramigena Georgiensia Brazil Soil MW648591 MW646389 MW646391 MW646393 - Alves et al. (2022a)
Penicillium guarroi FMR 17747 T Aspergilloides Gracilenta Estinogena Spain Fluvial sediment LR814139 LR814134 LR814140 LR814145 - Torres-Garcia et al. (2022)
Penicillium hepuense AS 3.16039 T Aspergilloides Lanata-Divaricata Oxalica China Soil MW946994 MZ004912 MZ004916 MW979254 - Xu et al. (2022)
AS 3.16040 Aspergilloides Lanata-Divaricata Oxalica China Soil MW946995 MZ004913 MZ004917 MW979255 - Xu et al. (2022)
Penicillium irregulare FMR 17859 T Penicillium Canescentia Canescentia Spain Fluvial sediment LR814181 LR814144 LR814151 LR814182 - Torres-Garcia et al. (2022)
Penicillium jenningsiae BRIP 45936a T Aspergilloides Citrina Sumatraensia Australia Compost - OL741657 - OL741660 - Tan & Shivas (2022)
Penicillium jiaozhouwanicum AS 3.16027 Aspergilloides Lanata-Divaricata Oxalica China Soil OM203537 OM220087 OM220088 OM220089 - Xu et al. (2022)
AS 3.16038 T Aspergilloides Lanata-Divaricata Oxalica China Soil MW946993 MZ004911 MZ004915 MW979252 - Xu et al. (2022)
Penicillium kalander CMW 56202 T Aspergilloides Sclerotiorum Sclerotiorum South Africa Soil MT949914 MT957421 MT957461 MT957487 - Visagie & Yilmaz (2022)
CMW 56203 Aspergilloides Sclerotiorum Sclerotiorum South Africa Soil MT949915 MT957422 MT957462 MT957488 - Visagie & Yilmaz (2022)
CMW 56204 Aspergilloides Sclerotiorum Sclerotiorum South Africa Soil MT949916 MT957423 MT957463 MT957489 - Visagie & Yilmaz (2022)
CMW 56205 Aspergilloides Sclerotiorum Sclerotiorum South Africa Soil MT949917 MT957424 MT957464 MT957490 - Visagie & Yilmaz (2022)
CMW 56390 Aspergilloides Sclerotiorum Sclerotiorum South Africa Soil MT949918 MT957425 MT957465 MT957491 - Visagie & Yilmaz (2022)
Penicillium krskae CBS 147776 T Aspergilloides Exilicaulis Restricta Austria Air (indoor) MW794123 MW774594 MW774595 MW774593 - Labuda et al. (2021)
Penicillium limae URM 7706 T Aspergilloides Sclerotiorum Adametziorum Brazil Soil MW191493 MG452820 MW183244 LR898888 - Ramos et al. (2021)
Penicillium linzhiense Z863 T Penicillium Canescentia Canescentia China Soil MT461156 MT 461157 MT461162 - - Liang et al. (2021)
Penicillium longiconidiophorum CBS 141831 T Aspergilloides Charlesia Phoenicea Madagascar Soil MT309669 MT302254 MT302221 MT302237 - Sun et al. (2021)
DTO 092-C6 Aspergilloides Charlesia Phoenicea Madagascar Soil MT309670 MT302255 MT302222 MT302238 - Sun et al. (2021)
Penicillium mattheeae CMW 56195 Aspergilloides Aspergilloides Saturniiormia South Africa Soil MT949905 MT957409 MT957452 MT957478 - Visagie & Yilmaz (2022)
CMW 56388 T Aspergilloides Aspergilloides Saturniiormia South Africa Soil MT949904 MT957408 MT957451 MT957477 - Visagie & Yilmaz (2022)
CMW 56633 Aspergilloides Aspergilloides Saturniiormia South Africa Soil MT949906 MT957410 MT957453 MT957479 - Visagie & Yilmaz (2022)
Penicillium melanosporum CBS 146938 T Aspergilloides Lanata-Divaricata Janthinella Spain Soil LR655192 LR655196 LR655200 LR655204 - Rodriguez-Andrade et al. (2021)
Penicillium michoacanense FMR 17612 T Aspergilloides Lanata-Divaricata Janthinella Mexico Soil LR655194 LR655198 LR655202 LR655206 - Rodriguez-Andrade et al. (2021)
Penicillium neoherguei CBS 148692 T Aspergilloides Sclerotiorum Hergueorum USA White mushroom sporocarp MW341222 OL840853 OL840855 MW349119 - Crous et al. (2022)
Penicillium newtonturnerae BRIP 74909a T Aspergilloides Lanata-Divaricata Simplicissima Australia Soil OP903478 OP921964 OP921962 OP921963 OP925817 Tan & Shivas (2022)
Penicillium nordestinense CBS 564.85 Aspergilloides Lanata-Divaricata Janthinella Brazil Pollen samples inside nests of (Melipona scutellaris) OV312015 MH846596 MH846609 MH846584 - Barbosa et al. (2022)
URM 8423 T Aspergilloides Lanata-Divaricata Janthinella Brazil Pollen samples inside nests of (Melipona scutellaris) OV265270 OV265324 OV265272 OM927721 - Barbosa et al. (2022)
URM 8424 Aspergilloides Lanata-Divaricata Janthinella Brazil Pollen samples inside nests of (Melipona scutellaris) OV265271 OV265337 OV265273 OM927721 - Barbosa et al. (2022)
Penicillium outeniguaense CMW 56387 T Aspergilloides Citrina Westlingiorum South Africa Soil MT949903 MT957405 MT957450 MT957476 - Visagie & Yilmaz (2022)
Penicillium poederi CBS 147622 T Aspergilloides Torulomyces Torulomyces Iceland Volcanic soil MF611757 MF611760 MF611763 MF611766 - Kirchmair et al. (2022)
CBS 147623 Aspergilloides Torulomyces Torulomyces Iceland Volcanic soil MF611758 MF611761 MF611764 MF611767 - Kirchmair et al. (2022)
CBS 147624 Aspergilloides Torulomyces Torulomyces Iceland Volcanic soil MF611759 MF611762 MF611765 MF611768 - Kirchmair et al. (2022)
Penicillium pole-evansii CBS 138946 T Penicillium Canescentia Atroveneta South Africa Bract from Protea repens infructescens JX140831 JX141005 JX157412 KP016911 - Visagie & Yilmaz (2022)
Penicillium rotoruae CBS 145838 T Aspergilloides Lanata-Divaricata Rolfsiorum New Zealand Pinus radiata timber on ground MN315103 MN315104 MN315102 MT240842 - O’Callahan et al. (2020)
Penicillium saanichanum DAOMC 251850 T Aspergilloides Cinnamopurpurea Idahoensia Canada House dust KY469059 KY469096 KY469020 MN795070 - Crous et al. (2020a)
Penicillium sanjayi NFCCI 5017 T Aspergilloides Citrina Vascosobrinhoana India Soil MZ571358 MZ558484 MZ558492 MZ558482 - Ashtekar et al. (2022)
NFCCI 5018 Aspergilloides Citrina Vascosobrinhoana India Soil MZ571359 MZ558485 MZ558493 MZ558483 - Ashtekar et al. (2022)
Penicillium scottii CBS 138935 Penicillium Canescentia Canescentia South Africa Air (outdoor) JX140823 JX140977 JX157351 KP016863 - Visagie & Yilmaz (2022)
CBS 138937 Penicillium Canescentia Canescentia South Africa Soil JX140826 JX140978 JX157355 KP016867 - Visagie & Yilmaz (2022)
CBS 138941 Penicillium Canescentia Canescentia South Africa Air (outdoor) JX140827 JX140981 JX157371 KP016882 - Visagie & Yilmaz (2022)
CBS 138944 Penicillium Canescentia Canescentia South Africa Bract from Protea repens infructescens JX140820 JX141002 JX157396 KP016907 - Visagie & Yilmaz (2022)
CBS 138951 T Penicillium Canescentia Canescentia South Africa Soil JX140812 JX140991 JX157383 KP016894 - Visagie & Yilmaz (2022)
CV0939 Penicillium Canescentia Canescentia South Africa Soil JX140814 JX140994 JX157386 KP016897 - Visagie & Yilmaz (2022)
IBT 31903 Penicillium Canescentia Canescentia South Africa Bract from Protea repens infructescens JX140821 JX141003 JX157397 KP016908 - Visagie & Yilmaz (2022)
IBT 31904 Penicillium Canescentia Canescentia South Africa Soil KP016833 JX140995 JX157387 KP016898 - Visagie & Yilmaz (2022)
IBT 31906 Penicillium Canescentia Canescentia South Africa Soil JX140815 JX140996 JX157388 KP016899 - Visagie & Yilmaz (2022)
IBT 31907 Penicillium Canescentia Canescentia South Africa Soil KP016832 JX140988 JX157378 KP016889 - Visagie & Yilmaz (2022)
IBT 31908 Penicillium Canescentia Canescentia South Africa Soil JX140816 JX140997 JX157389 KP016900 - Visagie & Yilmaz (2022)
IBT 31909 Penicillium Canescentia Canescentia South Africa Soil KP016834 JX140998 JX157390 KP016901 - Visagie & Yilmaz (2022)
IBT 31910 Penicillium Canescentia Canescentia South Africa Soil JX140817 JX140999 JX157391 KP016902 - Visagie & Yilmaz (2022)
IBT 31911 Penicillium Canescentia Canescentia South Africa Soil JX140818 JX141000 JX157392 KP016903 - Visagie & Yilmaz (2022)
IBT 31912 Penicillium Canescentia Canescentia South Africa Soil JX140808 JX140984 JX157374 KP016885 - Visagie & Yilmaz (2022)
IBT 31913 Penicillium Canescentia Canescentia South Africa Soil JX140811 JX140990 JX157382 KP016893 - Visagie & Yilmaz (2022)
IBT 31914 Penicillium Canescentia Canescentia South Africa Soil JX140813 JX140993 JX157385 KP016896 - Visagie & Yilmaz (2022)
IBT 31915 Penicillium Canescentia Canescentia South Africa Soil JX140807 JX140982 JX157372 KP016883 - Visagie & Yilmaz (2022)
IBT 31916 Penicillium Canescentia Canescentia South Africa Soil JX140809 JX140985 JX157375 KP016886 - Visagie & Yilmaz (2022)
IBT 31917 Penicillium Canescentia Canescentia South Africa Soil JX140810 JX140987 JX157377 KP016888 - Visagie & Yilmaz (2022)
IBT31918 Penicillium Canescentia Canescentia South Africa Soil JX140828 JX140986 JX157376 KP016887 - Visagie & Yilmaz (2022)
IBT 31919 Penicillium Canescentia Canescentia South Africa Soil KP016831 JX140983 JX157373 KP016884 - Visagie & Yilmaz (2022)
IBT 31922 Penicillium Canescentia Canescentia South Africa Mite from Protea repens infructescens JX140819 JX141001 JX157394 KP016905 - Visagie & Yilmaz (2022)
IBT 31953 Penicillium Canescentia Canescentia South Africa Soil JX140829 JX140989 JX157379 KP016890 - Visagie & Yilmaz (2022)
Penicillium setosum CBS 144865 T Aspergilloides Lanata-Divaricata Janthinella India Withania somniiera KT852579 MF184995 MH105905 - - Barbosa et al. (2022)
CBS 576.70 Aspergilloides Lanata-Divaricata Janthinella Mexico Soil - MH846595 MH846608 MH846583 - Barbosa et al. (2022)
DTO 284-F3 Aspergilloides Lanata-Divaricata Janthinella India Withania somniiera - MH846594 MH846607 MH846582 - Barbosa et al. (2022)
PPRI 20582 Aspergilloides Lanata-Divaricata Janthinella South Africa Insect MK450718 MK451255 MK451649 - - Barbosa et al. (2022)
PPRI 6371 Aspergilloides Lanata-Divaricata Janthinella South Africa Scarabid larvae MK450717 MK 451227 MK451648 MK450852 - Barbosa et al. (2022)
Penicillium sexuale CBS 146939 T Aspergilloides Crypta Crypta Spain Soil LR655195 LR655199 LR655203 LR655207 - Rodriguez-Andrade et al. (2021)
Penicillium siccitolerans FMR 17381 T Aspergilloides Lanata-Divaricata Janthinella Spain Soil LR655193 LR655197 LR655201 LR655205 - Rodriguez-Andrade et al. (2021)
Penicillium sicoris FMR 18076 T Penicillium Paradoxa Atramentosa Spain Fluvial sediment LR884497 LR884494 LR884496 LR884495 - Torres-Garcia et al. (2022)
Penicillium silybi CBS 147777 T Aspergilloides Exilicaulis Restricta USA Milk thistle (Silybum marianum) KF367458 MW774592 MW774591 AB860248 - Labuda et al. (2021)
Penicillium soli KUMCC 18-0202 T Aspergilloides Lanata-Divaricata Janthinella China Soil MT152337 MT161681 MT178249 MT384372 - Doilom et al. (2020)
Penicillium stangiae URM 8347 T Aspergilloides Lanata-Divaricata Dalearum Brazil Soil MW648590 MW646388 MW646390 MW646392 - Alves et al. (2022a)
Penicillium subfuscum CMW 56196 T Aspergilloides Lanata-Divaricata Simplicissima South Africa Soil MT949907 MT957412 MT957454 MT957480 - Visagie & Yilmaz (2022)
CN014A6 Aspergilloides Lanata-Divaricata Simplicissima South Africa Soil MW329997 MW340969 MW340970 MW340971 - Visagie & Yilmaz (2022)
Penicillium submersum FMR 17140 T Penicillium Robsamsonia Urticicola Spain Fluvial sediment LR814194 LR814187 LR814188 LR814195 - Torres-Garcia et al. (2022)
Penicillium taurinense CBS 145672 T Penicillium Robsamsonia Glandicolarum Italy Chestnut mill MF595981 MF595977 MF595979 MT253108 - Crous et al. (2020b)
CBS 145673 Penicillium Robsamsonia Glandicolarum Italy Chestnut mill MF595982 MF595978 MF595980 - - Crous et al. (2020b)
Penicillium tealii BRIP 72734c T Aspergilloides Cinnamopurpurea Jiangxiensia Australia Dead spider OP101639 OP039547 - OP039546 - Tan et al. (2022)
BRIP 72735b Aspergilloides Cinnamopurpurea Jiangxiensia Australia Dead spider OP101642 OP039553 - OP039552 - Tan et al. (2022)
BRIP 72742b Aspergilloides Cinnamopurpurea Jiangxiensia Australia Dead spider OP101643 OP039554 - OP039546 - Tan et al. (2022)
BRIP 72731b Aspergilloides Cinnamopurpurea Jiangxiensia Australia Dead spider OP101641 OP039551 - OP039555 - Tan et al. (2022)
BRIP 72732b Aspergilloides Cinnamopurpurea Jiangxiensia Australia Dead spider OP101640 OP039549 - OP039559 - Tan et al. (2022)
Penicillium tirolense CBS 147625 T Aspergilloides Torulomyces Torulomyces Austria Sporocarp of Serpula lacrymans MW145398 MW143069 MW143068 MW143067 - Kirchmair et al. (2022)
Penicillium tolerans BRIP 64090a T Aspergilloides Aspergilloides Sclerotiorum Australia Soil OK639006 OL741658 - - - Tan & Shivas (2022)
Penicillium ucsense CBS 146492 T Aspergilloides Lanata-Divaricata Oxalica Brazil Intestinal tract of Anobium punctatum larva OM914583 ON024157 ON024158 ON024159 - Lenz et al. (2022)
Penicillium ulleungdoense KACC 48990 T Aspergilloides Sclerotiorum Sclerotiorum Republic of Korea Root of Phedimus takesimensis MN640087 MN737487 MN745074 MN756007 - Choi et al. (2020)
KACC 48991 Aspergilloides Sclerotiorum Sclerotiorum Republic of Korea Root of Sedum oryzifolium MN640088 MN737488 MN745075 MN756008 - Choi et al. (2020)
KACC 48992 Aspergilloides Sclerotiorum Sclerotiorum Republic of Korea Root of Aster spathulifolius MN640089 MN737489 MN745076 MN756009 - Choi et al. (2020)
Penicillium umkhoba CMW 56199 Aspergilloides Sclerotiorum Hergueorum South Africa Soil MT949911 MT957416 MT957458 MT957484 - Visagie & Yilmaz (2022)
CMW 56200 T Aspergilloides Sclerotiorum Hergueorum South Africa Soil MT949912 MT957417 MT957459 MT957485 - Visagie & Yilmaz (2022)
CMW 56201 Aspergilloides Sclerotiorum Hergueorum South Africa Soil MT949913 MT957418 MT957460 MT957486 - Visagie & Yilmaz (2022)
Penicillium uttarakhandense NFCCI 4808 T Aspergilloides Lanata-Divaricata Simplicissima India Soil (garden) MN967315 MN972443 MN972445 MN972447 - Crous et al. (2021a)
NFCCI 4809 Aspergilloides Lanata-Divaricata Simplicissima India Soil (garden) MN967316 MN972444 MN972446 MN972448 - Crous et al. (2021a)
Penicillium vaccaeorum CBS 110.64 Aspergilloides Citrina Roseopurpurea Turkey Soil - JN606829 JN606533 - - Torres-Garcia et al. (2022)
CBS 118020 Aspergilloides Citrina Roseopurpurea Canada Ants - JN606832 JN606536 - - Torres-Garcia et al. (2022)
CBS 118024 Aspergilloides Citrina Roseopurpurea Canada Ants - JN606833 JN606537 - - Torres-Garcia et al. (2022)
CBS 127029 Aspergilloides Citrina Roseopurpurea Argentina Soil - JN606814 JN606544 - - Torres-Garcia et al. (2022)
CBS 135118 Aspergilloides Citrina Roseopurpurea South Africa Soil JX140867 JX141019 JX141510 MN418449 - Torres-Garcia et al. (2022)
CBS 135119 Aspergilloides Citrina Roseopurpurea South Africa Soil JX140865 JX141020 JX141511 MK461491 - Torres-Garcia et al. (2022)
CBS 148.83 T Aspergilloides Citrina Roseopurpurea Spain Soil JN617689 JN606835 JN606543 JN606614 - Torres-Garcia et al. (2022)
CBS 300.67 Aspergilloides Citrina Roseopurpurea The Netherlands Soil - JN606841 JN606561 - - Torres-Garcia et al. (2022)
CBS 441.88 Aspergilloides Citrina Roseopurpurea Chile Soil - JN606846 JN606568 - - Torres-Garcia et al. (2022)
CBS 643.73 Aspergilloides Citrina Roseopurpurea Canada Soil - JN606853 JN606576 - - Torres-Garcia et al. (2022)
CBS 644.73 Aspergilloides Citrina Roseopurpurea Canada Soil - JN606854 JN606577 - - Torres-Garcia et al. (2022)
CBS 685.85 Aspergilloides Citrina Roseopurpurea Spain Soil JN617711 JN606855 JN606578 - - Torres-Garcia et al. (2022)
CV1865 Aspergilloides Citrina Roseopurpurea South Africa Soil JX140866 JX141021 JX157340 MK461547 - Torres-Garcia et al. (2022)
FMR 17531 Aspergilloides Citrina Roseopurpurea Spain Fluvial sediment LR814213 LR814203 LR814204 - - Torres-Garcia et al. (2022)
FMR 17534 Aspergilloides Citrina Roseopurpurea Spain Fluvial sediment OU375272 OU375168 OU375273 - - Torres-Garcia et al. (2022)
FMR 17616 Aspergilloides Citrina Roseopurpurea Spain Fluvial sediment LR814217 LR814212 LR814218 - - Torres-Garcia et al. (2022)
FMR 17967 Aspergilloides Citrina Roseopurpurea Spain Fluvial sediment LR814235 LR814226 LR814227 - - Torres-Garcia et al. (2022)
FMR 18100 Aspergilloides Citrina Roseopurpurea Spain Fluvial sediment LR814241 LR814234 LR814242 - - Torres-Garcia et al. (2022)
FMR 18123 Aspergilloides Citrina Roseopurpurea Spain Fluvial sediment LR814273 LR814265 LR814264 - - Torres-Garcia et al. (2022)
Penicillium vallebormidaense CBS 147064 T Aspergilloides Exilicaulis Erubescentia Italy Compost MT316359 MW115862 MW115863 MW115864 - Crous et al. (2020a)
Penicillium vickeryae BRIP 72552a T Aspergilloides Lanata-Divaricata Simplicissima Australia Soil OP903479 OP921966 - OP921965 - Tan & Shivas (2022)
Penicillium vietnamense VTCC 930029 T Aspergilloides Charlesia Indica Vietnam Sea water MT102836 MT230561 ON209438 MT222288 - Nguyen & Pham (2022)
Penicillium xyleborini CMW 56800 T Penicillium Ramosum Soppiorum South Africa Beetle (Xyleborinus saxesenii) MW504356 MW480817 MW480823 MW480824 - Visagie & Yilmaz (2022)
Rasamsonia oblata IMI 288719 T - - - Australia Spoiled baby food LC546718 LC546729 LC546740 - - Yanai et al. (2020)
CBS 258.87 T - - - Australia Spoiled baby food OR142403 OR145988 OR145994 - - Present study
Rasamsonia sabulosa ATCC 56984 T - - - Australia Spoiled fruit juice LC546720 LC546726 LC546742 - - Yanai et al. (2020)
Talaromyces africanus CBS 147340 T - Trachyspermi - South Africa House dust OK339610 OK338782 OK338808 OK338833 - Pyrri et al. (2021)
Talaromyces albisclerotius CBS 141839 T - Trachyspermi - China Soil MN864276 MN863345 MN863322 MN863334 - Sun et al. (2020b)
Talaromyces aspriconidius CBS 141835 T - Talaromyces - China Soil MN864274 MN863343 MN863320 MN863332 - Sun et al. (2020b)
Talaromyces atkinsoniae BRIP 72528a T - Talaromyces - Australia Gills of Marasmius crinisequi OP059084 OP087524 - OP087523 - Tan et al. (2022)
Talaromyces aureolinus AS 3.15864 - Talaromyces - China Soil MK837954 MK837938 MK837946 MK837962 - Wei et al. (2021)
AS 3.15865 - Talaromyces - China Soil MK837953 MK837937 MK837945 MK837961 - Wei et al. (2021)
NM6-1 - Talaromyces - China Soil MN059095 MN059093 MN059094 MN059096 - Wei et al. (2021)
Talaromyces bannicus AS 3.15862 T - Talaromyces - China Soil MK837955 MK837939 MK837947 MK837963 - Wei et al. (2021)
Talaromyces brevis CBS 141833 T - Talaromyces - China Soil MN864269 MN863338 MN863315 MN863328 - Sun et al. (2020b)
CBS 118436 - Talaromyces - Marocco Soil MN864271 MN863340 MN863317 MN863330 - Sun et al. (2020b)
DTO 307-C1 - Talaromyces - Turkey Soil MN864270 MN863339 MN863316 MN863329 - Sun et al. (2020b)
Talaromyces calidominioluteus CBS 113167 - Trachyspermi - Unknown Air (indoor) OK339611 OK338785 OK338816 OK338836 - Pyrri et al. (2021)
CBS 147313 T - Trachyspermi - The Netherlands Melon (imported from Brazil) OK339612 OK338786 OK338817 OK338837 - Pyrri et al. (2021)
CBS 147341 - Trachyspermi - Iran Grapevine OK339602 OK338788 KU711896 OK338839 - Pyrri et al. (2021)
CBS 147342 - Trachyspermi - Thailand House dust OK339600 KP330045 OK338815 OK338835 - Pyrri et al. (2021)
DTO 265-H8 - Trachyspermi - Iran Grapevine OK339601 OK338787 KU711894 OK338838 - Pyrri et al. (2021)
DTO 266-A5 - Trachyspermi - Iran Grapevine OK339603 OK338789 KU711900 OK338840 - Pyrri et al. (2021)
DTO 269-H1 - Trachyspermi - Thailand House dust KJ775721 KJ775214 - - - Pyrri et al. (2021)
DTO 269-H4 - Trachyspermi - Thailand House dust KJ775722 KJ775215 - - - Pyrri et al. (2021)
DTO 270-A1 - Trachyspermi - Thailand House dust KJ775728 KJ775221 - - - Pyrri et al. (2021)
DTO 270-C3 - Trachyspermi - Thailand House dust KJ775733 KJ775226 - - - Pyrri et al. (2021)
DTO 390-E9 - Trachyspermi - Nigeria Cocoa beans MN788104 MN787900 MN787896 OK338847 - Pyrri et al. (2021)
DTO 390-F1 - Trachyspermi - Nigeria Cocoa beans MN788103 MN787901 MN787895 OK338848 - Pyrri et al. (2021)
DTO 390-I9 - Trachyspermi - Nigeria Cocoa beans MN788115 MN787911 MN787885 OK338849 - Pyrri et al. (2021)
DTO 391-A5 - Trachyspermi - Nigeria Cocoa beans MN788111 MN787914 MN787883 OK338850 - Pyrri et al. (2021)
Talaromyces cavernicola URM 8448 T - Talaromyces - Brazil Air (cave) ON862935 OP672383 OP290543 OP290515 - Alves et al. (2022b)
URM 8449 - Talaromyces - Brazil Air (cave) ON862936 OP672384 OP290544 OP290516 - Alves et al. (2022b)
Talaromyces chongqingensis CBS 270.35 - Trachyspermi - China Soil OK339609 OK338781 OK338807 OK338832 - Zhang et al. (2021b)
CGMCC 3.20482 T - Trachyspermi - China Soil MZ358001 MZ361343 MZ361350 MZ361357 - Zhang et al. (2021b)
CS26-63 - Trachyspermi - China Soil MZ358002 MZ361344 MZ361351 MZ361358 - Zhang et al. (2021b)
CS26-73 - Trachyspermi - China Soil MZ358003 MZ361345 MZ361352 MZ361359 - Zhang et al. (2021b)
CS26-75 - Trachyspermi - China Soil MZ358004 MZ361346 MZ361353 MZ361360 - Zhang et al. (2021b)
NRRL 1064 - Trachyspermi - China Soil KM066172 KM066129 Zhang et al. (2021b)
Talaromyces gaditanus CBS 104.71 - Trachyspermi - The Netherlands Tulip OK339614 OK338792 OK338820 OK338852 - Pyrri et al. (2021)
CBS 144771 - Trachyspermi - The Netherlands Sputum of cystic fibroses patient OK339616 OK338794 OK338822 OK338842 - Pyrri et al. (2021)
CBS 169.81 T - Trachyspermi - Spain Air MH861318 OK338775 OK338802 OK338827 - Pyrri et al. (2021)
CBS 442.89 - Trachyspermi - Denmark Soil OK339615 OK338793 OK338821 OK338853 - Pyrri et al. (2021)
CBS 444.89 - Trachyspermi - Denmark Cranberry (imported from USA) OK339597 OK338776 OK338803 OK338828 - Pyrri et al. (2021)
CBS 996.72 - Trachyspermi - The Netherlands Jute sugar bag MH860641 OK338774 OK338813 OK338826 - Pyrri et al. (2021)
CBS 138.84 - Trachyspermi - Spain Apple (Malus sylvestris) OK339604 OK338791 OK338819 OK338851 - Pyrri et al. (2021)
Talaromyces germanicus CBS 147314 T - Trachyspermi - Germany Indoor environment OK339619 OK338799 OK338812 OK338845 - Pyrri et al. (2021)
Talaromyces ginkgonis CGMCC 3.20698 T - Talaromyces - China Fruit of Ginkgo biloba OL638158 OL689844 OL689846 OL689848 - Wang & Zhuang (2022a)
Talaromyces gwangjuensis CNUFC WT19-1 T - Purpurei - Republic of Korea Freshwater MK766233 MZ318448 - MK912174 - Nguyen et al. (2021a)
CNUFC WT19-2 - Purpurei - Republic of Korea Freshwater MK766234 MZ318449 - MK912175 - Nguyen et al. (2021a)
Talaromyces haitouensis AS 3.16101 T - Talaromyces - China Soil MZ045695 MZ054634 MZ054637 MZ054631 - Han et al. (2021)
Talaromyces koreanus CNUFC YJW2-13 T - Helici - Republic of Korea Freshwater MZ315100 MZ318450 MZ332529 MZ332533 - Nguyen et al. (2021a)
CNUFC YJW2-14 - Helici - Republic of Korea Freshwater MZ315101 MZ318451 MZ332530 MZ332534 - Nguyen et al. (2021a)
Talaromyces nanjingensis CCTCC-M-2012167 T - Talaromyces - China Soil MW130720 MW147759 MW147760 MW147762 - Sun et al. (2022b)
Talaromyces peaticola CGMCC 3.18620 T - Trachyspermi - China Soil (peat) MF135613 MF284705 MF284703 MF284704 - Tian et al. (2021)
CGMCC 3.18767 - Trachyspermi - China Soil (peat) MF960857 MF960859 MF960861 MF960863 - Tian et al. (2021)
CGMCC 3.18768 - Trachyspermi - China Soil (peat) MF960858 MF960860 MF960862 MF960864 - Tian et al. (2021)
Talaromyces penicillioides AS 3.15822 T - Talaromyces - China Soil MK837956 MK837940 MK837948 MK837964 - Wei et al. (2021)
Talaromyces pernambucoensis URM 6894 T - Trachyspermi - Brazil Soil LR535947 LR535945 LR535946 LR535948 - Crous et al. (2019)
Talaromyces phuphaphetensis TBRC 16281 T - Trachyspermi - Thailand Soil (cave) ON692803 ON706960 ON706962 ON706964 - Nuankaew et al. (2022)
Talaromyces pulveris CBS 146831 T - Purpurei - France Bore dust of deathwatch beetle (Xestobium rufovillosum) infesting floorboards (Quercus wood) MW175345 MW173136 MW173099 MW173115 - Crous et al. (2020a)
Talaromyces resedanus CBS 181.71 T - Subinflati - Seychelles Soil MN864280 MN863349 MN863326 MN969214 - Sun et al. (2020b)
Talaromyces rosarhiza GUCC 190040.1 T - Talaromyces - China Endophyte of Rosa roxburghii MZ221603 MZ333143 MZ333137 MZ333141 - Zhang et al. (2021a)
GUCC 197011.1 - Talaromyces - China Endophyte of Rosa roxburghii MZ221604 MZ333144 MZ333138 MZ333142 - Zhang et al. (2021a)
Talaromyces rufus CBS 141834 T - Talaromyces - China Soil MN864272 MN863341 MN863318 MN863331 - Sun et al. (2020b)
DTO 274-C5 - Talaromyces - Republic of Korea Soil MN864273 MN863342 MN863319 - - Sun et al. (2020b)
Talaromyces samsonii CBS 137.84 T - Trachyspermi - Spain Apple (Malus sylvestris) MH861709 OK338798 OK338824 OK338844 - Pyrri et al. (2021)
CBS 147356 - Trachyspermi - The Netherlands Soil OK339598 OK338777 OK338804 OK338829 - Pyrri et al. (2021)
CBS 147357 - Trachyspermi - Greece Air (indoor) OK339599 OK338778 OK338805 OK338830 - Pyrri et al. (2021)
Talaromyces santanderensis HF05 T - Talaromyces - Colombia Soil (cacao field) OP082331 OP067657 OP067656 OP067655 - Guerra Sierra et al. (2022)
Talaromyces satunensis TBRC 16246 T - Trachyspermi - Thailand Soil (cave) ON692804 ON706961 ON706963 - - Nuankaew et al. (2022)
Talaromyces saxoxalicus MUM20.30 T - Purpurei - Portugal Limestone walls MT039882 MT052003 - MT052004 - Trovao et al. (2021)
Talaromyces shilinensis CGMCC 3.20699 T - Talaromyces - China Rotten twig OL638159 OL689845 OL689847 OL689849 - Wang & Zhuang (2022a)
Talaromyces sparsus AS 3.15880 T - Talaromyces - China Soil MK837958 MK837942 MK837950 MK837966 - Wei et al. (2021)
Talaromyces teleomorphus CNUFC YJW2-5 T - Helici - Republic of Korea Freshwater MZ315102 MZ318452 MZ332531 MZ332535 - Nguyen et al. (2021a)
CNUFC YJW2-6 - Helici - Republic of Korea Freshwater MZ315103 MZ318453 MZ332532 MZ332536 - Nguyen et al. (2021a)
Talaromyces tenuis CBS 141840 T - Tenues - China Soil MN864275 MN863344 MN863321 MN863333 - Sun et al. (2020b)
Talaromyces wushanicus CGMCC 3.20481 T - Talaromyces - China Soil MZ356356 MZ361347 MZ361354 MZ361361 - Zhang et al. (2021b)
CS17-04 - Talaromyces - China Soil MZ356357 MZ361348 MZ361355 MZ361362 - Zhang et al. (2021b)
CS17-06 - Talaromyces - China Soil MZ356358 MZ361349 MZ361356 MZ361363 - Zhang et al. (2021b)
Talaromyces yunnanensis KUMCC 18-0208 T - Talaromyces - China Soil MT152339 MT161683 MT178251 - - Doilom et al. (2020)
Talaromyces zhenhaiensis AS 3.15693 - Talaromyces - China Soil KY007094 KY007110 KY007102 KY112592 - Han et al. (2021)
AS 3.16102 T - Talaromyces - China Soil MZ045697 MZ054636 MZ054639 MZ054633 - Han et al. (2021)

Datasets were aligned in MAFFT v. 7.490 (Katoh & Standley 2013) using the G-INS-i option. For multigene phylogenies, datasets were concatenated in Geneious Prime v. 2023.0.1 (Biomatters, NZ). Partitionfinder v. 2.1.1 (Lanfear et al. 2017) was used to select the partitioning schemes and nucleotide substitution models for each alignment, with exons, introns, and codon positions treated as independent datasets. Maximum Likelihood phylogenies were computed in IQ-TREE v. 2.1.3 (Minh et al. 2020) with support in nodes calculated using UFBoot (Hoang et al. 2018) ultrafast bootstrapping with 1 000 replicates, as implemented in IQ-TREE. Phylogenies were visualised in TreeViewer v. 2.0.1 (https://treeviewer.org) and further edited for publication in Affinity Publisher v. 2.0.3 [Serif (Europe) Ltd, Nottingham, UK]. Here we use a phylogenetic species concept and apply Genealogical Concordance Phylogenetic Species Recognition (GCPSR; Taylor et al. 2000).

Morphology

Descriptions were made following the recommendations of Samson et al. (2014) and Visagie et al. (2014). Strains were inoculated at three-equidistant points onto Czapek yeast autolysate agar (CYA), CYA with 5 % NaCl (CYAS), CYA with 20 % sucrose (CY20S), malt extract agar (MEA), yeast extract sucrose agar (YES), dichloran 18 % glycerol agar (DG18), oatmeal agar (OA), and Creatine sucrose agar (CREA). These were incubated at 25 °C for 7 d, with additional CYA plates incubated at 20, 30 and 37 °C. A subset of plates were incubated for longer periods to observe possible sexual states. After incubation, the species were characterised based on their growth rates, colony characteristics and microscopic features. Colonies were photographed using a Sony A6400 camera and a Sony SEL50M28 lens (Tokyo, Japan). Microscopic observations were made using a Nikon SMZ25 stereomicroscope (Tokyo, Japan) and Zeiss AXIO Imager.A2 compound microscope (Carl Zeiss CMP, Göttingen, Germany), both equipped with Nikon DS-Ri2 cameras and using Nikon Elements D v. 5.11 software. The photoplates were created in Affinity Photo v. 2.0.3 [Serif (Europe), Nottingham, UK].

RESULTS

Phylogenetic analyses

All alignments, partitioning schemes, model tests, and phylogenetic trees were deposited in the University of Pretoria research data repository hosted on Figshare (doi: 10.25403/UPresearchdata.23723277). The phylogenies largely confirmed the novelty of the newly introduced species, with some exceptions commented on using notes in the species list below (Figs 133, Suppl. Figs S1S30).

Fig. 1.

Fig. 1

Phylogenetic tree of Aspergillus section Aenei series Aenei based on a concatenated dataset of BenA, CaM, and RPB2. Strains of recently described species are shown in bold coloured text. The tree was rooted to A. versicolor. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by superscript T. See Suppl. Fig. S1.

Fig. 33.

Fig. 33

Phylogenetic tree of Talaromyces section Trachyspermi, based on a concatenated dataset of BenA, CaM and RPB2. Strains of recently described species are shown in bold coloured text. The tree was rooted to T. purpureus. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by superscript T.

TAXONOMY

Here we present new additions and changes to the list of accepted species published in Houbraken et al. (2020) and provide an overview of the 160 species described (51 Aspergillus, three Emericella, one Neosartorya, two Paecilomyces, one Paraxerochrysium, 64 Penicillium, two Rasamsonia, 35 Talaromyces and one Xerochrysium) and the new genus Paraxerochrysium. At the continental level, species were described from Africa (n = 28), Asia (n = 57), Europe (n = 36), North America (n = 15), Oceania (n = 21) and South America (n = 19).

These originated from 42 countries with most coming from China (n = 39), Australia (n = 20), South Africa (n = 16), Brazil (n = 16), Spain (n = 12), and the USA (n = 8). Species were described from a wide range of substrates, mainly soil (n = 91), plant material (n = 15), food and feed (n = 14), air (n = 12) and indoor environments (n = 8). Of the 160, 22 were classified as synonyms and four as doubtful species. Ten were invalidly described. Two of these names are validated below, the remaining eight are considered synonyms or doubtful species. We consider the four combinations introduced by Pitt & Hocking (2022) contradictory to our view on Aspergillus and the sexual (teleomorphic) genera associated with it (Samson et al. 2014, Kocsube et al. 2016). We also document species that were previously accepted but then subsequently reduced as synonyms due to various taxonomic revisions. Finally, species accepted in Houbraken et al. (2020) for which no DNA sequence data are available are now listed as doubtful. Taking these changes into account, we currently accept 453 Aspergillus, 12 Paecilomyces, 535 Penicillium, 14 Rasamsonia, 203 Talaromyces and four Xerochrysium species.

Aspergillus series Annuorum J.J. Silva, Iamanaka & Frisvad ser. nov. MycoBank MB 849339. Fig. 6 & Suppl. Fig. S6.

Fig. 6.

Fig. 6

Fig. 6

Phylogenetic tree of Aspergillus section Flavi series Alliacei and Flavi based on a concatenated dataset of BenA, CaM, and RPB2. Strains of recently described species are shown in bold coloured text. The tree was midpoint rooted. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by superscript T. Representative strains are indicated by superscript R. See Suppl. Fig. S6.

Synonym: Aspergillus ser. Annuorum [nom. inval. Art. 40.1 (Shenzhen)] J.J. Silva, Fungaro, Frisvad, Taniwaki & Iamanaka, J. Fungi 8 (no 1279): 14. 2022. MycoBank MB 845971.

In: Aspergillus subgen. Circumdati sect. Flavi.

Typus: Aspergillus annui J.J. Silva, Fungaro, Frisvad, Taniwaki & Iamanaka [MB 849336].

Etymology: Named after Aspergillus annui.

Description: See Silva et al. (2022).

Aspergillus annui J.J. Silva, Fungaro, Frisvad, Taniwaki & Iamanaka, sp. nov. MycoBank MB 849336. Fig. 6 & Suppl. Fig. S6.

Synonym: Aspergillus annui [nom. inval. Art. 40.7 & Art. 40.8 (Shenzhen)] J.J. Silva, Fungaro, Frisvad, Taniwaki & Iamanaka, J. Fungi 8 (no 1279): 14. 2022. MycoBank MB 845969.

In: Aspergillus subgen. Circumdati sect. Flavi ser. Annuorum.

DNA barcodes: ITS = OP691228; BenA = ON529842; CaM = ON529841; RPB2 = ON529843.

Etymology: The specific epithet refers to the substrate from which it was isolated, paprika pepper (Capsicum annuum).

Typus: Brazil, São Paulo State, São Paulo City, 23°35’29.7”S 46°40’52.1”W, sweet paprika pepper (Capsicum annuum), 6 Apr. 2017, isol. C.A. Yasumura (holotype IBT 36122 preserved as a metabolically inactive culture, culture ex-type 365-IT-PPK = IBT 36122).

Description: See Silva et al. (2022).

Notes: This species was invalidly described because Silva et al. (2022) cited two holotypes and failed to mention that the holotype was metabolically inactive. This also means that series Annuorum introduced for A. annui is invalid. Here we validate both the species and the series.

Aspergillus saccharicola J.J. Silva, Frisvad, Fungaro, Taniwaki & Iamanaka, sp. nov. MycoBank MB 849338. Fig. 6 & Suppl. Fig. S6.

Synonym: Aspergillus saccharicola [nom. inval. Art. 40.7 & Art. 40.8 (Shenzhen)] J.J. Silva, Frisvad, M.H.P. Fungaro, M.H. Taniwaki & B.T. Iamanaka, J. Fungi 8 (no 1279): 16. 2022. MycoBank MB 845970.

In: Aspergillus subgen. Circumdati sect. Flavi ser. Flavi.

DNA barcodes: ITS = OP611470; BenA = ON529845; CaM = ON529844; RPB2 = ON529846.

Etymology: The specific epithet refers to the substrate from which it was isolated, sugarcane (Saccharum officinarum).

Typus: Brazil, São Paulo State, São Paulo City, 23°35’29.7”S 46°40’52.1”W, sugarcane (Saccharum officinarum), 14 Sep. 2011, isol. B.T. Imanaka (holotype IBT 36126 preserved as a metabolically inactive culture, culture ex-type 117-IT-SGC = IBT 36126).

Description: See Silva et al. (2022).

Notes: This species was invalidly described because Silva et al. (2022) cited two holotypes and failed to mention that the holotype was metabolically inactive. Here we validate the species.

Aspergillus section Dichlaena Visagie, Kocsubé & Houbraken, sect. nov. MycoBank MB 849488. Fig. 14.

Fig. 14.

Fig. 14

Phylogenetic tree showing the relationship of Dichlaena within Aspergillus based on a concatenated dataset of BenA, CaM, RPB2, RPB1, ITS and LSU. Strains of recently described species are shown in bold coloured text. The tree was rooted to Trichocoma paradoxa. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by superscript T. Representative strains are indicated by superscript R.

In: Aspergillus subgenus Circumdati.

Etymology: Named after the genus Dichlaena.

Typus: Aspergillus lentisci (Durieu & Mont.) Visagie, Malloch, L. Kriegsteiner, Samson & Houbraken [MB 849485].

Description: We follow the Malloch & Cain (1972) description of Dichlaena and apply this to the section.

Notes: The genus Dichlaena is synonymised with Aspergillus. Aspergillus lentisci (bas. Dichlaena lentisci) strains resolve as a distinct clade, with section Petersoniorum (subg. Circumdati) members being the closest relatives (Fig. 14). Aspergillus lentisci strains are strongly xerophilic, similar to Aspergillus sections Aspergillus and Restricti, while section Petersoniorum species also grow well on low water activity media. We thus introduce this as a new section. The section is based on the single species, Aspergillus lentisci. The sexual state for this xerophilic species has not been observed in culture, but was documented in detail by Malloch & Cain (1972) who observed it from leaves, twigs and dung. Three other species have been described in Dichlaena. Dichlaena bovina [MB 329872] was considered a synonym of Thielavia bovina [MB 240118] by Malloch & Cain (1973), while we consider Dichlaena indica [MB 127024] and Dichlaena pterodontis [MB 312952] doubtful species with no material available for study.

Aspergillus lentisci (Durieu & Mont.) Visagie, Malloch, L. Kriegsteiner, Samson & Houbraken comb. nov. MycoBank MB 849485. Figs 34 & 35.

Fig. 34.

Fig. 34

Aspergillus lentisci in nature. A, B. Ascomata on dried leaf material. C, D. Ascomata observed under light microscope. E. Outer cell layer of ascomata. F. Ascospores released from ascomata. G. Ascospores. Scale bars = 10 µm.

Fig. 35.

Fig. 35

Aspergillus lentisci in culture. A. Colonies on, from left to right, MY50G, MY20, MY40, DG18 and OA. B–D. Colony overview on DG18 showing sclerotia and conidiophores (D). E, F. Section of sclerotia showing potential early development of asci and ascomata. G. Section of sclerotia showing its wall structure. H. Hülle cells from sclerotia. I. Conidia. J–M. Conidiophores. Scale bars: B = 2 mm; C, D = 500 µm; E = 50 µm; F–H = 20 µm; I–M = 10 µm.

Basionym: Dichlaena lentisci Durieu & Mont., Expl. Sci. l’Algérie 1 (11): 405. 1849. MycoBank MB 249716.

In: Aspergillus subgen. Circumdati sect. Dichlaena

DNA barcodes: ITS = OR142402; BenA = OR145977; CaM = OR145992; RPB2 = OR146003; LSU = OR142413.

Typus: Durieu & Mont., Expl. Sci. l’Algérie 1 (11): 405, tab. 22 bis, fig. 2, lectotype designated here, MBT10014202. Portugal, Aljezur, Pistacia leaf, Apr. 2019, coll. L. Kriegsteiner, isol. R.A. Samson [epitype designated here, CBS H-25292 (dried culture of CBS 150189), MBT10014196, culture ex-epitype CBS 150189 = DTO 426-E9].

Additional strains examined: Portugal, Aljezur, Pistacia leaf, Apr. 2019, coll. L. Kriegsteiner, isol. R.A. Samson, cultures DTO 426-F1, DTO 426-F2, and DTO 426-F3.

Colony diam, 25 °C (7 d, in mm): CYA no growth; MEA no growth; OA no growth; YES no growth; MY20 no growth; MY40 microcolonies–6; MY50G 5–10. After 14 d (in mm): CYA no growth; MEA no growth; OA microcolonies–6; YES no growth; MY20 no growth to microcolonies; MY40 9–17; MY50G 13–20; DG18 5–13; CREA no growth.

Colony characters (25 °C, 14 d): DG18, colonies floccose; mycelial areas white to yellowish; ascocarp bearing stromata light yellow to orange yellow to greyish yellow (4A4–6–B6), globose, sclerotiod, 600–1 200(−1 900) µm; sporulation absent to sparse, becoming moderate with prolonged incubation, white to cream; exudate sometimes present, clear; soluble pigment brown, inconspicuous; reverse yellowish white (4A2) to light brown to yellowish brown to brown (5D7–E8–6E8). MY50G, colonies floccose; mycelial areas white to yellowish; ascocarp bearing stromata light yellow to orange yellow to greyish yellow (4A4–6–B6), globose, sclerotiod, 600–1 200(−1 900) µm; sporulation sparse, white to cream; exudate absent; soluble pigment absent; reverse yellowish white (4A2) to greyish orange (5B6). MY40, colonies floccose; mycelial areas white to yellowish; sporulation absent; exudate absent; soluble pigment absent.

Micromorphology: Conidial heads radiate; conidiophores uniseriate; stipes hyaline, minor proportion pigmented, smooth, 200–830 × 4–8 μm; vesicles subglobose, sometimes clavate, phialides cover 50–75 % of head, 11–22(−32) μm wide; phialides ampulliform, 6.5–13 × 2.5–4(−4.5) μm; conidia globose to subglobose, some tapering towards one end, rough to echinulate, 3.5–5 × 3–4.5 (4.25 ± 0.27 × 3.88 ± 0.27, n = 50) μm, length/width 0.91 ± 0.1. Ascomata not produced in culture, in nature fide Malloch & Cain (1972), ‘arising from coiled or twisted initials at one to three points in the stroma, completely filling the stroma at maturity, irregular in shape, colorless to pale yellow; stroma tissue hard and stony, of two types when young; stromal cells of the outer tissue pale yellow, very thick-walled, pyriform to globose, often nearly open at one end, about 5–13 µm in diameter; stromal cells of the inner tissue hyaline, very thick-walled (but thinner-walled than those of the outer tissue), irregular in shape, usually elongated, often greater than 40 µm length, up to 15 µm broad; ascocarp peridium hyaline to pale yellow, consisting of a filamentous tissue with a membranous “backing”; asci irregularly disposed, ellipsoidal, short-stipitate, eight-spored, evanescent, 9 × 7 µm [fide Von Höhnel (1910)]; ascospores oblate, hyaline, smooth, with an inconspicuous equatorial band, 3.0–4.2 × 2.0–3.5 µm’.

Rasamsonia oblata (Pitt & A.D. Hocking) Yanai & Udagawa, Jap. J. Mycol. 61: 93. 2020. MycoBank MB 836491. Figs 28, 36 & Suppl. Fig. S26.

Fig. 28.

Fig. 28

Phylogenetic tree of Rasamsonia, based on a concatenated dataset of BenA, CaM and ITS. Strains of recently described species are shown in bold coloured text. The tree was rooted to Trichocoma paradoxa. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by superscript T. See Suppl. Fig. S26.

Fig. 36.

Fig. 36

Rasamsonia oblata. A. Colonies on, from left to right, CYA, MEA, YES, DG18 and OA. B–D. Colony overview on MEA (B) and OA (C, D). E–I. Conidiophores. J. Conidia. Scale bars: B = 2.5 mm; C, D = 1 mm; E–J = 10 µm.

Basionym: Penicillium oblatum Pitt & A.D. Hocking, Mycologia 77: 810. 1985. MycoBank MB 104603.

DNA barcodes: ITS = LC546718; BenA = LC546729; CaM = LC546740.

Typus: Australia, New South Wales, Sydney, from spoiled baby food, 1979, isol. A.D. Hocking (holotype FRR 2234, culture ex-type CBS 258.87 = IMI 288719 = NBRC 33091).

Colony diam, 25 °C (7 d, in mm): CYA 20 °C 8–9; CYA 8–9; CYA 30 °C 10–12; CYA 37 °C 4–5; CYAS no growth; CREA no growth; DG18 14–15; MEA 29–32; OA 22–23; YES 9–10.

Colony characters: CYA 25 °C, 7 d: Colonies low, plane; margins low, narrow, entire; mycelia white; texture funiculose; sporulation very sparse, conidia en masse not determined; soluble pigments absent; exudates absent; reverse pale yellow (3A2). MEA 25 °C, 7 d: Colonies deep, plane; margins subsurface, wide; mycelia white; texture funiculose; sporulation sparse to moderately dense, conidia en masse Brown to Dark Blonde (5D4); soluble pigments absent; exudates absent. YES 25 °C, 7 d: Colonies deep, plane; margins moderately deep, narrow, entire; mycelia white; texture funiculose; sporulation very sparse, conidia en masse not determined; soluble pigments absent; exudates absent; reverse pale yellow (4A2). DG18 25 °C, 7 d: Colonies low, plane; margins low, narrow, entire; mycelia white; texture funiculose; sporulation very sparse, conidia en masse not determined; soluble pigments absent; exudates absent; reverse pale yellow (3A2). OA 25 °C, 7 d: Colonies low, plane; margins subsurface, wide; mycelia white; texture funiculose; sporulation sparse to moderately dense, conidia en masse Brown to Dark Blonde (5D4); soluble pigments absent; exudates absent.

Micromorphology: Conidiophores monoverticillate, small proportion biverticillate; stipes rough walled, some finely roughened, nonvesiculate, 10–28 × 2.5–3 μm; metulae 2–3 per stipe, 9.5–14 × 2.5–3 μm; phialides acerose, in verticils of 3–6, smooth to roughened, 7–8.5(−9.5) × 2–3 μm; conidia smooth, broadly ellipsoid, some subglobose, 2–2.5 × 1.5–2 μm (2.14 ± 0.1 × 1.67 ± 0.1), average width/length = 0.78, n = 50, connected in chains with distinct connectors, connected on short end.

Notes: Pitt & Hocking (1985a) described Penicillium oblatum and referred to it as an interface species, noting that its ‘rough-walled stipes bearing appressed monoverticillate penicilli and its brown, often oblate conidia distinguish it from other Penicillia’, but that its conidial and phialide shape preclude it from Paecilomyces or Geosmithia. Both Samson et al. (2011) and Yilmaz et al. (2014) mentioned that the ex-type strain (CBS 258.87) was contaminated and was not representative of the original description. Recently, Yanai et al. (2020) analysed sequences generated for P. oblatum (ex-type strains IMI 288719 and NBRC 33091) and P. sabulosum (ex-type strain ATCC 56984; CBS 261.87 is contaminated), showed that they belong to Rasamsonia, and provided new combinations as R. oblata and R. sabulosa. They also provided new morphological descriptions in Japanese. We were able to purify CBS 258.87 and provide an English description above based on this strain.

Xerochrysium coryli (Crous & Decock) Visagie & Houbraken, comb. nov. MycoBank MB 849335. Fig. 16.

Fig. 16.

Fig. 16

Phylogenetic tree showing the relationship of Xerochrysium coryli (bas. Paraxerochrysium coryli) within Aspergillaceae based on a concatenated dataset of BenA, RPB2, ITS and LSU. Strains of recently described species are shown in bold coloured text. The tree was rooted to Talaromyces amestolkiae. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by superscript T.

Basionym: Paraxerochrysium coryli Crous & Decock, Persoonia 47: 261. 2021. MycoBank MB 841830.

DNA barcodes: ITS = OK664748; BenA = OK651216; RPB2 = OK651178.

Typus: Belgium, Louvain-la-Neuve, from dry hazelnut (Corylus avellana), Feb. 2021, C. Decock (holotype CBS H-24853, culture ex-type CBS 148314 = CPC 41272 = MUCL 58103).

Description: See Crous et al. (2021b).

Notes: A multigene phylogenetic analysis of Aspergillaceae based on BenA, RPB2, ITS and LSU showed that Paraxerochrysium coryli resolves as a unique species inside Xerochrysium (Fig. 16). We thus synonymise Paraxerochrysium with Xerochrysium and provide a new combination here.

Current Eurotiales families, genera and subgeneric classifications (* indicates recently introduced sections or series)

  • Aspergillaceae

    • Aspergillago

    • Aspergillus

      • subgenus Aspergillus

        • section Aspergillus

          • series Aspergillus, Chevalierorum, Leucocarpi, Rubri, Tamarindosolorum, Teporium and Xerophili

        • section Restricti

          • series Halophilici, Penicillioides, Restricti and Vitricolarum

      • subgenus Circumdati

        • section Candidi

          • series Candidi

        • section Circumdati

          • series Circumdati, Sclerotiorum and Steyniorum

        • section Dichlaena*

        • section Flavi

          • series Alliacei, Annuorum*, Avenacei, Bertholletiarum, Coremiiformes, Flavi, Kitamyces, Leporum and Nomiarum

        • section Flavipedes

          • series Flavipedes, Neonivei, Olivimuriarum and Spelaei

        • section Janorum

          • series Janorum

        • section Nigri

          • series Carbonarii, Heteromorphi, Homomorphi, Japonici and Nigri

        • section Petersoniorum

          • series Petersoniorum

        • section Robusti

          • series Robusti

        • section Tannerorum

          • series Tannerorum

        • section Terrei

          • series Ambigui, Nivei and Terrei

      • subgenus Cremei

        • section Cremei

          • series Arxiorum, Brunneouniseriati, Cremei, Inflati, Pulvini and Wentiorum

      • subgenus Fumigati

        • section Cervini

          • series Acidohumorum and Cervini

        • section Clavati

          • series Clavati

        • section Fumigati

          • series Brevipedes, Fennelliarum, Fumigati, Neoglabri, Spathulati, Thermomutati, Unilaterales and Viridinutantes

        • section Vargarum

          • series Vargarum

      • subgenus Nidulantes

        • section Aenei

          • series Aenei

        • section Bispori

          • series Bispori

        • section Cavernicolarum

          • series Cavernicolarum, Egyptiaci and Hainanici*

        • section Nidulantes

          • series Aurantiobrunnei, Multicolores, Nidulantes, Speluncei, Stellati, Unguium and Versicolores

        • section Ochraceorosei

          • series Funiculosi and Ochraceorosei

        • section Raperorum

          • series Raperorum

        • section Silvatici

          • series Silvatici

        • section Sparsi

          • series Biplani, Conjuncti, Implicati and Sparsi

        • section Usti

          • series Calidousti, Deflecti, Monodiorum and Usti

      • subgenus Polypaecilum

        • section Polypaecilum

          • series Canini, Kalimarum, Noonimiarum, Polypaecilum, Salinarum and Whitfieldiorum

    • Evansstolkia

    • Hamigera

    • Leiothecium

    • Monascus

    • Paraxerochrysium

    • Penicilliopsis

    • Penicillium

      • subgenus Aspergilloides

        • section Alfrediorum

          • series Alfrediorum

        • section Aspergilloides

          • series Fortuita, Glabra, Hoeksiorum, Improvisa, Kiamaensia, Livida, Longicatenata, Pinetorum, Quercetorum, Saturniformia, Spinulosa, Sublectatica, Thiersiorum, Thomiorum and Verhageniorum

        • section Charlesia

          • series Costaricensia, Fellutana, Indica and Phoenicea

        • section Cinnamopurpurea

          • series Cinnamopurpurea, Idahoensia, Jiangxiensia and Nodula

        • section Citrina

          • series Citrina, Copticolarum, Euglauca, Gallaica, Paxillorum, Roseopurpurea, Sheariorum, Sumatraensia, Vascosobrinhoana* and Westlingiorum

        • section Crypta

          • series Crypta

        • section Eremophila

          • series Eremophila

        • section Exilicaulis

          • series Alutacea, Citreonigra, Corylophila, Erubescentia, Lapidosa and Restricta

        • section Gracilenta

          • series Angustiporcata, Estinogena, Gracilenta and Macrosclerotiorum

        • section Griseola

          • series Griseola

        • section Inusitata

          • series Inusitata

        • section Lanata-Divaricata

          • series Dalearum, Janthinella, Oxalica, Rolfsiorum and Simplicissima

        • section Lasseniorum

          • series Lasseniorum

        • section Ochrosalmonea

          • series Ochrosalmonea

        • section Ramigena

          • series Georgiensia and Ramigena

        • section Sclerotiorum

          • series Adametziorum, Herqueorum and Sclerotiorum

        • section Stolkia

          • series Stolkia

        • section Thysanophora

          • series Thysanophora

        • section Torulomyces

          • series Torulomyces

      • subgenus Penicillium

        • section Brevicompacta

          • series Brevicompacta, Buchwaldiorum, Olsoniorum and Tularensia

        • section Canescentia

          • series Atroveneta and Canescentia

        • section Chrysogena

          • series Aethiopica, Chrysogena, Crustacea, Goetziorum and Persicina

        • section Eladia

          • series Eladia

        • section Fasciculata

          • series Camembertiorum, Corymbifera, Gladioli, Verrucosa and Viridicata

        • section Formosana

          • series Formosana

        • section Osmophila

          • series Osmophila and Samsoniorum

        • section Paradoxa

          • series Atramentosa and Paradoxa

        • section Penicillium

          • series Clavigera, Digitata, Italica, Penicillium and Sclerotigena

        • section Ramosum

          • series Lanosa, Raistrickiorum, Scabrosa, Soppiorum and Virgata

        • section Robsamsonia

          • series Claviformia, Glandicolarum, Robsamsonia and Urticicola

        • section Roquefortorum

          • series Roquefortorum

        • section Turbata

          • series Turbata

    • Phialomyces

    • Pseudohamigera

    • Pseudopenicillium

    • Sclerocleista

    • Warcupiella

    • Xerochrysium

    • Xeromyces

  • incertae sedis

    • Dendrosphaera

  • Penicillaginaceae

    • Penicillago

  • Thermoascaceae

    • Paecilomyces

    • Thermoascus

  • Trichocomaceae

    • Acidotalaromyces

    • Ascospirella

    • Rasamsonia

    • Sagenomella

    • Talaromyces

      • section Bacillispori

      • section Helici

      • section Islandici

      • section Purpurei

      • section Subinflati

      • section Talaromyces

      • section Tenues*

      • section Trachyspermi

    • Thermomyces

    • Trichocoma

List of species described since Houbraken et al. (2020)

Aspergillus agricola [nom. inval. Art. 40.8 (Shenzhen)] P. Singh, K.A. Callicott, M.J. Orbach & P.J. Cotty, Front. Microbiol. 11, 1236: 7. 2020. [MB 830377]. — Type: NRRL 66869 (holotype). Ex-type: NRRL 66869 = CR9-G = A2400. Infragen. class.: subgen. Circumdati sect. Flavi ser. Flavi. DNA barcodes: ITS = n.a.; BenA = n.a.; CaM = MN987053; RPB2 = n.a.

Synonym of: Aspergillus flavus Link, Mag. Ges. Naturf. Freunde Berlin 3: 16. 1809. [MB 209842].

Notes: This species was invalidly described. The CaM phylogeny resolved this species within A. flavus (Suppl. Fig. S6). We therefore consider it a synonym of A. flavus and choose not to validate this species.

Aspergillus alboluteus F. Sklenar, Jurjević, Ezekiel, Houbraken & Hubka, Stud. Mycol. 99 (no. 100120): 19. 2021. [MB 839382]. — Type: PRM 952200 (holotype). Ex-type: CBS 145855 = EMSL 2420 = CCF 5695 = IFM 66815. Infragen. class.: subgen. Circumdati sect. Flavipedes ser. Spelaei. DNA barcodes: ITS = MW448663; BenA = MW478497; CaM = MW478511; RPB2 = MW478532.

Aspergillus alboviridis J.P.Z. Siqueira, Gene, F. Sklenar & Hubka, Stud. Mycol. 99 (no. 100120): 19. 2021. [MB 821808]. — Type: CBS H-23128 (holotype). Ex-type: CBS 142665 = FMR 15175 = CCF 6049 = IFM 66819. Infragen. class.: subgen. Circumdati sect. Flavipedes ser. Spelaei. DNA barcodes: ITS = LT798909; BenA = LT798936; CaM = LT798937; RPB2 = LT798938.

Aspergillus annui J.J. Silva, Fungaro, Frisvad, Taniwaki & Iamanaka, published here. [MB 849336]. — Type: IBT 36122 (holotype). Ex-type: 365-IT-PPK = IBT 36122. Infragen. class.: subgen. Circumdati sect. Flavi ser. Annuorum. DNA barcodes: ITS = OP691228; BenA = ON529842; CaM = ON529841; RPB2 = ON529843.

Notes: This species was invalidly described in Silva et al. (2022) and is validated above.

Aspergillus arizonicus Jurjević, Glässnerová, Yaguchi & Hubka, Persoonia 47: 273. 2021. [MB 841359]. — Type: PRM 954611 (holotype). Ex-type: CCF 5341 = CBS 148476 = IFM 66805 = EMSL 2204. Infragen. class.: subgen. Fumigati sect. Fumigati ser. Neoglabri. DNA barcodes: ITS = OK322364; BenA = OK334128; CaM = OK334127; RPB2 = OK334129.

Aspergillus banksianus Pitt, Persoonia 44: 355. 2020. [MB 835223]. — Type: DAR 85042 (holotype). Ex-type: FRR 6047 = MST FP2248. Infragen. class.: subgen. Fumigati sect. Fumigati ser. Brevipedes. DNA barcodes: ITS = MH280013; BenA = MT184780; CaM = MT184786; RPB2 = MT184792.

Aspergillus barbosae A.C.R. Barros-Correia, R.N. Barbosa, Houbraken & Souza-Motta, Mycol. Prog. 19: 892. 2020. [MB 830077]. — Type: URM 93046 (holotype). Ex-type: URM 5930 = CBS 145863. Infragen. class.: subgen. Circumdati sect. Terrei ser. Terrei. DNA barcodes: ITS = LR536042; BenA = LR031377; CaM = LR031392; RPB2 = LR031407.

Aspergillus burnettii Pitt, Fungal Genet. Biol. 143 (no. 103435): 5. 2020. [MB 835453]. — Type: DAR 84902 (holotype). Ex-type: CBS 146237 = FRR 5400 = MST FP2249. Infragen. class.: subgen. Circumdati sect. Flavi ser. Alliacei. DNA barcodes: ITS = MK429758; BenA = MT211761; CaM = MT211762; RPB2 = MT211763.

Synonym of: Aspergillus alliaceus Thom & Church, Aspergilli: 163. 1926. [MB 256402].

Notes: BenA and CaM phylogenies resolved A. burnettii inside A. alliaceus, while RPB2 resolved it on an unsupported distinct branch (Suppl. Fig. S6). As a result, we consider A. burnetti a synonym of A. alliaceus.

Aspergillus chiangmaiensis S. Khuna, N. Suwannarach & S. Lumyong, Front. Microbiol. 12, 705896: 6. 2021. [MB 830887]. — Type: SDBR-CMUI4 (holotype). Ex-type: TBRC 10407. Infragen. class.: subgen. Circumdati sect. Nigri ser. Nigri. DNA barcodes: ITS = MK457198; BenA = MK457200; CaM = MK457199; RPB2 = MK457203.

Synonym of: Aspergillus tubingensis Mosseray, La Cellule 43: 245. 1934. [MB 255209] (Bian et al. 2022).

Notes: Khuna et al. (2021) introduced A. chiangmaiensis based on DNA sequences that are of low quality and the species was subsequently considered a synonym of A. tubingensis by Bian et al. (2022).

Aspergillus curvatus Al-Bedak & Moubasher, Asian J. Mycol. 3: 327. 2020. [MB 557788]. — Type: AUMC 11038 (holotype). Ex-type: EMCCN 2213. Infragen. class.: subgen. Circumdati sect. Circumdati ser. Steyniorum. DNA barcodes: ITS = MN006961; BenA = n.a.; CaM = n.a.; RPB2 = n.a.

Notes: Doubtful species. This species was described with only an ITS sequence. Based on sequence alignments, the ITS sequence is potentially of low-quality. We obtained a culture of the ex-type strain but this unfortunately represented a different species. As we could not confirm the status of A. curvatus, we consider it a doubtful species (Suppl. Fig. S4). Two identifiers were cited in the protologue. IF 557788 (= MB 557788) was listed first and is thus the one that is permanently associated with the name. MycoBank MB 831990 should not be used.

Aspergillus gaarensis [nom. inval. Art. 40.7 (Shenzhen)] Al-Bedak & Moubasher, Stud. Fungi 5: 61. 2020. [MB 833223]. — Type: AUMC 11046 = EMCCN 2221 (holotype). Ex-type: AUMC 11046 = EMCCN 2221. Infragen. class.: subgen. Circumdati sect. Circumdati ser. Steyniorum. DNA barcodes: ITS = MN648408; BenA = n.a.; CaM = n.a.; RPB2 = n.a.

Notes: Doubtful species. This species was invalidly described with only an ITS sequence to support it. However, based on sequence alignments it was potentially a low-quality sequence. We obtained a culture of the ex-type strain but this unfortunately represented a different species. As we could not confirm the status of A. gaarensis, we consider it a doubtful species (Suppl. Fig. S4) and choose not to validate this species.

Aspergillus guangdongensis B.D. Sun, X.Z. Jiang & A.J. Chen, J. Fungi 8 (no 1205): 4. 2022. [MB 837898]. — Type: HMAS 248373 (holotype). Ex-type: CGMCC 3.19704 = MN 014767. Infragen. class.: subgen. Nidulantes sect. Ochraceorosei ser. Funiculosi. DNA barcodes: ITS = MN640760; BenA = MN635246; CaM = MN635257; RPB2 = MN635269.

Synonym of: Aspergillus lannaensis Suwannar., S. Khuna & Lumyong, Fungal Divers. 111: 145. 2021. [MB 838058].

Notes: Phylogenies resolved A. lannaensis and A. guangdongensis in the same clade (Fig. 3 & Suppl. Fig. S3) and we consider them synonyms with A. lannaensis having priority over A. guangdongensis.

Fig. 3.

Fig. 3

Phylogenetic tree of Aspergillus sections Cavernicolarum, Ochraceorosei and Sparsi based on a concatenated dataset of BenA, CaM, and RPB2. Strains of recently described species are shown in bold coloured text. The tree was rooted to A. bisporus. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by superscript T. See Suppl. Fig. S3.

Aspergillus guangxiensis B.D. Sun, X.Z. Jiang & A.J. Chen, J. Fungi 8 (no 1205): 9. 2022. [MB 837899]. — Type: HMAS 248372 (holotype). Ex-type: CGMCC 3.19709 = MN 115635. Infragen. class.: subgen. Nidulantes sect. Sparsi ser. Conjuncti. DNA barcodes: ITS = MN640765; BenA = MN635251; CaM = MN635262; RPB2 = MN635274.

Aspergillus hainanicus X.C. Wang & W.Y. Zhuang, J. Fungi 8 (225): 9. 2022. [MB 570967]. — Type: HMAS 247855 (holotype). Ex-type: CGMCC 3.20888. Infragen. class.: subgen. Nidulantes sect. Cavernicolarum ser. Hainanici. DNA barcodes: ITS = OM414846; BenA = OM475626; CaM = OM475630; RPB2 = OM475634.

Aspergillus hydei Doilom, Front. Microbiol. 11 (no. 585215): 4. 2020. [MB 557860]. — Type: MFLU 20-0430 (holotype). Ex-type: KUMCC 18-0196. Infragen. class.: subgen. Circumdati sect. Nigri ser. Japonici. DNA barcodes: ITS = MT152332; BenA = MT161679; CaM = MT178247; RPB2 = MT384370.

Notes: The phylogenetic trees are not well-resolved (Fig. 10 & Suppl. Fig. S10), and further studies including additional strains and/or extended datasets are needed. Here, we give benefit of doubt to the publisher.

Fig. 10.

Fig. 10

Phylogenetic tree of Aspergillus section Nigri series Japonici and Nigri based on a concatenated dataset of BenA, CaM, and RPB2. Strains of recently described species are shown in bold coloured text. The tree was rooted to A. candidus. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by superscript T. See Suppl. Fig. S10.

Aspergillus inusitatus F. Sklenar, C. Silva Pereira, Houbraken & Hubka, Stud. Mycol. 99: 20. 2021. [MB 839383]. — Type: PRM 954606 (holotype). Ex-type: CBS 147044 = DTO 121-G5 = CCF 6552. Infragen. class.: subgen. Circumdati sect. Flavipedes ser. Spelaei. DNA barcodes: ITS = MW448669; BenA = MW478502; CaM = MW478517; RPB2 = MW478542.

Aspergillus jilinensis X.Z. Jiang, Mycoscience 61: 207. 2020. [MB 819490]. — Type: HMAS 247010 (holotype). Ex-type: CGMCC 3.18134. Infragen. class.: subgen. Circumdati sect. Terrei ser. Terrei. DNA barcodes: ITS = KX443224; BenA = KX443162; CaM = KX443193; RPB2 = n.a.

Aspergillus kumbius Pitt, Persoonia 44: 359. 2020. [MB 835225]. — Type: DAR 85044 (holotype). Ex-type: FRR 6049 = MST FP2250. Infragen. class.: subgen. Circumdati sect. Circumdati ser. Sclerotiorum. DNA barcodes: ITS = MT179307; BenA = MT184782; CaM = MT184788; RPB2 = MT184794.

Aspergillus lannaensis Suwannar., S. Khuna & Lumyong, Fungal Divers. 111: 145. 2021. [MB 838058]. — Type: SDBR-CMUO 8 (holotype). Ex-type: SDBR-CMUO 8. Infragen. class.: subgen. Nidulantes sect. Ochraceorosei ser. Funiculosi. DNA barcodes: ITS = n.a.; BenA = MW219783; CaM = MW219781; RPB2 = MW219785.

Aspergillus lanuginosus F. Sklenar & Hubka, Stud. Mycol. 99: 20. 2021. [MB 839384]. — Type: PRM 954608 (holotype). Ex-type: NRRL 4610 = IMI 350352 = CCF 4551 = IFM 66818. Infragen. class.: subgen. Circumdati sect. Flavipedes ser. Spelaei. DNA barcodes: ITS = EF669604; BenA = EU014080; CaM = EF669562; RPB2 = EF669646.

Aspergillus lebretii V.C.S. Alves, J.D.P. Bezerra & R.N. Barbosa, Fungal Syst. Evol. 10: 144. 2022. [MB 846119]. — Type: URM 95150 (holotype). Ex-type: URM 8451 = FCCUFG 09. Infragen. class.: subgen. Cremei sect. Cremei ser. Wentiorum. DNA barcodes: ITS = ON862928; BenA = OP672382; CaM = OP290540; RPB2 = OP290511.

Aspergillus lentisci (Durieu & Mont.) Visagie, Malloch, L. Kriegsteiner, Samson & Houbraken, published here. [MB 849485]. Basionym: Dichlaena lentisci Durieu & Mont., Expl. Sci. l’Algérie 1: 405. 1849. [MB 249716]. — Type: Durieu & Mont., Expl. Sci. l’Algérie 1 (11): 405, tab. 22 bis, fig. 2 (lectotype), CBS H-25292 (epitype). Ex-epitype: CBS 150189. Infragen. class.: subgen. Circumdati sect. Dichlaena ser. Dichlaena. DNA barcodes: ITS = OR142402; BenA = OR145977; CaM = OR145992; RPB2 = OR146003.

Aspergillus limoniformis Z.F. Zhang & L. Cai, Fungal Divers. 106: 77. 2021. [MB 556394]. — Type: HMAS 248014 (holotype). Ex-type: CGMCC 3.19323 = LC126098. Infragen. class.: subgen. Polypaecilum sect. Polypaecilum ser. Canini. DNA barcodes: ITS = MK329066; BenA = MK336093; CaM = n.a.; RPB2 = MK335972.

Aspergillus luteorubrus Pitt, Persoonia 44: 361. 2020. [MB 835226]. — Type: DAR 85045 (holotype). Ex-type: CBS 146723 = FRR 5427 = MST FP2246. Infragen. class.: subgen. Fumigati sect. Fumigati ser. Fennelliarum. DNA barcodes: ITS = MT179305; BenA = MT184781; CaM = MT184787; RPB2 = MT184793.

Synonym of: Aspergillus fennelliae Kwon-Chung & S.J. Kim, Mycologia 66: 629. 1974. [MB 309218].

Notes: Even though the multigene phylogeny resolves A. luteorubrus basal to A. fennelliae, both the BenA and RPB2 phylogenies places it intermixed with strains of the latter (Fig. 8 & Suppl. Fig. S8). We thus consider it a synonym.

Fig. 8.

Fig. 8

Phylogenetic tree of Aspergillus section Fumigati based on a concatenated dataset of BenA, CaM, and RPB2. Strains of recently described species are shown in bold coloured text. The tree was rooted to A. clavatus. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by superscript T. Representative strains are indicated by superscript R. See Suppl. Fig. S8.

Aspergillus magnus Glässnerová & Hubka, Stud. Mycol. 102: 38. 2022. [MB 844202]. — Type: PRM 956934 (holotype). Ex-type: UAMH 1324 = IBT 14560. Infragen. class.: subgen. Circumdati sect. Candidi ser. Candidi. DNA barcodes: ITS = ON156376; BenA = ON164570; CaM = ON164619; RPB2 = ON164517.

Aspergillus malvicolor A.D. Hocking, Persoonia 44: 363. 2020. [MB 835227]. — Type: DAR 85046 (holotype). Ex-type: CBS 146724 = FRR 2383 = MST FP2244. Infragen. class.: subgen. Circumdati sect. Circumdati ser. Sclerotiorum. DNA barcodes: ITS = MT179308; BenA = MT184784; CaM = MT184790; RPB2 = MT184796.

Aspergillus marneyi Y.P. Tan, Bishop-Hurley, E. Lacey & R.G. Shivas, Index Austral. Fungi 3: 1. 2022. [MB 900143]. — Type: BRIP 71536a (holotype). Ex-type: BRIP 71536a. Infragen. class.: subgen. Circumdati sect. Terrei ser. Terrei. DNA barcodes: ITS = OL691080; BenA = OL741659; CaM = n.a.; RPB2 = OL741656.

Synonym of: Aspergillus alabamensis Balajee, Baddley, Frisvad & Samson, Eukar. Cell 8: 720. 2009. [MB 543648].

Notes: Phylogenies resolve A. marneyi inside the A. alabamensis clade (Fig. 12 & Suppl. Fig. S12). We thus consider it a synonym.

Fig. 12.

Fig. 12

Phylogenetic tree of Aspergillus section Terrei series Nivei and Terrei based on a concatenated dataset of BenA, CaM, and RPB2. Strains of recently described species are shown in bold coloured text. The tree was rooted to A. ambiguus. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by superscript T. See Suppl. Fig. S12.

Aspergillus montoensis Y.P. Tan, Bishop-Hurley, S.M. Thompson & R.G. Shivas, Index Fungorum 503: 1. 2021. [MB 558828]. — Type: BRIP 64553a (holotype). Ex-type: BRIP 64553a = CBS 149107. Infragen. class.: subgen. Circumdati sect. Terrei ser. Terrei. DNA barcodes: ITS = OK441076; BenA = OK533535; CaM = n.a.; RPB2 = OK509073.

Notes: Both the ITS and BenA sequences are identical to A. terreus, but RPB2 resolves it distinct from A. terreus as a close relative of A. citrinoterreus (Fig. 12 & Suppl. Fig. S12). Further studies including additional strains and/or extended datasets are needed. Here, we give benefit of doubt to the publisher.

Aspergillus nanangensis Pitt, Persoonia 44: 365. 2020. [MB 836001]. — Type: DAR 84903 (holotype). Ex-type: CBS 146238 = FRR 6048 = MST FP2251. Infragen. class.: subgen. Circumdati sect. Janorum ser. Janorum. DNA barcodes: ITS = MK979278; BenA = MT184783; CaM = MT184789; RPB2 = MT184795.

Aspergillus neoterreus X.C. Wang and W.Y. Zhuang, J. Fungi 8 (3, no. 225): 10. 2022. [MB 570968]. — Type: HMAS 247856 (holotype). Ex-type: CGMCC 3.20891. Infragen. class.: subgen. Nidulantes sect. Terrei ser. Terrei. DNA barcodes: ITS = OM414849; BenA = OM475629; CaM = OM475633; RPB2 = OM475637.

Notes: The phylogenetic trees are not well-resolved (Fig. 12 & Suppl. Fig. S12), and further studies including additional strains and/or extended datasets are needed. Here, we give benefit of doubt to the publisher.

Aspergillus neotritici Glässnerová & Hubka, Stud. Mycol. 102: 38. 2022. [MB 844204]. — Type: PRM 956940 (holotype). Ex-type: CCF 3853 = IBT 32725. Infragen. class.: subgen. Circumdati sect. Candidi ser. Candidi. DNA barcodes: ITS = FR727136; BenA = FR775327; CaM = HE661598; RPB2 = LT627021.

Notes: This new name was introduced for the invalid A. tritici [nom. inval. Art. 8.1, Art. 8.4, Art 40.1, Art. 40.4 (Shenzhen)] by Glässnerová et al. (2022).

Aspergillus okavangoensis Visagie & Nkwe, Fungal Syst. Evol. 8: 85. 2021. [MB 840269]. — Type: PREM 63212 (holotype). Ex-type: CBS 147420 = CMW 56636 = CN073A3 = DN24. Infragen. class.: subgen. Circumdati sect. Flavipedes ser. Flavipedes. DNA barcodes: ITS = MW480880; BenA = MW480788; CaM = MW480706; RPB2 = MW480790.

Aspergillus oxumiae C.N. Figueiredo, L.S. Sales, Y.F. Figueiredo, J.P. Andrade & J.T. De Souza, Persoonia 44: 357. 2020. [MB 832766]. — Type: HURB 22369 (holotype). Ex-type: CCDCA 11546 = UFLA115. Infragen. class.: subgen. Circumdati sect. Nigri ser. Japonici. DNA barcodes: ITS = MN431160; BenA = MN521388; CaM = MN531842; RPB2 = MN521389.

Aspergillus pakistanicus [nom. inval. Art. 40.7 & Art. 40.8 (Shenzhen)] Abrar, Mughal & S. Sarwar, Appl. Ecol. Environm. Res. 18: 3797. 2020. [MB 830877]. — Type: AA100717 (holotype). Ex-type: AA100717. Infragen. class.: subgen. Circumdati sect. Flavi ser. Flavi. DNA barcodes: ITS = n.a.; BenA = n.a.; CaM = n.a.; RPB2 = n.a.

Notes: The species was invalidly described. Only an SSU (18S small subunit nrDNA) sequence is available for this species (GenBank MK371711). Even though it is unique, there are very little SSU data available for Aspergillus, and we therefore decided not to validate the species here.

Aspergillus phialiformis Z.F. Zhang & L. Cai, Fungal Divers. 106: 79. 2021. [MB 556395]. — Type: HMAS 248017 (holotype). Ex-type: CGMCC 3.19314 = LC12536. Infragen. class.: subgen. Polypaecilum sect. Polypaecilum ser. Canini. DNA barcodes: ITS = MK329068; BenA = MK336095; CaM = n.a.; RPB2 = MK335974.

Aspergillus phialosimplex Z.F. Zhang & L. Cai, Fungal Divers. 106: 79. 2021. [MB 556396]. — Type: HMAS 248007 (holotype). Ex-type: CGMCC 3.19637 = LC12578. Infragen. class.: subgen. Polypaecilum sect. Polypaecilum ser. Canini. DNA barcodes: ITS = MK329070; BenA = MK336097; CaM = n.a.; RPB2 = MK335976.

Aspergillus pseudopiperis S. Khuna, N. Suwannarach & S. Lumyong, Front. Microbiol. 12, 705896: 6. 2021. [MB 830888]. — Type: SDBR-CMUI1 (holotype). Ex-type: TBRC 10408. Infragen. class.: subgen. Circumdati sect. Nigri ser. Nigri. DNA barcodes: ITS = n.a.; BenA = MK457194; CaM = MK457193; RPB2 = MK457196.

Synonym of: Aspergillus tubingensis Mosseray, La Cellule 43: 245. 1934. [MB 255209] (Bian et al. 2022).

Notes: Khuna et al. (2021) introduced this species based on DNA sequences that are of low quality and the species was subsequently considered a synonym of A. tubingensis by Bian et al. (2022).

Aspergillus pseudotubingensis S. Khuna, N. Suwannarach & S. Lumyong, Front. Microbiol. 12, 705896: 9. 2021. [MB 830889]. — Type: SDBR-CMUO2 (holotype). Ex-type: TBRC 10409. Infragen. class.: subgen. Circumdati sect. Nigri ser. Nigri. DNA barcodes: ITS = n.a.; BenA = MK457206; CaM = MK457205; RPB2 = MK457208.

Notes: Doubtful species. Khuna et al. (2021) introduced this species based on DNA sequences that are of low quality and its taxonomic position was subsequently considered doubtful by Bian et al. (2022).

Aspergillus qilianyuensis X.C. Wang & W.Y. Zhuang, J. Fungi 8 (225): 12. 2022. [MB 570969]. — Type: HMAS 247857 (holotype). Ex-type: CGMCC 3.20889. Infragen. class.: subgen. Nidulantes sect. Nidulantes ser. Versicolores. DNA barcodes: ITS = OM414847; BenA = OM475627; CaM = OM475631; RPB2 = OM475635.

Aspergillus recifensis A.C.R. Barros-Correia, R.N. Barbosa, Houbraken & Souza-Motta, Mycol. Prog. 19: 894. 2020. [MB 830081]. — Type: URM 93050 (holotype). Ex-type: URM 6605 = CBS 145864. Infragen. class.: subgen. Circumdati sect. Terrei ser. Nivei. DNA barcodes: ITS = LR536036; BenA = LR031370; CaM = LR031385; RPB2 = LR031400.

Aspergillus rouenensis Crous & Decock, Persoonia 48: 289. 2022. [MB 844262]. — Type: CBS H-24987. Ex-type: CBS 149067 = CPC 41585 = MUCL 58110. Infragen. class.: subgen. Polypaecilum sect. Polypaecilum ser. Salinarum. DNA barcodes: ITS = ON603782; BenA = ON605641; CaM = ON653193; RPB2 = ON653194.

Aspergillus saccharicola J.J. Silva, Frisvad, M.H.P. Fungaro, M.H. Taniwaki & B.T. Iamanaka, published here. [MB 849338]. — Type: IBT 36126 (holotype). Ex-type: 117-IT-SGC = IBT 36126. Infragen. class.: subgen. Circumdati sect. Flavi ser. Flavi. DNA barcodes: ITS = OP611470; BenA = ON529845; CaM = ON529844; RPB2 = ON529846.

Notes: This species was invalidly described in Silva et al. (2022) and is validated above.

Aspergillus sakultaensis [nom. inval. Art. 40.8 (Shenzhen)] Al-Bedak, Zohri & Abdel-Kareem, J. Environm. Stud. 20: 23. 2020. [MB 831480]. — Type: UMC 13885 (holotype). Ex-type: AUMC 13885. Infragen. class.: subgen. Circumdati sect. Flavipedes ser. Flavipedes. DNA barcodes: ITS = MK391495; BenA = n.a.; CaM = n.a.; RPB2 = n.a.

Synonym of: Aspergillus templicola Visagie, Hirooka & Samson, Stud. Mycol. 78: 103. 2014. [MB 809191].

Notes: Aspergillus sakultaensis was described with only an ITS sequence to support it, but this is identical to A. templicola (Suppl. Fig. S7). As a result, we consider it a synonym of the latter.

Aspergillus sibiricus V.A. Iliushin, Phytotaxa 531: 68. 2022. [MB 841752]. — Type: LE F-341005 (holotype). Ex-type: CBS 143307. Infragen. class.: subgen. Fumigati sect. Fumigati ser. Unilaterales. DNA barcodes: ITS = MG587008; BenA = MG722970; CaM = MG722971; RPB2 = MG710809.

Aspergillus sichuanensis B.D. Sun, X.Z. Jiang & A.J. Chen, J. Fungi 8 (no 1205): 10. 2022. [MB 837900]. — Type: HMAS 248374 (holotype). Ex-type: CGMCC 3.19706 = MN 18437. Infragen. class.: subgen. Nidulantes sect. Aenei ser. Aenei. DNA barcodes: ITS = MN640762; BenA = MN635248; CaM = MN635259; RPB2 = MN635271.

Aspergillus sigarelli B.D. Sun, Houbraken, A.J. Chen and Samson, Int. J. Syst. Evol. Microbiol. 70: 9. 2020. [MB 833129]. — Type: CBS H-22725 (holotype). Ex-type: CBS 141579 = DTO 348-D4 = CGMCC 3.03936. Infragen. class.: subgen. Nidulantes sect. Usti ser. Calidousti. DNA barcodes: ITS = MN640758; BenA = MN635244; CaM = MN635255; RPB2 = MN635267.

Aspergillus telluris B.D. Sun, X.Z. Jiang & A.J. Chen, Phytotaxa 455: 146. 2020. [MB 834494]. — Type: HMAS 248375 (holotype). Ex-type: CGMCC 3.19701. Infragen. class.: subgen. Polypaecilum sect. Polypaecilum ser. Canini. DNA barcodes: ITS = MN640767; BenA = MN635253; CaM = MN635264; RPB2 = MN635276.

Aspergillus tenebricus Houbraken, Glässnerová & Hubka, Stud. Mycol. 102: 45. 2022. [MB 844203]. — Type: PRM 957108 (holotype). Ex-type: CBS 147048 = DTO 337-H7. Infragen. class.: subgen. Circumdati sect. Candidi ser. Candidi. DNA barcodes: ITS = ON156389; BenA = ON164584; CaM = ON164623; RPB2 = ON164532.

Aspergillus tibetensis B.D. Sun, X.Z. Jiang & A.J. Chen, J. Fungi 8 (no 1205): 12. 2022. [MB 837901]. — Type: HMAS 248371 (holotype). Ex-type: CGMCC 3.19707 = MN 110445. Infragen. class.: subgen. Nidulantes sect. Aenei ser. Aenei. DNA barcodes: ITS = MN640763; BenA = MN635249; CaM = MN635260; RPB2 = MN635272.

Aspergillus toxicus [nom. inval. Art. 40.8 (Shenzhen)] P. Singh, K.A. Callicott, M.J. Orbach & P.J. Cotty, Front. Microbiol. 11, 1236: 10. 2020. [MB 832486]. — Type: NRRL 66898 (holotype). Ex-type: NRRL 66898 = A5-B-S = A2406. Infragen. class.: subgen. Circumdati sect. Flavi ser. Flavi. DNA barcodes: ITS = n.a.; BenA = n.a.; CaM = MN987092; RPB2 = n.a.

Synonym of: Aspergillus minisclerotigenes Vaamonde, Frisvad & Samson, Int. J. Syst. Evol. Microbiol. 58: 733. 2008. [MB 505188].

Notes: This species was invalidly described. The CaM phylogeny resolved this species within the A. minisclerotigenes clade (Suppl. Fig. S6) and we thus consider this species to be a synonym of the latter and, therefore, choose not to validate this species.

Aspergillus vinaceus Ferranti, Iamanaka, Frisvad, O. Puel & J.J. da Silva, J. Fungi 6 (no. 371): 14. 2020. [MB 833399]. — Type: ITAL 47.456 (holotype). Ex-type: ITAL 47.456 = IBT 35556. Infragen. class.: subgen. Circumdati sect. Nigri ser. Nigri. DNA barcodes: ITS = MN575692; BenA = MN583579; CaM = MN583580; RPB2 = MN583581.

Synonym of: Aspergillus niger Tiegh., Ann. Sci. Nat., Bot., ser. 58: 240. 1867. [MB 284309].

Notes: Phylogenies resolved A. vinaceus in the A. niger clade (Fig. 10 & Suppl. Fig. S10), similar to the results found during a recent revision of series Nigri (Bian et al. 2022).

Aspergillus xishaensis X.C. Wang & W.Y. Zhuang, J. Fungi 8 (225): 13. 2022. [MB 570970]. — Type: HMAS 247858 (holotype). Ex-type: CGMCC 3.20890. Infragen. class.: subgen. Circumdati sect. Flavipedes ser. Flavipedes. DNA barcodes: ITS = OM414848; BenA = OM475628; CaM = OM475632; RPB2 = OM475636.

Emericella sydowii (Bainier & Sartory) Pitt & A.D. Hocking, Fungi and Food Spoilage. 4th Ed.: 611. 2022. [MB 838069]. Basionym: Sterigmatocystis sydowii Bainier & Sartory, Ann. Mycol. 11: 25. 1913. [MB 197979] — Type: IMI 211384.

Synonym of: Aspergillus sydowii (Bainier & Sartory) Thom & Church, The Aspergilli: 147. 1926. [MB 279636]. — Type: IMI 211384. Ex-type: CBS 593.65 = NRRL 250 = IMI 211384 = NRRL 254. Infragen. class.: subgen. Nidulantes sect. Nidulantes ser. Versicolores. DNA barcodes: ITS = EF652450; BenA = EF652274; CaM = EF652362; RPB2 = EF652186.

Notes: Pitt & Hocking (2022) introduced this new combination to accommodate A. sydowii in Emericella. The genus Emericella is considered a synonym of Aspergillus (Samson et al. 2014). We therefore do not accept this new combination and consider it a synonym of Aspergillus sydowii.

Emericella versicolor (Vuill.) Pitt & A.D. Hocking, Fungi and Food Spoilage. 4th Ed.: 611. 2022. [MB 838068]. Basionym: Sterigmatocystis versicolor Vuill., Erreur Dét. Asp. Paras. Homme: 15. 1903. [MB 233198]. — Type: CBS 583.65 (holotype).

Synonym of: Aspergillus versicolor (Vuill.) Tirab., Ann. Bot. (Roma) 7: 9. 1908. [MB 172159]. — Type: CBS 583.65. Ex-type: CBS 583.65 = NRRL 238 = ATCC 9577 = IFO 33027 = IMI 229970 = JCM 10258 = QM 7478 = Thom 5519.57 = WB 238. Infragen. class.: subgen. Nidulantes sect. Nidulantes ser. Versicolores. DNA barcodes: ITS = EF652442; BenA = EF652266; CaM = EF652354; RPB2 = EF652178.

Notes: Pitt & Hocking (2022) introduced this new combination to accommodate A. versicolor in Emericella. The genus Emericella is considered a synonym of Aspergillus (Samson et al. 2014). We therefore do not accept this new combination and consider this species a synonym of Aspergillus versicolor.

Emericella usta (Bainier) Pitt & A.D. Hocking, Fungi and Food Spoilage. 4th Ed.: 611. 2022. [MB 838032]. Basionym: Sterigmatocystis usta Bainier, Bull. Soc. Bot. France 28: 78. 1881. [MB 536545]. — Type: IMI 211805 (holotype).

Synonym of: Aspergillus ustus (Bainier) Thom & Church, The Aspergilli: 152. 1926. [MB 281216]. — Type: IMI 211805. Ex-type: CBS 261.67 = NRRL 275 = ATCC 1041 = ATCC 16818 = IMI 211805 = QM 7477 = WB 275. Infragen. class.: subgen. Nidulantes sect. Usti ser. Usti. DNA barcodes: ITS = EF652455; BenA = EF652279; CaM = EF652367; RPB2 = EF652191.

Notes: Pitt & Hocking (2022) introduced this new combination to accommodate A. ustus in Emericella. The genus Emericella is considered a synonym of Aspergillus (Samson et al. 2014). We therefore do not accept this new combination and consider this species a synonym of Aspergillus ustus.

Neosartorya clavata (Desm.) Pitt & A.D. Hocking, Fungi and Food Spoilage. 4th Ed.: 611. 2022. [MB 838031]. — Type: IMI 15949 (holotype).

Synonym of: Aspergillus clavatus Desm., Ann. Sci. Nat., Bot., ser. 2: 71. 1834. [MB 211530]. — Type: IMI 15949. Ex-type: CBS 513.65 = NRRL 1 = ATCC 1007 = ATCC 9598 = ATCC 9602 = CECT2674 = DSM 816 = IMI 15949 = LSHBA c .86 = LSHBA c .95 = MIT213 = NCTC 3887 = NCTC 9 = NCTC 978 = NRRL 1656 = QM 1276 = QM 7404 = Thom 107 = WB 1. Infragen. class.: subgen. Fumigati sect. Clavati ser. Clavati. DNA barcodes: ITS = EF669942; BenA = EF669802; CaM = EF669871; RPB2 = EF669730.

Notes: Pitt & Hocking (2022) introduced this new combination to accommodate A. clavatus in Neosartorya. The genus Neosartorya is considered a synonym of Aspergillus (Samson et al. 2014). We therefore do not accept this new combination and consider it a synonym of Aspergillus clavatus.

Paecilomyces clematidis Spetik, Eichmeier, Gramaje & Berraf-Tebbal, Phytotaxa 559: 242. 2022. [MB 843540]. — Type: BRNU 677844 (holotype). Ex-type: CBS 148466 = MEND-F-0560. DNA barcodes: ITS = MZ923760; BenA = MZ927740; CaM = MZ927738; RPB2 = OL332317.

Paecilomyces penicilliformis Jurjević & Hubka, Persoonia 44: 431. 2020. [MB 834874]. — Type: BPI 911216 (holotype). Ex-type: CCF 5755 = CBS 146003 = EMSL 3392. DNA barcodes: ITS = LR679769; BenA = LR679768; CaM = LR778299; RPB2 = n.a.

Paraxerochrysium Crous & Decock, Persoonia 47: 261. 2021. [MB 841829]

Synonym of: Xerochrysium Pitt, SIM 4 (2): 236. 2013. [MB 807003].

Notes: See notes for Xerochrysium coryli above.

Paraxerochrysium coryli Crous & Decock, Persoonia 47: 261. 2021. [MB 841830]. — Type: CBS H-24853 (holotype). Ex-type: CBS 148314 = CPC 41272 = MUCL 58103. DNA barcodes: ITS = OK664748; BenA = OK651216; CaM = n.a.; RPB2 = OK651178.

Notes: See notes for Xerochrysium coryli above.

Penicillium allaniae Y.P. Tan, Bishop-Hurley, Marney, R.G. Shivas, Index Austral. Fungi 3: 6. 2022. [MB 900139]. — Type: BRIP 74886a (holotype). Ex-type: BRIP 74886a. Infragen. class.: subgen. Aspergilloides sect. Exilicaulis ser. Restricta. DNA barcodes: ITS = OP903476; BenA = OP921959; CaM = OP921957; RPB2 = OP921958.

Notes: Since Houbraken et al. (2020), P. allaniae, P. archerae, P. krskae and P. silybi were introduced bringing the number of accepted species in series Restricta to thirteen. However, the series clearly needs a taxonomic revision (Fig. 23 & Suppl. Fig. S21) as noted by Visagie et al. (2016). In the meantime, we accept the four recently introduced species.

Fig. 23.

Fig. 23

Phylogenetic tree of Penicillium sections Exilicaulis and Gracilenta based on a concatenated dataset of BenA, CaM, and RPB2. Strains of recently described species are shown in bold coloured text. The tree was rooted to P. stolkiae. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by superscript T. See Suppl. Fig. S21.

Penicillium allsoppiae Visagie, A. Visagie, Frisvad & K. Jacobs, Persoonia 46: 176. 2021. [MB 834426]. — Type: CBS H-22036 (holotype). Ex-type: CBS 138943 = DAOM 241348 = DTO 182-D5 = CV 931. Infragen. class.: subgen. Penicillium sect. Canescentia ser. Canescentia. DNA barcodes: ITS = JX140830; BenA = JX140992; CaM = JX157384; RPB2 = KP016895.

Penicillium anthracinoglaciei Perini, Frisvad & Zalar, Microbial Ecol. 86: 287. 2022 (2023). [MB 835602]. — Type: EXF11443H (Holotype). Ex-type: EXF-11443 = IBT 34739. Infragen. class.: subgen. Penicillium sect. Brevicompacta ser. Brevicompacta. DNA barcodes: ITS = n.a.; BenA = MT080493; CaM = MT080552; RPB2 = MT080519.

Notes: The phylogenetic relationship between P. anthracinoglaciei and P. bialowiezense is unresolved and needs further study (Fig. 18 & Suppl. Fig. S16).

Fig. 18.

Fig. 18

Phylogenetic tree of Penicillium section Brevicompacta based on a concatenated dataset of BenA, CaM, and RPB2. Strains of recently described species are shown in bold coloured text. The tree was rooted to P. tularense. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by superscript T. See Suppl. Fig. S16.

Penicillium aquadulcis Hyang B. Lee & T.T.T. Nguyen, Mycobiology 49: 542. 2021. [MB 556953]. — Type: CNUFC HT19009 (holotype). Ex-type: CNUFC JT1301. Infragen. class.: subgen. Aspergilloides sect. Citrina ser. Westlingiorum. DNA barcodes: ITS = OK356194; BenA = OK105100; CaM = OK105102; RPB2 = n.a.

Penicillium archerae Y.P. Tan, Bishop-Hurley, R.G. Shivas, Index Austral. Fungi 3: 7. 2022. [MB 900140]. — Type: BRIP 72549c (holotype). Ex-type: BRIP 72549c. Infragen. class.: subgen. Aspergilloides sect. Exilicaulis ser. Restricta. DNA barcodes: ITS = OP903477; BenA = OP921961; CaM = n.a.; RPB2 = OP921960.

Notes: Since Houbraken et al. (2020), P. allaniae, P. archerae, P. krskae and P. silybi were introduced bringing the number of accepted species in series Restricta to thirteen. However, the series clearly needs a taxonomic revision (Fig. 23 & Suppl. Fig. S21) as noted by Visagie et al. (2016). In the meantime, we accept the four recently introduced species.

Penicillium aspericonidium B.D. Sun, A.J. Chen & Houbraken, Mycol. Prog. 20: 1387. 2021. [MB 838211]. — Type: CBS H-22830 (holotype). Ex-type: CBS 141832 = DTO 030-C5. Infragen. class.: subgen. Aspergilloides sect. Charlesia ser. Phoenicea. DNA barcodes: ITS = MT309657; BenA = MT302240; CaM = n.a.; RPB2 = MT302224.

Penicillium ausonanum Torres-Garcia, Gené & Dania García, MycoKeys 86: 119. 2022. [MB 840556]. — Type: CBS H-24781 (holotype). Ex-type: CBS 148237 = FMR 16948. Infragen. class.: subgen. Aspergilloides sect. Lanata-Divaricata ser. Dalearum. DNA barcodes: ITS = LR655808; BenA = LR655809; CaM = LR655810; RPB2 = LR655811.

Penicillium barbosae S. Ramos, R. Cruz, R.N. Barbosa & Houbraken, Mycol. Prog. 20: 828. 2021. [MB 837908]. — Type: URM 94474 (holotype). Ex-type: URM 7705. Infragen. class.: subgen. Aspergilloides sect. Sclerotiorum ser. Adametziorum. DNA barcodes: ITS = MW191494; BenA = MG452818; CaM = MW183245; RPB2 = LR898886.

Penicillium cerradense Cruvinel, P.O. Magalh. & Pinho, Sci. Rep. 11 (no. 17861): 2. 2021. [MB 835241]. — Type: UB23977 (holotype). Ex-type: DCFS6a. Infragen. class.: subgen. Aspergilloides sect. Citrina ser. Westlingiorum. DNA barcodes: ITS = MT006126; BenA = MT416533; CaM = MT416534; RPB2 = MT416532.

Synonym of: Penicillium sumatraense [as ‘sumatrense’] Szilvinyi, Archiv. Hydrobiol. 14 Suppl. 6: 535. 1936. [MB 319297].

Notes: Penicillium cerradense belongs to the P. sumatraense clade and is thus considered a synonym (Fig. 21 & Suppl. Fig. S19).

Fig. 21.

Fig. 21

Phylogenetic tree of Penicillium section Citrina based on a concatenated dataset of BenA, CaM, and RPB2. Strains of recently described species are shown in bold coloured text. The tree was rooted to P. euglaucum. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by superscript T. See Suppl. Fig. S19.

Penicillium claroviride Visagie & Yilmaz, Mycologia 115: 90. 2022. [MB 844184]. — Type: PREM 63221 (holotype). Ex-type: CMW 56197 = CBS 147458 = CN014D2. Infragen. class.: subgen. Penicillium sect. Canescentia ser. Atroveneta. DNA barcodes: ITS = MT949909; BenA = MT957414; CaM = MT957456; RPB2 = MT957482.

Penicillium doidgeae Visagie, Frisvad & K. Jacobs, Persoonia 46: 176. 2021. [MB 834427]. — Type: CBS H-22038 (holotype). Ex-type: CBS 138947 = IBT 31950 = DAOM 241107 = DTO 183-G7 = CV 2189. Infragen. class.: subgen. Penicillium sect. Canescentia ser. Atroveneta. DNA barcodes: ITS = JX140804; BenA = JX141006; CaM = JX157413; RPB2 = KP016915.

Penicillium donggangicum L. Wang, PeerJ 10 (e13224): 8. 2022. [MB 841518]. — Type: HMAS 350265 (holotype). Ex-type: AS 3.15900. Infragen. class.: subgen. Aspergilloides sect. Lanata-Divaricata ser. Janthinella. DNA barcodes: ITS = MW946996; BenA = MZ004914; CaM = MZ004918; RPB2 = MW979253.

Penicillium eickeri Visagie, Frisvad & K. Jacobs, Persoonia 46: 179. 2021. [MB 834428]. — Type: CBS H-22034 (holotype). Ex-type: CBS 138939 = IBT 31921 = DAOM 241352 = DTO 181-G3 = CV 475. Infragen. class.: subgen. Penicillium sect. Canescentia ser. Canescentia. DNA barcodes: ITS = JX140824; BenA = JX140979; CaM = JX157365; RPB2 = KP016876.

Penicillium elizabethiae Visagie & Frisvad, Persoonia 46: 179. 2021. [MB 834432]. Basionym: Penicillium echinatum E. Dale, Ann. Mycol. 24: 137. 1926. (nom. illegit. Art. 53.1; non Rivolta (1873). [MB 505484]. — Type: CBS H-22052 (holotype). Ex-type: NRRL 917 = MUCL 29170 = IBT 21955 = DTO 189-B8. Infragen. class.: subgen. Penicillium sect. Canescentia ser. Canescentia. DNA barcodes: ITS = KP016840; BenA = KJ866964; CaM = KJ867021; RPB2 = KP016918.

Notes: Penicillium elizabethiae was introduced for the illegitimate P. echinatum E. Dale.

Penicillium ezekielii Houbraken & Oyedele, Persoonia 49: 309. 2022. [MB 844770]. — Type: CBS H-25015 (holotype). Ex-type: CBS 149115 = DTO 065-D2. Infragen. class.: subgen. Aspergilloides sect. Cinnamopurpurea ser. Jiangxiensia. DNA barcodes: ITS = ON723772; BenA = ON920778; CaM = ON920781; RPB2 = ON920784.

Penicillium ferraniaense Houbraken & Di Piazza, Persoonia 46: 491. 2021. [MB 839119]. — Type: CBS H-24757 (holotype). Ex-type: CBS 147595 = DTO 400-D8. Infragen. class.: subgen. Aspergilloides sect. Sclerotiorum ser. Sclerotiorum. DNA barcodes: ITS = MW694951; BenA = MW689336; CaM = MW689338; RPB2 = MW689340.

Penicillium fuscoglaucum Biourge, La Cellule 33: 128. 1923. [MB 265659]. — Type: Belgium, source and collection date unknown, P. Biourge [Biourge, La Cellule 33: Pl. col. I. dr., n°4; Pl. noire II, fig. 9. 1923, lectotype designated here, MBT10014260); CBS H-15446 (dried culture), epitype designated here, MBT10014261]. Ex-epitype: CBS 261.29 = IMI 092259 = LSHB P81 = MUCL 28651 = NRRL 892 = CBS 122423 = DTO 461-D2. Infragen. class.: subgen. Penicillium sect. Fasciculata ser. Camembertiorum. DNA barcodes: ITS = MH855062; BenA = OR206420; CaM = OR206421; RPB2 = OR206422.

Notes: Giraud et al. (2010) and Ropars et al. (2020) considered P. fuscoglaucum as a distinct species, closely related to P. camemberti, and suggested that P. caseifulvum (CBS 101134T) is a variety, P. camemberti var. ‘caseifulvum’. Following Frisvad & Samson (2004), we disagree with the idea of introducing varieties in Penicillium. We accept P. camemberti, P. caseifulvum and P. commune, as suggested in the taxonomy of Frisvad & Samson (2004), but also tentatively accept P. fuscoglaucum and P. biforme following the taxonomic insights of Ropars et al. (2020). The taxonomies of Frisvad & Samson (2004) and Ropars et al. (2020) are not congruent and a taxonomic revision is therefore needed to resolve relationships and species boundaries within the clade (see Fig. 19 & Suppl. Fig. S17), noting that P. camemberti, and maybe also P. caseifulvum, are domesticated species related to cheese production (Bodinaku et al. 2019, Ropars et al. 2020).

Fig. 19.

Fig. 19

Phylogenetic tree of Penicillium section Fasciculata series Camembertiorum based on a concatenated dataset of BenA, CaM, and RPB2. Strains of recently described species are shown in bold coloured text. The tree was rooted to P. expansum. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by superscript T. See Suppl. Fig. S17.

Penicillium fusiforme B.D. Sun, A.J. Chen & Houbraken, Mycol. Prog. 20: 1389. 2021. [MB 838212]. — Type: CBS H-22840 (holotype). Ex-type: CBS 250.66 = DTO 035-D7. Infragen. class.: subgen. Aspergilloides sect. Charlesia ser. Fellutana. DNA barcodes: ITS = MT309668; BenA = MT302253; CaM = MT302220; RPB2 = MT302236.

Penicillium gercinae A.L. Alves, A.C.S. Santos, R.N. Barbosa, C.M. Souza-Motta, R.F.R. Melo, P.V. Tiago, Acta Bot. Brasil 36 (e2022abb0006): 10. 2022. [MB 841260]. — Type: URM 94476 (holotype). Ex-type: URM 8348. Infragen. class.: subgen. Aspergilloides sect. Ramigena ser. Georgiensia. DNA barcodes: ITS = MW648591; BenA = MW646389; CaM = MW646391; RPB2 = MW646393.

Penicillium guarroi Torres-Garcia, Gené & Dania García, MycoKeys 86: 121. 2022. [MB 840567]. — Type: CBS H-24782 (holotype). Ex-type: CBS 148238 = FMR 17747. Infragen. class.: subgen. Aspergilloides sect. Gracilenta ser. Estinogena. DNA barcodes: ITS = LR814139; BenA = LR814134; CaM = LR814140; RPB2 = LR814145.

Penicillium hepuense L. Wang, PeerJ 10 (e13224): 11. 2022. [MB 841525]. — Type: HMAS 350263 (holotype). Ex-type: AS 3.16039 = TT2-4X3. Infragen. class.: subgen. Aspergilloides sect. Lanata-Divaricata ser. Oxalica. DNA barcodes: ITS = MW946994; BenA = MZ004912; CaM = MZ004916; RPB2 = MW979254.

Penicillium irregulare Torres-Garcia, Gené & Dania García, MycoKeys 86: 125. 2022. [MB 840558]. — Type: CBS H-24783 (holotype). Ex-type: CBS 148240 = FMR 17859. Infragen. class.: subgen. Penicillium sect. Canescentia ser. Canescentia. DNA barcodes: ITS = LR814181; BenA = LR814144; CaM = LR814151; RPB2 = LR814182.

Penicillium jenningsiae Y.P. Tan, Bishop-Hurley, E. Lacey & R.G. Shivas, Index Austral. Fungi 3: 8. 2022. [MB 900141]. — Type: BRIP 45936a (holotype). Ex-type: BRIP 45936a. Infragen. class.: subgen. Aspergilloides sect. Citrina ser. Sumatraensia. DNA barcodes: ITS = n.a.; BenA = OL741657; CaM = n.a.; RPB2 = OL741660.

Synonym of: Penicillium sumatraense [as ‘sumatrense’] Szilvinyi, Archiv. Hydrobiol. 14 Suppl. 6: 535. 1936. [MB 319297].

Notes: Penicillium jenningsiae belongs to the P. sumatraense clade and is thus considered a synonym. (Fig. 21 & Suppl. Fig. S19)

Penicillium jiaozhouwanicum L. Wang, PeerJ 10 (e13224): 13. 2022. [MB 841531]. — Type: HMAS 350262 (holotype). Ex-type: AS 3.16038 = 0801H2-2. Infragen. class.: subgen. Aspergilloides sect. Lanata-Divaricata ser. Oxalica. DNA barcodes: ITS = MW946993; BenA = MZ004911; CaM = MZ004915; RPB2 = MW979252.

Penicillium kalander Visagie & Yilmaz, Mycologia 115: 95. 2022. [MB 844185]. — Type: PREM 63223 (holotype). Ex-type: CMW 56202 = CN014E1. Infragen. class.: subgen. Aspergilloides sect. Sclerotiorum ser. Sclerotiorum. DNA barcodes: ITS = MT949914; BenA = MT957421; CaM = MT957461; RPB2 = MT957487.

Penicillium krskae Labuda, Kubátová, C. Schüller & J. Strauss, J. Fungi 7 (7, no. 557): 7. 2021. [MB 839112]. — Type: PRM 955188 (holotype). Ex-type: CBS 147776 = BiMM-F280 = CCF 6561. Infragen. class.: subgen. Aspergilloides sect. Exilicaulis ser. Restricta. DNA barcodes: ITS = MW794123; BenA = MW774594; CaM = MW774595; RPB2 = MW774593.

Notes: Since Houbraken et al. (2020), P. allaniae, P. archerae, P. krskae and P. silybi were introduced bringing the number of accepted species in series Restricta to thirteen. However, the series clearly needs a taxonomic revision (Fig. 23 & Suppl. Fig. S21) as noted by Visagie et al. (2016). In the meantime, we accept the four recently introduced species.

Penicillium limae S. Ramos, R. Cruz, C. Souza-Motta & N. Tinti, Mycol. Prog. 20: 831. 2021. [MB 837909]. — Type: URM 94475 (holotype). Ex-type: URM 7706. Infragen. class.: subgen. Aspergilloides sect. Sclerotiorum ser. Adametziorum. DNA barcodes: ITS = MW191493; BenA = MG452820; CaM = MW183244; RPB2 = LR898888.

Penicillium linzhiense H-K. Wang & R. Jeewon, Front. Cell. Infect. Microbiol. 10 (no 6045044): 4. 2021. [MB 838576]. — Type: CCTCC-M 2019870 (holotype). Ex-type: CCTCC-M 2019870. Infragen. class.: subgen. Penicillium sect. Canescentia ser. Canescentia. DNA barcodes: ITS = MT461156; BenA = MT461157; CaM = MT461162; RPB2 = n.a.

Penicillium longiconidiophorum B.D. Sun, A.J. Chen & Houbraken, Mycol. Prog. 20: 1389. 2021. [MB 838213]. — Type: CBS H-22829 (holotype). Ex-type: CBS 141831 = DTO 088-C1. Infragen. class.: subgen. Aspergilloides sect. Charlesia ser. Phoenicea. DNA barcodes: ITS = MT309669; BenA = MT302254; CaM = MT302221; RPB2 = MT302237.

Penicillium mattheeae Visagie & Yilmaz, Mycologia 115: 97. 2022. [MB 844186]. — Type: PREM 63219 (holotype). Ex-type: CMW 56388 = CBS 147415 = CN014C5. Infragen. class.: subgen. Aspergilloides sect. Aspergilloides ser. Saturniformia. DNA barcodes: ITS = MT949904; BenA = MT957408; CaM = MT957451; RPB2 = MT957477.

Penicillium melanosporum Rodr.-Andr., Cano & Stchigel, J. Fungi 7 (2, no. 126): 5. 2021. [MB 835938]. — Type: CBS H-24465 (holotype). Ex-type: CBS 146938 = FMR 17424. Infragen. class.: subgen. Aspergilloides sect. Lanata-Divaricata ser. Janthinella. DNA barcodes: ITS = LR655192; BenA = LR655196; CaM = LR655200; RPB2 = LR655204.

Penicillium michoacanense Rodr.-Andr., Cano & Stchigel, J. Fungi 7 (2, no. 126): 8. 2021. [MB 835940]. — Type: CBS H-24467 (holotype). Ex-type: FMR 17612. Infragen. class.: subgen. Aspergilloides sect. Lanata-Divaricata ser. Janthinella. DNA barcodes: ITS = LR655194; BenA = LR655198; CaM = LR655202; RPB2 = LR655206.

Penicillium neoherquei Labuda, Kubátová, Nebesářová, Oberlies & Raja, Persoonia 48: 339. 2022. [MB 842267]. — Type: PRM 956035 (holotype). Ex-type: CBS 148692 = CCF 6604. Infragen. class.: subgen. Aspergilloides sect. Sclerotiorum ser. Herqueorum. DNA barcodes: ITS = MW341222; BenA = OL840853; CaM = OL840855; RPB2 = MW349119.

Penicillium newtonturnerae Y.P. Tan, Bishop-Hurley, Marney & R.G. Shivas, Index Austral. Fungi 3: 10. 2022. [MB 900142]. — Type: BRIP 74909a (holotype). Ex-type: BRIP 74909a. Infragen. class.: subgen. Aspergilloides sect. Lanata-Divaricata ser. Simplicissima. DNA barcodes: ITS = OP903478; BenA = OP921964; CaM = OP921962; RPB2 = OP921963.

Penicillium nordestinense J.E.F. Santos & R.N. Barbosa, Acta Bot. Brasil 36 (e2021abb0390): 4. 2022. [MB 845495]. — Type: URM 83558 (holotype). Ex-type: URM 8423. Infragen. class.: subgen. Aspergilloides sect. Lanata-Divaricata ser. Janthinella. DNA barcodes: ITS = OV265270; BenA = OV265324; CaM = OV265272; RPB2 = OM927721.

Penicillium outeniquaense Visagie & Yilmaz, Mycologia 115: 97. 2022. [MB 844187]. — Type: PREM 63218 (holotype). Ex-type: CMW 56387 = CBS 147414 = CN014C2. Infragen. class.: subgen. Aspergilloides sect. Citrina ser. Westlingiorum. DNA barcodes: ITS = MT949903; BenA = MT957405; CaM = MT957450; RPB2 = MT957476.

Penicillium poederi Kirchm. & Neuh., Fungal Syst. Evol. 10: 92. 2022. [MB 845496]. — Type: IBF2017/0007 (holotype). Ex-type: CBS 147622 = SF014017 = Bq214. Infragen. class.: subgen. Aspergilloides sect. Torulomyces ser. Torulomyces. DNA barcodes: ITS = MF611757; BenA = MF611760; CaM = MF611763; RPB2 = MF611766.

Penicillium pole-evansii Visagie, Frisvad & K. Jacobs, Persoonia 46: 179. 2021. [MB 834429]. — Type: CBS H-22037 (holotype). Ex-type: CBS 138946 = IBT 31929 = DAOM 241106 = DTO 183-D5 = CV 1758. Infragen. class.: subgen. Penicillium sect. Canescentia ser. Atroveneta. DNA barcodes: ITS = JX140831; BenA = JX141005; CaM = JX157412; RPB2 = KP016911.

Penicillium rotoruae O’Callahan & Vaidya, Curr. Microbiol. 77: 4131. 2020. [MB 834084]. — Type: NZFS 4797 (holotype). Ex-type: CBS 145838 = NMI V19/026738. Infragen. class.: subgen. Aspergilloides sect. Lanata-Divaricata ser. Rolfsiorum. DNA barcodes: ITS = MN315103; BenA = MN315104; CaM = MN315102; RPB2 = MT240842.

Penicillium saanichanum Visagie, Assabgui & Seifert, Persoonia 45: 373. 2020. [MB 835962]. — Type: DAOM 745787 (holotype). Ex-type: DAOMC 251850 = KAS 6184. Infragen. class.: subgen. Aspergilloides sect. Cinnamopurpurea ser. Idahoensia. DNA barcodes: ITS = KY469059; BenA = KY469096; CaM = KY469020; RPB2 = MN795070.

Penicillium sanjayi Rajeshk., Visagie, N. Ashtekar & Yilmaz, Mycol. Prog. 21 (4, no. 42): 5. 2022. [MB 840642]. — Type: AMH 10349 (holotype). Ex-type: NFCCI 5017. Infragen. class.: subgen. Aspergilloides sect. Citrina ser. Vascosobrinhoana. DNA barcodes: ITS = MZ571358; BenA = MZ558484; CaM = MZ558492; RPB2 = MZ558482.

Notes: The identifier “MB 840643” cited in Ashtekar et al. (2022) is that of the series Vascosobrinhoana introduced in the same publication, but the species is nevertheless validly published (Art. F.5.6 San Juan Chapter F) (May et al. 2019) since “MB 840642” was issued by MycoBank prior to the publication of the name.

Penicillium scottii Visagie, Frisvad & K. Jacobs, Persoonia 46: 182. 2021. [MB 834430]. — Type: CBS H-22040 (holotype). Ex-type: CBS 138951 = IBT 31905 = DTO 185-F8 = CV 930. Infragen. class.: subgen. Penicillium sect. Canescentia ser. Canescentia. DNA barcodes: ITS = JX140812; BenA = JX140991; CaM = JX157383; RPB2 = KP016894.

Penicillium setosum T.K. George, Houbraken, L. Mathew & M.S. Jisha, Acta Bot. Brasil 36 (e2021abb0390): 6. 2022. [MB 842377]. — Type: CBS H-24872 (holotype). Ex-type: CBS 144865 = DTO 455-G4 = WSR 62 = MCC 1370 = NCFT NO 8222.16 = AMH-9974. Infragen. class.: subgen. Aspergilloides sect. Lanata-Divaricata ser. Janthinella. DNA barcodes: ITS = KT852579; BenA = MF184995; CaM = MH105905; RPB2 = n.a.

Notes: In the original description (George et al. 2018), P. setosum was invalidly described because it was not stated that the holotype was preserved as a metabolically inactive culture. The name was subsequently validated by Barbosa et al. (2022).

Penicillium sexuale Rodr.-Andr., Cano & Stchigel, J. Fungi 7 (2, no. 126): 10. 2021. [MB 835941]. — Type: CBS H-24468 (holotype). Ex-type: CBS 146939 = FMR 17380. Infragen. class.: subgen. Aspergilloides sect. Crypta ser. Crypta. DNA barcodes: ITS = LR655195; BenA = LR655199; CaM = LR655203; RPB2 = LR655207.

Penicillium siccitolerans Rodr.-Andr., Cano & Stchigel, J. Fungi 7 (2, no. 126): 7. 2021. [MB 835939]. — Type: CBS H-24466 (holotype). Ex-type: FMR 17381. Infragen. class.: subgen. Aspergilloides sect. Lanata-Divaricata ser. Janthinella. DNA barcodes: ITS = LR655193; BenA = LR655197; CaM = LR655201; RPB2 = LR655205.

Penicillium sicoris Torres-Garcia, Gené & Dania García, MycoKeys 86: 127. 2022. [MB 840559]. — Type: CBS H-24784 (holotype). Ex-type: CBS 148241 = FMR 18076. Infragen. class.: subgen. Penicillium sect. Paradoxa ser. Atramentosa. DNA barcodes: ITS = LR884497; BenA = LR884494; CaM = LR884496; RPB2 = LR884495.

Penicillium silybi Labuda, Kubátová, Raja & Oberlies, J. Fungi 7 (7, no. 557): 9. 2021. [MB 839113]. — Type: PRM 955189 (holotype). Ex-type: CBS 147777 = G85 = CCF 6562. Infragen. class.: subgen. Aspergilloides sect. Exilicaulis ser. Restricta. DNA barcodes: ITS = KF367458; BenA = MW774592; CaM = MW774591; RPB2 = AB860248.

Notes: Since Houbraken et al. (2020), P. allaniae, P. archerae, P. krskae and P. silybi were introduced bringing the number of accepted species in series Restricta to thirteen. However, the series clearly needs a taxonomic revision (Fig. 23 & Suppl. Fig. S21) as noted by Visagie et al. (2016). In the meantime, we accept the four recently introduced species.

Penicillium soli Doilom, C.F. Liao & D. Pem, Front. Microbiol. 11 (no. 585215): 13. 2020. [MB 557862]. — Type: MFLU 20-0432 (holotype). Ex-type: KUMCC 18-0202. Infragen. class.: subgen. Aspergilloides sect. Lanata-Divaricata ser. Janthinella. DNA barcodes: ITS = MT152337; BenA = MT161681; CaM = MT178249; RPB2 = MT384372.

Synonym: Penicillium cluniae [nom. inval. Art. 40.7 (Shenzhen)] Quintan., Avances en Alimentation y Mechora Animal 30: 174. 1990. [MB 130240].

Notes: Phylogenies resolved P. soli in the P. cluniae clade (Fig. 24 & Suppl. Fig. S22). The exception was RPB2. Pairwise comparisons showed that the ex-type sequences of both species were identical for BenA, but that there was some variation between them for CaM and RPB2. This suggests that they belong to the same species. Penicillium cluniae was previously included in the accepted species lists (Visagie et al. 2014, Houbraken et al. 2020), but was invalidly described by Quintanilla (1990) because no collection or herbarium was specified with the “1532” type designation. Consequently, we reduce P. cluniae as a synonym of P. soli.

Fig. 24.

Fig. 24

Phylogenetic tree of Penicillium section Lanata-Divaricata series Janthinella and Simplicissima, based on a concatenated dataset of BenA, CaM, and RPB2. Strains of recently described species are shown in bold coloured text. The tree was rooted to P. stolkiae. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by superscript T. See Suppl. Fig. S22.

Penicillium stangiae A.L. Alves, A.C.S. Santos, R.N. Barbosa, C.M. Souza-Motta, R.F.R. Melo, P.V. Tiago, Acta Bot. Brasil 36: e2022abb0006: 10. 2022. [MB 841261]. — Type: URM 94477 (holotype). Ex-type: URM 8347. Infragen. class.: subgen. Aspergilloides sect. Lanata-Divaricata ser. Dalearum. DNA barcodes: ITS = MW648590; BenA = MW646388; CaM = MW646390; RPB2 = MW646392.

Penicillium subfuscum Visagie & Yilmaz, Mycologia 115: 99. 2022. [MB 844188]. — Type: PREM 63220 (holotype). Ex-type: CMW 56196 = CBS 147455 = CN014C9. Infragen. class.: subgen. Aspergilloides sect. Lanata-Divaricata ser. Simplicissima. DNA barcodes: ITS = MT949907; BenA = MT957412; CaM = MT957454; RPB2 = MT957480.

Penicillium submersum Torres-Garcia, Gené & Dania García, MycoKeys 86: 129. 2022. [MB 840560]. — Type: CBS H-24785 (holotype). Ex-type: CBS 148242 = FMR 17140. Infragen. class.: subgen. Penicillium sect. Robsamsonia ser. Urticicola. DNA barcodes: ITS = LR814194; BenA = LR814187; CaM = LR814188; RPB2 = LR814195.

Penicillium taurinense S. Prencipe, Houbraken & D. Spadaro, Persoonia 44: 435. 2020. [MB 834715]. — Type: CBS H-24332 (holotype). Ex-type: CBS 145672 = DTO 333-B8 = CAS16. Infragen. class.: subgen. Penicillium sect. Robsamsonia ser. Glandicolarum. DNA barcodes: ITS = MF595981; BenA = MF595977; CaM = MF595979; RPB2 = MT253108.

Penicillium tealii Y.P. Tan, Bishop-Hurley, Marney & R.G. Shivas, Persoonia 49: 307. 2022. [MB 845000]. — Type: BRIP 72734c (holotype). Ex-type: BRIP 72734c. Infragen. class.: subgen. Aspergilloides sect. Cinnamopurpurea ser. Jiangxiensia. DNA barcodes: ITS = OP101639; BenA = OP039547; CaM = n.a.; RPB2 = OP039546.

Penicillium tirolense Kirchm., Embacher & Neuh., Fungal Syst. Evol. 10: 96. 2022. [MB 845496]. — Type: IBF2019/0162 (holotype). Ex-type: CBS 147625 = SF014017. Infragen. class.: subgen. Aspergilloides sect. Torulomyces ser. Torulomyces. DNA barcodes: ITS = MW145398; BenA = MW143069; CaM = MW143068; RPB2 = MW143067.

Penicillium tolerans Y.P. Tan, Bishop-Hurley, E. Lacey, Grice & R.G. Shivas, Index Austral. Fungi 3: 12. 2022. [MB 900151]. — Type: BRIP 64090a (holotype). Ex-type: BRIP 64090a. Infragen. class.: subgen. Aspergilloides sect. Sclerotiorum ser. Sclerotiorum. DNA barcodes: ITS = OK639006; BenA = OL741658; CaM = n.a.; RPB2 = n.a.

Synonym of: Penicillium sclerotiorum J.F.H. Beyma, Zentralbl. Bakteriol. Parasitenk., Abt. 2 96: 418. 1937. [MB 277708].

Notes: Species classified in Penicillium section Sclerotiorum were reviewed in Rivera & Seifert (2011) and Visagie et al. (2013), both who accepted a broad concept of P. sclerotiorum. Phylogenetically, the strains considered to belong to P. sclerotiorum can be divided into two clades, but without a taxonomic revision of the species, we consider P. tolerans to be a synonym of the former. (Fig. 27 & Suppl. Fig. S25)

Fig. 27.

Fig. 27

Phylogenetic tree of Penicillium section Sclerotiorum, based on a concatenated dataset of BenA, CaM, and RPB2. Strains of recently described species are shown in bold coloured text. The tree was rooted to P. glabrum. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by superscript T. See Suppl. Fig. S25.

Penicillium ucsense A. Lenz & Houbraken, Antonie van Leeuwenhoek 115: 9. 2022. [MB 839721]. — Type: CBS H-24331 (holotype). Ex-type: CBS 146492 = DTO 426-B1 = IOC 4717 = 2HH. Infragen. class.: subgen. Aspergilloides sect. Lanata-Divaricata ser. Oxalica. DNA barcodes: ITS = OM914583; BenA = ON024157; CaM = ON024158; RPB2 = ON024159.

Synonym of: Penicillium hepuense L. Wang, PeerJ 10 (e13224): 11. 2022. [MB 841525].

Notes: Phylogenies resolved P. ucsense and P. hepuense in the same clade (Fig. 25 & Suppl. Fig. S23). Both were introduced in 2022, but P. hepuense was published first (2022/05/06 vs 2022/06/09) and thus has priority over P. ucsense.

Fig. 25.

Fig. 25

Phylogenetic tree of Penicillium section Lanata-Divaricata series Dalearum, Oxalica and Rolfsiorum, based on a concatenated dataset of BenA, CaM, and RPB2. Strains of recently described species are shown in bold coloured text. The tree was rooted to the series Oxalica clade. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by superscript T. See Suppl. Fig. S23.

Penicillium ulleungdoense D.H. Choi & J.G. Kim, Mycobiology 49: 48. 2021. [MB 835474]. — Type: KACC 48990 (holotype). Ex-type: KACC 48990. Infragen. class.: subgen. Aspergilloides sect. Sclerotiorum ser. Sclerotiorum. DNA barcodes: ITS = MN640087; BenA = MN737487; CaM = MN745074; RPB2 = MN756007.

Penicillium umkhoba Visagie & Yilmaz, Mycologia 115: 101. 2022. [MB 844189]. — Type: PREM 63222 (holotype). Ex-type: CMW 56200 = CBS 147457 = CN014D5. Infragen. class.: subgen. Aspergilloides sect. Sclerotiorum ser. Herqueorum. DNA barcodes: ITS = MT949912; BenA = MT957417; CaM = MT957459; RPB2 = MT957485.

Penicillium uttarakhandense Rajeshk., N. Ashtekar, Visagie, G. Anand & Yilmaz, Persoonia 46: 493. 2021. [MB 834093]. — Type: AMH 10225 (holotype). Ex-type: NFCCI 4808. Infragen. class.: subgen. Aspergilloides sect. Lanata-Divaricata ser. Simplicissima. DNA barcodes: ITS = MN967315; BenA = MN972443; CaM = MN972445; RPB2 = MN972447.

Notes: The phylogenetic relationship between P. brasilianum, P. onobense, P. paraherquei and P. skrjabinii is unresolved (Fig. 24 & Suppl. Fig. S22). Further studies including additional strains and/or extended datasets are needed. Here, we give benefit of doubt to the publisher.

Penicillium vaccaeorum Quintan., Mycopathologia 80: 77. 1982. [MB 109999]. — Type: CBS 148.83 (holotype). Ex-type: CBS 148.83 = DTO 009-E2 = CECT 2753. Infragen. class.: subgen. Aspergilloides sect. Citrina ser. Roseopurpurea. DNA barcodes: ITS = JN617689; BenA = JN606835; CaM = JN606543; RPB2 = JN606614.

Notes: Considered a synonym of P. sanguifluum by Houbraken, Frisvad & Samson (2011), this old name was more recently re-introduced by Torres-Garcia et al. (2022).

Penicillium vallebormidaense R.N. Barbosa & J.D.P. Bezerra, Persoonia 45: 371. 2020. [MB 837659]. — Type: CBS H-24527 (holotype). Ex-type: CBS 147064 = DTO 402-H5. Infragen. class.: subgen. Aspergilloides sect. Exilicaulis ser. Erubescentia. DNA barcodes: ITS = MT316359; BenA = MW115862; CaM = MW115863; RPB2 = MW115864.

Penicillium vickeryae Y.P. Tan & R.G. Shivas, Index Austral. Fungi 3: 10. 2022. [MB 900144]. — Type: BRIP 72552a (holotype). Ex-type: BRIP 72552a. Infragen. class.: subgen. Aspergilloides sect. Lanata-Divaricata ser. Simplicissima. DNA barcodes: ITS = OP903479; BenA = OP921966; CaM = n.a.; RPB2 = OP921965.

Penicillium vietnamense [nom. inval. Arts 40.7 & 40.8 (Shenzhen)] V.D. Nguyen & T.T. Pham, Mycobiology 50: 157. 2022. [MB 840587]. — Type: VTCC 930029 (holotype). Ex-type: VTCC 930029 = NTU DW14M = NITIA DW14M. Infragen. class.: subgen. Aspergilloides sect. Charlesia ser. Indica. DNA barcodes: ITS = MT102836; BenA = MT230561; CaM = ON209438; RPB2 = MT222288.

Synonym of: Penicillium chermesinum Biourge, Cellule 33: 284. 1923. [MB 260472].

Notes: This species was invalidly described. Phylogenies resolved P. vietnamense inside P. chermesinum (Fig. 17 & Suppl. Fig. S15), and even though CaM was not yet available for analysis, we consider P. vietnamense a synonym of P. chermesinum. We therefore choose not to validate this species.

Fig. 17.

Fig. 17

Phylogenetic tree of Penicillium sections Aspergilloides, Charlesia, Cinnamopurpurea and Ramigena based on a concatenated dataset of BenA, CaM, and RPB2. Strains of recently described species are shown in bold coloured text. The tree was rooted to P. taxi. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by superscript T. See Suppl. Fig. S15.

Penicillium xyleborini Visagie & W.J. Nel, Persoonia 47: 349. 2021. [MB 840990]. — Type: PREM 63078 (holotype). Ex-type: CMW 56800 = CN001D4. Infragen. class.: subgen. Penicillium sect. Ramosum ser. Soppiorum. DNA barcodes: ITS = MW504356; BenA = MW480817; CaM = MW480823; RPB2 = MW480824.

Rasamsonia oblata (Pitt & A.D. Hocking) Yanai & Udagawa, Jap. J. Mycol. 61: 93. 2020. [MB 836491]. Basionym: Penicillium oblatum Pitt & A.D. Hocking, Mycologia 77: 810. 1985. [MB 104603]. — Type: FRR 2234. Ex-type: CBS 258.87 = IMI 288719 = NBRC 33091. DNA barcodes: ITS = LC546718; BenA = LC546729; CaM = LC546740; RPB2 = n.a.

Notes: Penicillium oblatum was considered a doubtful species by Yilmaz et al. (2014), because sequence data obtained for the ex-type strain CBS 258.87 (= FRR 2234) indicated it as a close relative of T. dendriticus, but its morphology clearly did not match the original description of Pitt & Hocking (1985a). The species was recently revised based on sequences from IMI 288719 and NBRC 33091 (both ex-type strains), which showed that it represents a unique species in Rasamsonia (Yanai et al. 2020). Penicillium oblatum was described as strictly monoverticillate (Pitt & Hocking 1985a), with some subterminal metulae produced. However, Yanai et al. (2020) description of P. oblatum based on IMI 288719 showed both mono- and biverticillate conidiophores.

Rasamsonia sabulosa (Pitt & A.D. Hocking) Yanai & Udagawa, Jap. J. Mycol. 61: 96. 2020. [MB 836492]. Basionym: Penicillium sabulosum Pitt & A.D. Hocking, Mycologia 77: 810. 1985. [MB 104604]. — Type: FRR 2743. Ex-type: ATCC 56984 = FRR 2743 = IMI 288715. DNA barcodes: ITS = LC546720; BenA = LC546726; CaM = LC546742; RPB2 = n.a.

Notes: Penicillium sabulosum and P. corynephorum (CBS 256.87T) were until recently considered synonyms of P. smithii (CBS 276.83T) (Visagie et al. 2016). Penicillium sabulosum was reviewed by Yanai et al. (2020) using ATCC 56984 and they showed it is a unique Rasamsonia species, and a new combination was subsequently made. Morphologically, P. sabulosum was described as growing slowly on CYA at 25 °C (3–6 mm) (Pitt & Hocking 1985a), while P. corynephorum grows 32–40 mm (Pitt & Hocking 1985b) and P. smithii 30–35 mm (after 2 wk) (Quintanilla 1982). Additionally, P. sabulosum has roughened phialides which was not reported for the other species. Penicillium smithii (section Exilicaulis) remains an accepted species with P. corynephorum its synonym.

Talaromyces africanus Houbraken, Pyrri & Visagie, J. Fungi 7 (11, no. 993): 10. 2021. [MB 841228]. — Type: CBS H-24874 (holotype). Ex-type: CBS 147340 = DTO 179-C5 = KAS 3859. Infragen. class.: sect. Trachyspermi. DNA barcodes: ITS = OK339610; BenA = OK338782; CaM = OK338808; RPB2 = OK338833.

Talaromyces albisclerotius B.D. Sun, A.J. Chen, Houbraken & Samson, MycoKeys 68: 88. 2020. [MB 833135]. — Type: CBS H-22837 (holotype). Ex-type: CBS 141839 = DTO 340-G5. Infragen. class.: sect. Trachyspermi. DNA barcodes: ITS = MN864276; BenA = MN863345; CaM = MN863322; RPB2 = MN863334.

Talaromyces aspriconidius B.D. Sun, A.J. Chen, Houbraken & Samson, MycoKeys 68: 90. 2020. [MB 833134]. — Type: CBS H-22833 (holotype). Ex-type: CBS 141835 = DTO 340-F8. Infragen. class.: sect. Talaromyces. DNA barcodes: ITS = MN864274; BenA = MN863343; CaM = MN863320; RPB2 = MN863332.

Talaromyces atkinsoniae Y.P. Tan, Bishop-Hurley, Bransgr. & R.G. Shivas, Persoonia 49: 323. 2022. [MB 845020]. — Type: BRIP 72528a (holotype). Ex-type: BRIP 72528a. Infragen. class.: sect. Talaromyces. DNA barcodes: ITS = OP059084; BenA = OP087524; CaM = n.a.; RPB2 = OP087523.

Talaromyces aureolinus L. Wang, Mycologia 113: 495. 2021. [MB 831405]. — Type: HMAS 248136 (holotype). Ex-type: AS 3.15865. Infragen. class.: sect. Talaromyces. DNA barcodes: ITS = MK837953; BenA = MK837937; CaM = MK837945; RPB2 = MK837961.

Talaromyces bannicus L. Wang, Mycologia 113: 498. 2021. [MB 831406]. — Type: HMAS 248133 (holotype). Ex-type: AS 3.15862. Infragen. class.: sect. Talaromyces. DNA barcodes: ITS = MK837955; BenA = MK837939; CaM = MK837947; RPB2 = MK837963.

Talaromyces brevis B.D. Sun, A.J. Chen, Houbraken & Samson, MycoKeys 68: 92. 2020. [MB 833132]. — Type: CBS H-22833 (holotype). Ex-type: CBS 141833. Infragen. class.: sect. Talaromyces. DNA barcodes: ITS = MN864269; BenA = MN863338; CaM = MN863315; RPB2 = MN863328.

Talaromyces calidominioluteus Houbraken & Pyrri, J. Fungi 7 (11, no. 993): 14. 2021. [MB 841229]. — Type: CBS H-24875 (holotype). Ex-type: CBS 147313 = DTO 052-G3. Infragen. class.: sect. Trachyspermi. DNA barcodes: ITS = OK339612; BenA = OK338786; CaM = OK338817; RPB2 = OK338837.

Talaromyces cavernicola V.C.S. Alves, J.D.P. Bezerra & R.N. Barbosa, Fungal Syst. Evol. 10: 157. 2022. [MB 846125]. — Type: URM 95155 (holotype). Ex-type: URM 8448 = FCCUFG 11. Infragen. class.: sect. Talaromyces. DNA barcodes: ITS = ON862935; BenA = OP672383; CaM = OP290543; RPB2 = OP290515.

Talaromyces chongqingensis X.C. Wang & W.Y. Zhuang, Biology 10: 10. 2021. [MB 570851]. — Type: HMAS 247849 (holotype). Ex-type: CGMCC 3.20482. Infragen. class.: sect. Trachyspermi. DNA barcodes: ITS = MZ358001; BenA = MZ361343; CaM = MZ361350; RPB2 = MZ361357.

Talaromyces gaditanus (C. Ramírez & A.T. Martínez) Houbraken & Soccio, J. Fungi 7 (11, no. 993): 17. 2021. [MB 841226]. Basionym: Penicillium gaditanum C. Ramírez & A.T. Martínez, Mycopathologia 74: 165. 1981. [MB 112521]. — Type: IJFM 5146 (holotype). Ex-type: CBS 169.81 = DTO 228-B8 = ATCC 42230 = IMI 253792 = VKM F-2188 = IJFM 5146. Infragen. class.: sect. Trachyspermi. DNA barcodes: ITS = MH861318; BenA = OK338775; CaM = OK338802; RPB2 = OK338827.

Notes: Penicillium gaditanum was considered a synonym of T. minioluteus by Yilmaz et al. (2014). A recent revision of T. minioluteus and related species revealed that P. gaditanum is a distinct species and was therefore combined in Talaromyces as T. gaditanus (Pyrri et al. 2021).

Talaromyces germanicus Houbraken & Pyrri, J. Fungi 7 (11, no. 993): 19. 2021. [MB 841227]. — Type: CBS H-24876 (holotype). Ex-type: CBS 147314 = DTO 055-D1. Infragen. class.: sect. Trachyspermi. DNA barcodes: ITS = OK339619; BenA = OK338799; CaM = OK338812; RPB2 = OK338845.

Talaromyces ginkgonis W.C. Wang & W.Y. Zhuang, J. Fungi 8 (7, no. 647): 7. 2022. [MB 570954]. — Type: HMAS 247853 (holotype). Ex-type: CGMCC 3.20698. Infragen. class.: sect. Trachyspermi. DNA barcodes: ITS = OL638158; BenA = OL689844; CaM = OL689846; RPB2 = OL689848.

Talaromyces gwangjuensis Hyang B. Lee & T.T.T. Nguyen, J. Fungi 7 (9, no. 722): 8. 2021. [MB 554801]. — Type: CNUFC HT19191 (holotype). Ex-type: CNUFC WT19-1. Infragen. class.: sect. Purpurei. DNA barcodes: ITS = MK766233; BenA = MZ318448; CaM = n.a.; RPB2 = MK912174.

Talaromyces haitouensis L. Wang, J. Fungi 8 (1, no. 36): 3. 2021. [MB 570868]. — Type: HMAS 350335 (holotype). Ex-type: AS 3.16101 = HR1-7. Infragen. class.: sect. Talaromyces. DNA barcodes: ITS = MZ045695; BenA = MZ054634; CaM = MZ054637; RPB2 = MZ054631.

Talaromyces koreanus [as ‘koreana’] Hyang B. Lee, J. Fungi 7 (9, no. 722): 9. 2021. [MB 648574]. — Type: CNUFC HT19213 (holotype). Ex-type: CNUFC YJW2-13. Infragen. class.: sect. Helici. DNA barcodes: ITS = MZ315100; BenA = MZ318450; CaM = MZ332529; RPB2 = MZ332533.

Talaromyces nanjingensis X.R. Sun, X.Q. Wu & W. Wei, J. Fungi 8 (2, no. 155): 18. 2022. [MB 837590]. — Type: CCTCC-M 2012167 (holotype). Ex-type: CCTCC-M 2012167. Infragen. class.: sect. Talaromyces. DNA barcodes: ITS = MW130720; BenA = MW147759; CaM = MW147760; RPB2 = MW147762.

Notes: The phylogenies of T. nanjingensis and its close relatives T. brevis and T. liani proved to be problematic (Fig. 31 & Suppl. Fig. S29). BenA resolved T. nanjingensis and T. liani as close relatives, while T. brevis is distantly related. Based on CaM, T. nanjingensis, T. liani and T. brevis are phylogenetically similar species. Finally, T. nanjingensis and T. brevis share RPB2 sequences, and these species are closely related to T. liani. A taxonomic revision including a broader strain sampling is required to assess this species complex, but for the time being, we accept T. nanjingensis as a distinct species.

Fig. 31.

Fig. 31

Fig. 31

Phylogenetic tree of Talaromyces section Talaromyces, based on a concatenated dataset of BenA, CaM, RPB2, and ITS. Strains of recently described species are shown in bold coloured text. The tree was rooted to T. helicus. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by superscript T. See Suppl. Fig. S29.

Talaromyces peaticola Jian Q. Tian & Jing Z. Sun, Stud. Fungi 6: 396. 2021. [MB 553909]. — Type: HMAS 247296 (holotype). Ex-type: CGMCC 3.18620. Infragen. class.: sect. Trachyspermi. DNA barcodes: ITS = MF135613; BenA = MF284705; CaM = MF284703; RPB2 = MF284704.

Synonym of: Talaromyces diversus (Raper & Fennell) Samson, Yilmaz & Frisvad, Stud. Mycol. 70: 175. 2011. [MB 560649].

Notes: The BenA phylogeny resolved T. peaticola inside T. diversus (Fig. 33 & Suppl. Fig. S30) and we thus consider it a synonym of the latter.

Talaromyces penicillioides L. Wang, Mycologia 113: 501. 2021. [MB 831407]. — Type: HMAS 248132 (holotype). Ex-type: AS 3.15822. Infragen. class.: sect. Talaromyces. DNA barcodes: ITS = MK837956; BenA = MK837940; CaM = MK837948; RPB2 = MK837964.

Talaromyces phuphaphetensis Nuankaew, Chuaseehar. & Somrith., J. Fungi 8 (8: no. 825): 7. 2022. [MB 844613]. — Type: BBH 49306 (holotype). Ex-type: TBRC 16281 = CV00299. Infragen. class.: sect. Trachyspermi. DNA barcodes: ITS = ON692803; BenA = ON706960; CaM = ON706962; RPB2 = ON706964.

Talaromyces pulveris Crous, Persoonia 45: 293. 2020. [MB 837837]. — Type: CBS H-24417 (holotype). Ex-type: CBS 146831 = CPC 38523 = MUCL pd8781 = DTO 432-H1. Infragen. class.: sect. Purpurei. DNA barcodes: ITS = MW175345; BenA = MW173136; CaM = MW173099; RPB2 = MW173115.

Talaromyces resedanus (McLennan & Ducker) A.J. Chen, Houbraken & Samson, MycoKeys 68: 96. 2020. [MB 811695]. Basionym: Penicillium resedanum McLennan & Ducker, Austral. J. Bot. 2: 360. 1954. [MB 302422] — Type: IMI 062877 (holotype). Ex-type: CBS 181.71 = DTO 376-A7 = ATCC 22356 = FRR 578 = IMI 062877 = NRRL 578. Infragen. class.: sect. Subinflati. DNA barcodes: ITS = MN431413; BenA = MN969436; CaM = MN969355; RPB2 = MN969214.

Notes: Although an ITS sequence resolved P. resedanum in Talaromyces, Yilmaz et al. (2014) considered it a doubtful species because the CBS strain was not viable. The strain was subsequently successfully revived and formally combined as Talaromyces resedanus by Sun et al. (2020a). The identifier “MB 302422” cited in Sun et al. (2020a) is that of the basionym (P. resedanum), but the species is still validly published (Art. F.5.6 San Juan Chapter F) (May et al. 2019) because “MB 811695” was issued by MycoBank prior to the publication of the name. Sun et al. (2020a) considered T. omanensis (SQUCC 13153T) as synonym of T. resedanus based on morphology and DNA sequence data, which we follow here.

Talaromyces rosorhizae [as ‘rosarhiza’] [nom. inval. Art. 40.8 (Shenzhen)] H. Zhang & Y.L. Jiang, Biodivers. Data J. 9 (e70088): 11. 2021. [MB 662132]. — Type: GUCC 190040.1 (holotype). Ex-type: GUCC 190040.1. Infragen. class.: sect. Talaromyces. DNA barcodes: ITS = MZ221603; BenA = MZ333143; CaM = MZ333137; RPB2 = MZ333141.

Synonym of: Talaromyces penicillioides L. Wang, Mycologia 113: 501. 2021. [MB 831407].

Notes: This species was invalidly described. Phylogenies resolved T. rosorhizae and T. penicillioides, both introduced in 2021, in the same clade (Fig. 31 & Suppl. Fig. S29). We therefore choose not to validate this species.

Talaromyces rufus B.D. Sun, A.J. Chen, Houbraken & Samson, MycoKeys 68: 99. 2020. [MB 833133]. — Type: CBS H-22832 (holotype). Ex-type: CBS 141834 = DTO 349-D7 = CGMCC 3.13203. Infragen. class.: sect. Talaromyces. DNA barcodes: ITS = MN864272; BenA = MN863341; CaM = MN863318; RPB2 = MN863331.

Talaromyces samsonii (Quintan.) Houbraken & Pyrri, J. Fungi 7 (11, no. 993): 25. 2021. [MB 841230]. Basionym: Penicillium samsonii Quintan., Mycopathologia 91: 69. 1985. [MB 105614] — Type: CBS H-24877 (holotype). Ex-type: CBS 137.84 = DTO 304-C3 = DTO 169-G6 = CECT 2772 = IMI 282404 = IMI 327872. Infragen. class.: sect. Trachyspermi. DNA barcodes: ITS = MH861709; BenA = OK338798; CaM = OK338824; RPB2 = OK338844.

Notes: Penicillium samsonii was considered a synonym of T. minioluteus by Yilmaz et al. (2014). A recent revision of T. minioluteus and related species showed that P. samsonii is a distinct species and therefore combined in Talaromyces as T. samsonii (Pyrri et al. 2021).

Talaromyces santanderensis [nom. inval. Art. 40.8 (Shenzhen)] B.E. Guerra-Sierra & L.A. Arteaga-Figueroa, J. Fungi 8 (10, no. 1042): 5. 2022. [MB 845323]. — Type: CBUDES:UDES:3068 (holotype). Ex-type: HF05. Infragen. class.: sect. Talaromyces. DNA barcodes: ITS = OP082331; BenA = OP067657; CaM = OP067656; RPB2 = OP067655.

Synonym of: Talaromyces lentulus X.-Z. Jiang & L. Wang, Sci. Rep. 8 (no. 4932): 3. 2018. [MB 824519].

Notes: This species was invalidly described. All phylogenies resolve T. santanderensis inside the T. lentulus clade (Fig. 31 & Suppl. Fig. S29). We consider T. santaderensis a synonym of T. lentulus and therefore choose not to validate this species.

Talaromyces satunensis Nuankaew, Chuaseehar. & Somrith., J. Fungi 8 (8: no. 825): 8. 2022. [MB 844614]. — Type: BBH 49305 (holotype). Ex-type: TBRC 16246 = CV00055. Infragen. class.: sect. Trachyspermi. DNA barcodes: ITS = ON692804; BenA = ON706961; CaM = ON706963; RPB2 = n.a.

Talaromyces saxoxalicus J. Trovão, F. Soares, I. Tiago & A. Portugal, Int. J. Syst. Evol. Microbiol. 71 (12, no. 5175): 4. 2021. [MB 834608]. — Type: MUM-H 20.30 (holotype). Ex-type: MUM 20.30. Infragen. class.: sect. Purpurei. DNA barcodes: ITS = MT039882; BenA = MT052003; CaM = n.a.; RPB2 = MT052004.

Talaromyces shilinensis X.C. Wang & W.Y. Zhuang, J. Fungi 8 (7, no. 647): 10. 2022. [MB 570955]. — Type: HMAS 247854 (holotype). Ex-type: CGMCC 3.20699. Infragen. class.: sect. Talaromyces. DNA barcodes: ITS = OL638159; BenA = OL689845; CaM = OL689847; RPB2 = OL689849.

Talaromyces sparsus L. Wang, Mycologia 113: 501. 2021. [MB 831409]. — Type: HMAS 248135 (holotype). Ex-type: AS 3.16003. Infragen. class.: sect. Talaromyces. DNA barcodes: ITS = MT077182; BenA = MT083924; CaM = MT083925; RPB2 = MT083926.

Talaromyces teleomorphus [as ‚teleomorpha‘] Hyang B. Lee, Frisvad, P.M. Kirk, H.J. Lim & T.T.T. Nguyen, J. Fungi 7 (9, no. 722): 11. 2021. [MB 648560]. — Type: CNUFC HT19251 (holotype). Ex-type: CNUFC YJW2-5. Infragen. class.: sect. Helici. DNA barcodes: ITS = MZ315102; BenA = MZ318452; CaM = MZ332531; RPB2 = MZ332535.

Talaromyces tenuis B.D. Sun, A.J. Chen, Houbraken & Samson, MycoKeys 68: 86. 2020. [MB 833136]. — Type: CBS H-22838 (holotype). Ex-type: CBS 141840 = DTO 340-G9. Infragen. class.: sect. Tenues. DNA barcodes: ITS = MN864275; BenA = MN863344; CaM = MN863321; RPB2 = MN863333.

Talaromyces wushanicus X.C. Wang & W.Y. Zhuang, Biology 10 (8, no. 745): 15. 2021. [MB 570852]. — Type: HMAS 247848 (holotype). Ex-type: CGMCC 3.20481. Infragen. class.: sect. Talaromyces. DNA barcodes: ITS = MZ356356; BenA = MZ361347; CaM = MZ361354; RPB2 = MZ361361.

Talaromyces yunnanensis Doilom & C.F. Liao, Front. Microbiol. 11 (no. 585215): 18. 2020. [MB 557863]. — Type: MFLU 20-0434 (holotype). Ex-type: KUMCC 18-0208. Infragen. class.: sect. Talaromyces. DNA barcodes: ITS = MT152339; BenA = MT161683; CaM = MT178251; RPB2 = n.a.

Talaromyces zhenhaiensis L. Wang, J. Fungi 8 (1, no. 36): 7. 2021. [MB 570869]. — Type: HMAS 350336 (holotype). Ex-type: AS 3.16102 = ZH3-18. Infragen. class.: sect. Talaromyces. DNA barcodes: ITS = MZ045697; BenA = MZ054636; CaM = MZ054639; RPB2 = MZ054633.

Xerochrysium bohemicum Kubátová & Hubka, Persoonia 46: 519. 2021. [MB 839239]. — Type: PRM 954080. Ex-type: CCF 3693 = CBS 147157. DNA barcodes: ITS = MW798184; BenA = n.a.; CaM = n.a.; RPB2 = n.a.

Xerochrysium coryli (Crous & Decock) Visagie & Houbraken, published here. [MB 849335]. Basionym: Paraxerochrysium coryli Crous & Decock, Persoonia 47: 261. 2021. [MB 841830]. — Type: CBS H-24853 (holotype). Ex-type: CBS 148314 = CPC 41272 = MUCL 58103. DNA barcodes: ITS = OK664748; BenA = OK651216; CaM = n.a.; RPB2 = OK651178.

Notes: See notes for Xerochrysium coryli above in the description.

Accepted species published before 2020 not included in Houbraken et al. (2020)

The following species were not included the list published by Houbraken et al. (2020).

Aspergillus coreanus S.B. Hong, Frisvad & Samson, Int. J. Syst. Evol. Microbiol. 56: 485. 2006. [MB 521268]. — Type: CBS 117059 (holotype). Ex-type: CBS 117059 = NRRL 35590 = KACC 41659. Infragen. class.: subgen. Fumigati sect. Fumigati ser. Fumigati. DNA barcodes: ITS = JN943570; BenA = AY870758; CaM = AY870718; RPB2 = n.a.

Species with no or inconclusive sequence data available

The following species were accepted by Houbraken et al. (2020). However, since no sequence data are available for these, we exclude these names until their phylogenetic relationships can be verified.

Aspergillus argenteus [as ‘argentum’] J.N. Rai & H.J. Chowdhery, Kavaka 7: 19. 1980. [MB 116063]. — Type: MLLU 104. Ex-type: unknown.

Aspergillus beijingensis D.M. Li, Y. Horie, Yu X. Wang & R.Y. Li, Mycoscience 39: 299. 1998. [MB 446575]. — Type: CBM FD-285. Ex-type: CBM FD-285.

Aspergillus collembolorum Dörfelt & A.R. Schmidt, Mycol. Res. 109: 956, figs 1–9. 2005. [MB 344420]. — Type: Russia: Kaliningrad (Koenigsberg), in succinum Balticum, in exemplare subordines Entomobryomorpha (Collembola), C. & H. W. Hoffeins (coll. Hoffeins, Hamburg, no. 805, holotypus). Ex-type: unknown.

Aspergillus crassihyphae Wadhwani & N. Mehrotra, Indian Bot. Reporter: 52. 1985. [MB 105070]. — Type: unknown. Ex-type: unknown.

Aspergillus curviformis H.J. Chowdhery & J.N. Rai, Nova Hedwigia 32: 231. 1980. [MB 118396]. — Type: unknown. Ex-type: unknown.

Aspergillus ellipsoideus J.N. Rai & H.J. Chowdhery, Kavaka 7: 17. 1980. [MB 116064]. — Type: MLLU 107. Ex-type: unknown.

Aspergillus maritimus Samson & W. Gams, Adv. Pen. Asp. Syst.: 43. 1986. [MB 114709]. — Type: CBS 186.77. Ex-type: CBS 186.77.

Aspergillus qizutongii D.M. Li, Y. Horie, Yu X. Wang & R.Y. Li, Mycoscience 39: 301. 1998. [MB 446576]. — Type: CBM FD-284. Ex-type: CBM FD-284.

Aspergillus raianus [as ‘raianum’] H.J. Chowdhery, Curr. Sci. 48: 953. 1979. [MB 309239]. — Type: MLLU 110. Ex-type: unknown.

Aspergillus subunguis Wadhwani, Dudeja & M.P. Srivast., Curr. Sci. 53: 443. 1984. [MB 105934]. — Type: IMI 254637. Ex-type: IMI 254637.

Aspergillus tapirirae C. Ram & A. Ram, Atti Reale Accad. Sci. Napoli: 100. 1972. [MB 309245]. — Type: IMUFPe 2175. Ex-type: unknown.

Aspergillus vinosobubalinus Udagawa, Kamiya & Kaori Osada, Trans. Mycol. Soc. Japan 34: 255. 1993. [MB 361186]. — Type: CBM BF-33501. Ex-type: CBM BF-33501.

Aspergillus wangduanlii D.M. Li, Y. Horie, Yu X. Wang & R.Y. Li, Mycoscience 39: 302. 1998. [MB 447107]. — Type: CBM FD-283. Ex-type: CBM FD-283.

Penicilliopsis africana Samson & Seifert, Adv. Pen. Asp. Syst.: 408. 1985. [MB 114759]. — Type: unknown. Ex-type: unknown.

Penicilliopsis pseudocordyceps H.M. Hsieh & Y.M. Ju, Mycologia 9: 541. 2002. [MB 484663]. — Type: HAST (Taiwan) Hsieh & Ju 89112611. Ex-type: BCRC 33730.

Penicillium asymmetricum (Subramanian & Sudha) Houbraken & Samson, Stud. Mycol. 70: 47. 2011. [MB 561963]. Basionym: Thysanophora asymmetrica Subram. & Sudha, Kavaka 13: 88. 1985. [MB 135502]. — Type: unknown. Ex-type: unknown.

Penicillium coniferophilum Houbraken & Samson, Stud. Mycol. 70: 47. 2011. [MB 561968]. Basionym: Thysanophora striatispora G.L. Barron & W.B. Cooke, Mycopathologia et Mycologia Applicata 40 (3-4): 353. 1970. [MB 324607]. — Type: unknown. Ex-type: unknown.

Penicillium glaucoalbidum (Desmazières) Houbraken & Samson, Stud. Mycol. 70: 47. 2011. [MB 561965]. Basionym: Sclerotium glaucoalbidum Desm., Ann. Sci. Nat. Bot. 16: 329. 1851. [MB 212120]. — Type: unknown. Ex-type: unknown.

Penicillium longisporum (W.B. Kendr.) Houbraken & Samson, Stud. Mycol. 70: 47. 2011. [MB 561966]. Basionym: Thysanophora longispora W.B. Kendr., Can. J. Bot. 39 (4): 826. 1961. [MB 340086]. — Type: DAOM 63073. Ex-type: CBS 354.62 = DAOM 63073 = MUCL 4168.

Phialomyces fusiformis G. Delgado & Decock, Mycologia 95: 896. 2003. [MB 489106]. — Type: MUCL 43747. Ex-type: MUCL 43747.

Thermoascus taitungiacus K.Y. Chen & Z.C. Chen, Mycotaxon 60: 226. 1996. [MB 436720]. — Type: TAl-Mycology K-Y Chen 8709-2. Ex-type: unknown.

Species in Houbraken et al. (2020) synonymised afterwards

Aspergillus amoenus M. Roberg, Hedwigia 70: 138. 1931. [MB 250654]. — Type: Munster, isol. ex Berberis sp. fruit, M. Roberg (type locality, this specimen was not deposited into herbarium). Ex-type: NRRL 4838 = CBS 111.32. Infragen. class.: subgen. Nidulantes sect. Nidulantes ser. Versicolores. DNA barcodes: ITS = EF652480; BenA = JN853946; CaM = JN854035; RPB2 = JN853824.

Synonym of: Aspergillus versicolor (Vuill.) Tirab., Ann. Bot. (Roma) 7: 9. 1908. [MB 172159] (Sklenář et al. 2022).

Aspergillus austroafricanus Ž. Jurjević, S.W. Peterson & B.W. Horn, SIM 3: 67. 2012. [MB 800597]. — Type: BPI 880914. Ex-type: CBS 145748 = NRRL 233 = DTO 225-D8. Infragen. class.: subgen. Nidulantes sect. Nidulantes ser. Versicolores. DNA barcodes: ITS = JQ301891; BenA = JN853963; CaM = JN854025; RPB2 = JN853814.

Synonym of: Aspergillus versicolor (Vuill.) Tirab., Ann. Bot. (Roma) 7: 9. 1908. [MB 172159] (Sklenář et al. 2022).

Aspergillus capensis Visagie, Hirooka & Samson, Stud. Mycol. 78: 105. 2014. [MB 809193]. — Type: CBS H-21810. Ex-type: CBS 138188 = DTO 179-E6. Infragen. class.: subgen. Circumdati sect. Flavipedes ser. Flavipedes. DNA barcodes: ITS = KJ775550; BenA = KJ775072; CaM = KJ775279; RPB2 = KP987020.

Synonym of: Aspergillus iizukae Sugiy., J. Fac. Sci. Univ. Tokyo, Sect. 3 9: 390. 1967. [MB 326636] (Sklenář et al. 2021).

Aspergillus costaricensis [as ‘costaricaensis’] Samson & Frisvad, Stud. Mycol. 50: 52. 2004. [MB 369151]. — Type: CBS H-13437. Ex-type: CBS 115574 = IBT 23401 = CECT 20579 = ITEM 7555. Infragen. class.: subgen. Circumdati sect. Nigri ser. Nigri. DNA barcodes: ITS = DQ900602; BenA = FJ629277; CaM = FN594545; RPB2 = HE984361.

Synonym of: Aspergillus tubingensis Mosseray, La Cellule 43: 245. 1934. [MB 255209] (Bian et al. 2022).

Aspergillus cvjetkovicii Jurjevic, S.W. Peterson & B.W. Horn, SIM 3: 69. 2012. [MB 800599]. — Type: BPI 880909. Ex-type: NRRL 227 = CBS 599.65. Infragen. class.: subgen. Nidulantes sect. Nidulantes ser. Versicolores. DNA barcodes: ITS = EF652440; BenA = EF652264; CaM = EF652352; RPB2 = EF652176.

Synonym of: Aspergillus creber Jurjevic, S.W. Peterson & B.W. Horn, SIM 3: 69. 2012. [MB 800598] (Sklenář et al. 2022).

Aspergillus fructus Jurjevic, S.W. Peterson & B.W. Horn, SIM 3: 70. 2012. [MB 800600]. — Type: BPI 880915. Ex-type: NRRL 239 = CBS 584.65. Infragen. class.: subgen. Nidulantes sect. Nidulantes ser. Versicolores. DNA barcodes: ITS = EF652449; BenA = EF652273; CaM = EF652361; RPB2 = EF652185.

Synonym of: Aspergillus versicolor (Vuill.) Tirab., Ann. Bot. (Roma) 7: 9. 1908. [MB 172159] (Sklenář et al. 2022).

Aspergillus griseoaurantiacus Visagie, Hirooka & Samson, Stud. Mycol. 78: 112. 2014. [MB 809197]. — Type: CBS H-21814. Ex-type: CBS 138191 = DTO 267D8. Infragen. class.: subgen. Nidulantes sect. Nidulantes ser. Versicolores. DNA barcodes: ITS = KJ775553; BenA = KJ775086; CaM = KJ775357; RPB2 = KU866988.

Synonym of: Aspergillus versicolor (Vuill.) Tirab., Ann. Bot. (Roma) 7: 9. 1908. [MB 172159] (Sklenář et al. 2022).

Aspergillus hongkongensis C.C. Tsang, T.W.S. Hui, K.C. Lee, J.H.K. Chen, A.H.Y. Ngan, E.W.T. Tam, J.F.W. Chan, A.L. Wu, M. Cheung, B.P.H. Tse, A.K.L. Wu, C.K.C. Lai, D.N.C. Tsang, T.L. Que, C.W. Lam, K.Y. Yuen, S.K.P. Lau & P.C.Y. Woo, Diagn. Microbiol. Infect. Dis. 84: 130. 2016. [MB 810279]. — Type: NBRC H-13268. Ex-type: CBS 145671 = HKU49 = NBRC 110693 = NCPF 7870 = BCRC FU30360 = DTO 351-C3. Infragen. class.: subgen. Nidulantes sect. Nidulantes ser. Versicolores. DNA barcodes: ITS = AB987907; BenA = LC000552; CaM = MN969320; RPB2 = LC000578.

Synonym of: Aspergillus versicolor (Vuill.) Tirab., Ann. Bot. (Roma) 7: 9. 1908. [MB 172159] (Sklenář et al. 2022).

Aspergillus jensenii Jurjevic, S.W. Peterson & B.W. Horn, SIM 3: 70. 2012. [MB 800601]. — Type: BPI 880910. Ex-type: NRRL 58600. Infragen. class.: subgen. Nidulantes sect. Nidulantes ser. Versicolores. DNA barcodes: ITS = JQ301892; BenA = JN854007; CaM = JN854046; RPB2 = JN853835.

Synonym of: Aspergillus creber Jurjevic, S.W. Peterson & B.W. Horn, SIM 3: 69. 2012. [MB 800598] (Sklenář et al. 2022).

Aspergillus neoniger Varga, Frisvad & Samson, Stud. Mycol. 69: 16. 2011. [MB 560390]. — Type: CBS H-20630. Ex-type: CBS 115656 = NRRL 62634. Infragen. class.: subgen. Circumdati sect. Nigri ser. Nigri. DNA barcodes: ITS = FJ491682; BenA = FJ491691; CaM = FJ491700; RPB2 = KC796429.

Synonym of: Aspergillus tubingensis Mosseray, La Cellule 43: 245. 1934. [MB 255209] (Bian et al. 2022).

Aspergillus pepii Despot, Kocsubé, Varga & Klarić, Mycol. Prog. 16: 67. 2017. [MB 817073]. — Type: SZMC 23791 (holotype). Ex-type: CBS 142028 = MFBF AV11051B IX = SZMC 22333. Infragen. class.: subgen. Nidulantes sect. Nidulantes ser. Versicolores. DNA barcodes: ITS = KU613368; BenA = KU613371; CaM = KU613365; RPB2 = n.a.

Synonym of: Aspergillus versicolor (Vuill.) Tirab., Ann. Bot. (Roma) 7: 9. 1908. [MB 172159] (Sklenář et al. 2022).

Aspergillus piperis Samson & Frisvad, Stud. Mycol. 50: 57. 2004. [MB 500009]. — Type: CBS H-13434. Ex-type: CBS 112811 = IBT 24630 = IBT 26239 = NRRL 62631. Infragen. class.: subgen. Circumdati sect. Nigri ser. Nigri. DNA barcodes: ITS = EU821316; BenA = FJ629303; CaM = EU163267; RPB2 = KC796427.

Synonym of: Aspergillus luchuensis Inui, Journal of the Faculty of Science, Imperial University of Tokyo 15: 469. 1901. [MB 151291] (Bian et al. 2022).

Aspergillus protuberus Munt.-Cvetk., Mikrobiologia 5: 119. 1968. [MB 326650]. Basionym: Aspergillus versicolor var. protuberus (Munt.-Cvetk.) Kozak., Mycological Papers 161: 139. 1989. [MB 127752]. — Type: CBS 602.74. Ex-type: CBS 602.74 = NRRL 3505 = ATCC 18990 = QM 9804. Infragen. class.: subgen. Nidulantes sect. Nidulantes ser. Versicolores. DNA barcodes: ITS = EF652460; BenA = EF652284; CaM = EF652372; RPB2 = EF652196.

Synonym of: Aspergillus versicolor (Vuill.) Tirab., Ann. Bot. (Roma) 7: 9. 1908. [MB 172159] (Sklenář et al. 2022).

Aspergillus puulaauensis Jurjevic, S.W. Peterson & B.W. Horn, SIM 3: 71. 2012. [MB 800602]. — Type: BPI 880911. Ex-type: CBS 145750 = NRRL 35641 = DTO 225-G5. Infragen. class.: subgen. Nidulantes sect. Nidulantes ser. Versicolores. DNA barcodes: ITS = JQ301893; BenA = JN853979; CaM = JN854034; RPB2 = JN853823.

Synonym of: Aspergillus creber Jurjevic, S.W. Peterson & B.W. Horn, SIM 3: 69. 2012. [MB 800598] (Sklenář et al. 2022).

Aspergillus tabacinus Nakaz., Y. Takeda, Simo & A. Watan., J. Agric. Chem. Soc. Japan 10: 177. 1934. [MB 539544]. — Type: CBS H-24287. Ex-type: CBS 122718 = NRRL 4791 = IFO 4098 = QM 9766 = WB 4791. Infragen. class.: subgen. Nidulantes sect. Nidulantes ser. Versicolores. DNA barcodes: ITS = EF652478; BenA = EF652302; CaM = EF652390; RPB2 = EF652214.

Synonym of: Aspergillus versicolor (Vuill.) Tirab., Ann. Bot. (Roma) 7: 9. 1908. [MB 172159] (Sklenář et al. 2022).

Aspergillus tennesseensis Jurjevic, S.W. Peterson & B.W. Horn, SIM 3: 73. 2012. [MB 800604]. — Type: BPI 880917. Ex-type: CBS 145752 = NRRL 13150 = DTO 225-F5. Infragen. class.: subgen. Nidulantes sect. Nidulantes ser. Versicolores. DNA barcodes: ITS = JQ301895; BenA = JN853976; CaM = JN854017; RPB2 = JN853806. (Sklenář et al. 2022)

Synonym of: Aspergillus creber Jurjevic, S.W. Peterson & B.W. Horn, SIM 3: 69. 2012. [MB 800598] (Sklenář et al. 2022).

Aspergillus venenatus Jurjevic, S.W. Peterson & B.W. Horn, SIM 3: 73. 2012. [MB 800605]. — Type: BPI 880916. Ex-type: CBS 145753 = NRRL 13147 = DTO 225-F4. Infragen. class.: subgen. Nidulantes sect. Nidulantes ser. Versicolores. DNA barcodes: ITS = JQ301896; BenA = JN854003; CaM = JN854014; RPB2 = JN853803.

Synonym of: Aspergillus creber Jurjevic, S.W. Peterson & B.W. Horn, SIM 3: 69. 2012. [MB 800598] (Sklenář et al. 2022).

Aspergillus welwitschiae (Bres.) Henn. apud Wehmer, Centralbl. Bakteriol. Parasitenk., 2. Abth. 18: 294. 1907. [MB 490584]. Basionym: Ustilago welwitschiae Bres., Bol. Soc. Brot. 11: 68. 1893. [MB 176748]. — Type: CBS 139.54. Ex-type: CBS 139.54. Infragen. class.: subgen. Circumdati sect. Nigri ser. Nigri. DNA barcodes: ITS = FJ629340; BenA = MN969369; CaM = KC480196; RPB2 = MN969100.

Synonym of: Aspergillus niger Tiegh., Ann. Sci. Nat., Bot. ser. 5 8: 240. 1867. [MB 284309] (Bian et al. 2022).

Penicillium cluniae [nom. inval. Arts 40.7 (Shenzhen)] Quintan., Av. Aliment. Mejora Anim. 30: 174. 1990. [MB 130240].

Synonym of: Penicillium soli Doilom, C.F. Liao & D. Pem, Front. Microbiol. 11 (no. 585215): 13. 2020. [MB 557862] (this paper).

Talaromyces omanensis Halo, Maharachch., Al-Yahyai & Al-Sadi, Phytotaxa 404: 192. 2019. [MB 830302]. — Type: SQU H-106 (holotype). Ex-type: SQUCC 13153. Infragen. class.: sect. Subinflati. DNA barcodes: ITS = MH784402; BenA = MH794502; CaM = MH794503; RPB2 = n.a.

Synonym of: Talaromyces resedanus (McLennan & Ducker) A.J. Chen, Houbraken & Samson, MycoKeys 68: 96. 2020. [MB 811695] (Sun et al. 2020a).

DISCUSSION

In this study, we review Eurotiales species described since the previous accepted species list by Houbraken et al. (2020) up until 31 December 2022. Species were revised based on a phylogenetic species concept and the application of Genealogical Concordance Phylogenetic Species Recognition (GCPSR; Taylor et al. 2000), which is the most widely used species concept in Eurotiales. However, we believe that the polyphasic approach (or consilient concept of species) provides a holistic view of species and therefore consider it important to include morphology and, where possible, extrolite (secondary metabolite) as well as whole-genome sequence data, which will play an important role in the near future. Taxonomists dealing with Eurotiales have historically kept classifications practical and useful to the end user, an approach that has served the community dealing with these important fungi well. In case of doubt about the delimitation of species during this review, we have given preference to the publisher and accepted the name. However, we have classified newly published species as synonyms when the currently available data clearly do not support their novelty, while in cases where species were published without or with poor quality sequence data, we considered them doubtful because their future identification would not be possible. This follows Charles Thom’s idea that a species is only useful if others can identify it (Thom 1954). During this study, several trends were noted where descriptions can go wrong. We discuss these trends in more detail below and provide recommendations to avoid them in the future.

The ICNafp (Turland et al. 2018) governs the naming of fungi and sets out the rules for the valid and legitimate publication of names. Of the 160 new Eurotiales names introduced, 10 were invalid because they either did not comply with Art. 40.7 (the single herbarium, collection or institution in which the type is conserved must be specified), Art. 40.8 (the protologue must include a statement that the culture is preserved in a metabolically inactive state), or in some cases both. In addition to ICNafp, there are other helpful resources to guide valid publication of names. These include ‘The Code Decoded’ (Turland 2019) and several publications on behalf of the International Commission on the Taxonomy of Fungi (ICTF) outlining the best practises for describing a new species (Sigler & Hawksworth 1987, Seifert & Rossman 2010, Aime et al. 2021).

DNA sequence comparisons have become the most important tool for the classification and identification of fungal species. A reliable and complete reference database is crucial for this approach. The openly available and mostly complete ex-type DNA sequence reference sets (Samson et al. 2014, Visagie et al. 2014, Yilmaz et al. 2014, Houbraken et al. 2020) for ITS, BenA, CaM and RPB2 are a great resource. However, as critical as they may be, the ex-type sequences only serve as anchor points for the species, while additional sequences are needed to capture infraspecies variation and delimit species. Bian et al. (2022), Glässnerová et al. (2022) and Sklenář et al. (2022) emphasise the importance of these sequences, which should preferably come from strains isolated from different substrates and (ecological) regions. We therefore recommend not to compare putative new species only with ex-type strains in phylogenies where more extensive data is available as this does not provide information on species boundaries and can lead to incorrect conclusions. An example where this was a problem was the description of Penicillium tolerans as a close relative of P. sclerotiorum (Tan & Shivas 2022). The latter was subject to several taxonomic revisions with phylogenies that placed P. sclerotiorum strains into two closely related clades. However, both Rivera & Seifert (2011) and Visagie et al. (2013) concluded that from a morphological and ecological point of view there is no reason to consider these clades as separate species. In the case of P. tolerans, the ex-type strain (BRIP 64090a) resolves into the clade without the P. sclerotiorum ex-type strain (CBS 287.36) (Fig. 27). The phylogenies presented by Tan & Shivas (2022) did not include a comparison with all closely related sequences and left unmentioned their conclusions about these other ‘P. sclerotiorum’ strains and the reasons why the clade with P. tolerans should be considered distinct. In view of this, we consider P. tolerans a synonym of P. sclerotiorum.

Homology searches are a popular tool to quickly identify strains at the species level and generally works well if you get hits with well curated sequences. If a search does not find highly similar sequences, this may be due to several reasons. The sequence in question could belong to an unsequenced described species, represent an unsequenced genotype of an existing species or indicate a new species. The list of accepted species is very informative because, at least for Eurotiales, we can practically ignore the names not accepted and we have reference sequences of all known species. Dissimilarity higher than 4 %, especially in CaM and RPB2, is a relatively safe indication of new species in Aspergillus (Bian et al. 2022). Nevertheless, the results of homology searches should be interpreted with caution and should not be confused with phylogenetic relatedness. We recommend to always confirm new species or genotypes by phylogenetic analyses and not to rely only on homology search results.

Examples of low-quality sequence data used for species descriptions were noted for several recently described species. This has already been discussed for fungi (Nilsson et al. 2017) and remains problematic, even though careful contig assembly and proper trimming and base-calling should resolve this issue. In our analyses, the ITS alignments generated for Aspergillus sect. Circumdati revealed suspect sequences for both A. curvatus and A. gaarensis. Similarly, the sequences available for the recently published A. pseudopiperis and A. pseudotubingensis were considered to be of low quality (Bian et al. 2022), while Visagie et al. (2021) illustrated the same problem in the descriptions of P. attenuatum, P. ochotense and P. piltunense (Kirichuk, Pivkin & Matveeva 2016). Aspergillus pseudopiperis were considered a synonym of A. tubingensis (Bian et al. 2022), while P. attenuatum, P. ochotense and P. piltunense was considered synonyms of P. antarcticum (Visagie et al. 2021). In most cases, however, low-quality sequences make classification and future identification impossible, so that the species must be considered doubtful.

As mentioned above, the phylogenetic species concept and the application of GCPSR is important for the taxonomy of Eurotiales within our preferred consilient concept of species. GCPSR has largely proven to be a consistent approach to defining species boundaries. In principle, a species is delimited in the narrowest sense at the most recent node that forms consistently between different gene phylogenies (Taylor et al. 2000). In Eurotiales, the four most commonly used gene regions are ITS, BenA, CaM and RPB2, and we recommend that these are at least sequenced when describing new species. Recently, several Eurotiales species were introduced that lacked an ITS sequence, the official DNA barcode for fungi (Schoch et al. 2012). Admittedly, ITS is generally not informative at the species level, but we consider it good practice to sequence ITS at least for the ex-type strain of a new species. Several species have also been introduced without sequence data for all recommended genes. We cannot stress enough how important this is for the taxonomy of Eurotiales at a time when mycologists are struggling with the implications of the ‘Nagoya Protocol on Access to Genetic Resources and the Fair and Equitable Sharing of Benefits Arising from their utilisation under the Convention on Biological Diversity’ and the interpretation by governments that restricts and, in many cases, prohibits the exchange of strains between mycologists from different countries. The ICNafp (Rec. 8B.1) recommends that strains of new species should be deposited in two recognised public culture or genetic resource collections, preferably in different countries. It is not inconceivable that strain sharing will become even more complicated in the future, making taxonomic revisions more difficult. This is a complex issue, but we recommend looking for ways to enable sharing of strains. Nevertheless, we believe it is critical that new species are described with as much data as possible, not only to prove conclusively that the proposed species are indeed new, but also to avoid a future in which species might be classified as doubtful because no material is available for study or a lack of data on the species renders it unrecognisable, as was the case with the many doubtful species described in the late 1800s, what Pitt (1980) called the ‘dark ages’.

The introduction of species with a single isolate is not ideal, but it is also not considered a problem, provided it is clearly unique based on all available data, which at least includes BenA, CaM and RPB2. Of course, there is always the risk that a species is not new when future data are collected. Currently, 467 of the 1 279 recognised Eurotiales species are known from only the ex-type strain and 219 species for which one additional reference sequence is available in GenBank. For Aspergillus, 143 of 453 accepted species are represented by the ex-type strain only, while an additional strain was sequenced for 93; for Penicillium, 175 of 535 accepted species are represented by the ex-type strain only, while an additional strain was sequenced for 75; and for Talaromyces, 88 of 203 accepted species are represented by the ex-type strain only, while an additional strain was sequenced for 34. Thus, for a considerable proportion of accepted species, we have little knowledge about infraspecific variability and thus also species boundaries, and much remains to be done to capture them. We therefore recommend that when isolating these poorly sequenced species, BenA, CaM and RPB2 sequences be generated and the strains deposited in recognised culture collections or, if this is not possible, the strains be shared with taxonomists working on these genera. Because of the uncertainty that a lack of DNA reference data can cause, we also recommend that workers who are uncertain about the identity of a species ask a taxonomist specialising in these fungi for a second opinion or advice.

Throughout the history of these genera, the way we describe species has evolved, bringing with it many taxonomic changes. The one thing that has remained is the community of collaborators who have adhered to best practises and worked together to create a standard for Eurotiales that serves everyone and provides a solid taxonomic basis for the study of these species. We believe that our recommendations will help to expand this community and provide further stability to the taxonomy of Eurotiales.

Fig. 2.

Fig. 2

Phylogenetic tree of Aspergillus section Candidi based on a concatenated dataset of BenA, CaM, and RPB2. Strains of recently described species are shown in bold coloured text. The tree was rooted to A. neotritici. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by superscript T. See Suppl. Fig. S2.

Fig. 4.

Fig. 4

Phylogenetic tree of Aspergillus section Circumdati series Sclerotiorum based on a concatenated dataset of BenA, CaM, and RPB2. Strains of recently described species are shown in bold coloured text. The tree was rooted to A. ochraceus. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by superscript T. See Suppl. Fig. S4.

Fig. 5.

Fig. 5

Phylogenetic tree of Aspergillus section Cremei series Wentiorum based on a concatenated dataset of BenA, CaM, and RPB2. Strains of recently described species are shown in bold coloured text. The tree was rooted to A. cremeus. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by superscript T. See Suppl. Fig. S5.

Fig. 7.

Fig. 7

Phylogenetic tree of Aspergillus sections Flavipedes and Janorum based on a concatenated dataset of BenA, CaM, and RPB2. Strains of recently described species are shown in bold coloured text. The tree was rooted to A. terreus. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by superscript T. See Suppl. Fig. S7.

Fig. 9.

Fig. 9

Phylogenetic tree of Aspergillus section Nidulantes series Versicolores based on a concatenated dataset of BenA, CaM, and RPB2. Strains of recently described species are shown in bold coloured text. The tree was rooted to A. aeneus. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by superscript T. See Suppl. Fig. S9.

Fig. 11.

Fig. 11

Phylogenetic tree of Aspergillus section Polypaecilum based on a concatenated dataset of BenA, CaM, RPB2, and ITS. Strains of recently described species are shown in bold coloured text. The tree was rooted to A. cremeus. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by superscript T. See Suppl. Fig. S11.

Fig. 13.

Fig. 13

Phylogenetic tree of Aspergillus section Usti series Calidousti based on a concatenated dataset of BenA, CaM, and RPB2. Strains of recently described species are shown in bold coloured text. The tree was rooted to A. ustus. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by superscript T. See Suppl. Fig. S13.

Fig. 15.

Fig. 15

Phylogenetic tree of Paecilomyces based on a concatenated dataset of BenA, CaM, RPB2 and ITS. Strains of recently described species are shown in bold coloured text. The tree was rooted to Thermoascus crustaceus. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by superscript T. See Suppl. Fig. S14.

Fig. 20.

Fig. 20

Phylogenetic tree of Penicillium section Canescentia based on a concatenated dataset of BenA, CaM, and RPB2. Strains of recently described species are shown in bold coloured text. The tree was midpoint rooted. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by superscript T. See Suppl. Fig. S18.

Fig. 22.

Fig. 22

Phylogenetic tree of Penicillium sections Crypta and Torulomyces based on a concatenated dataset of BenA, CaM, and RPB2. Strains of recently described species are shown in bold coloured text. The tree was rooted to P. alfredii. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by superscript T. See Suppl. Fig. S20.

Fig. 26.

Fig. 26

Phylogenetic tree of Penicillium sections Paradoxa, Ramosum and Robsamsonia, based on a concatenated dataset of BenA, CaM, and RPB2. Strains of recently described species are shown in bold coloured text. The tree was midpoint rooted. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by superscript T. See Suppl. Fig. S24.

Fig. 29.

Fig. 29

Phylogenetic tree of Talaromyces section Helici, based on a concatenated dataset of BenA, CaM, RPB2, and ITS. Strains of recently described species are shown in bold coloured text. The tree was rooted to T. purpureogenus. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by superscript T. See Suppl. Fig. S27.

Fig. 30.

Fig. 30

Phylogenetic tree of Talaromyces sections Purpurei and Subinflati, based on a concatenated dataset of BenA, CaM, RPB2, and ITS. Strains of recently described species are shown in bold coloured text. The tree was midpoint rooted. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by superscript T. See Suppl. Fig. S28.

Fig. 32.

Fig. 32

Phylogenetic tree of Talaromyces showing the phylogenetic relationship of the recently introduced section Tenues, based on a concatenated dataset of BenA, CaM, RPB2, and ITS. Strains of recently described species are shown in bold coloured text. The tree was rooted to Trichocoma paradoxa. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by superscript T. Representative strains are indicated by superscript R. See Suppl. Fig. S30.

Acknowledgments

C.M. Visagie and N. Yilmaz received funding from the European Union’s Horizon 2020 research and innovation program (RISE) under the Marie Skłodowska-Curie grant agreement No. 101008129, project acronym “Mycobiomics”. C.M. Visagie was also supported by the University of Pretoria’s University Capacity Development Programme (UCDP) grant. V. Hubka was supported by the Czech Ministry of Health (grant NU21-05-00681). We are grateful to K. Bensch for her advice and guidance, and we thank L. Krieglsteiner (Spraitbach, Germany) and D. Malloch for sharing specimens of Aspergillus lentisci.

DECLARATION ON CONFLICT OF INTEREST

The authors declare that there is no conflict of interest.

Supplementary Material: https://studiesinmycology.org/

Fig. S1

Phylogenetic trees of Aspergillus section Aenei series Aenei based on BenA, CaM, and RPB2. Strains of recently described species are shown in bold coloured text. Trees were rooted to A. versicolor. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by T.

sim-2024-107-1-SF1.jpg (860.5KB, jpg)
Fig. S2

Phylogenetic trees of Aspergillus section Candidi series Candidi based on BenA, CaM, and RPB2. Strains of recently described species are shown in bold coloured text. Trees were rooted to A. neotritici. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by T.

sim-2024-107-1-SF2.jpg (3.3MB, jpg)
Fig. S3

Phylogenetic trees of Aspergillus sections Cavernicolarum, Ochraceorosei and Sparsi based on BenA, CaM, and RPB2. Strains of recently described species are shown in bold coloured text. Trees were rooted to A. bisporus. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by T.

sim-2024-107-1-SF3.jpg (1.4MB, jpg)
Fig. S4

Phylogenetic trees of Aspergillus section Circumdati series Sclerotiorum based on BenA, CaM, and RPB2, and series Steynii based on ITS. Strains of recently described species are shown in bold coloured text. Trees were rooted to A. ochraceus. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by T.

sim-2024-107-1-SF4.jpg (1.8MB, jpg)
Fig. S5

Phylogenetic trees of Aspergillus section Cremei series Wentiorum based on BenA, CaM, and RPB2. Strains of recently described species are shown in bold coloured text. Trees were rooted to A. cremeus. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by T.

sim-2024-107-1-SF5.jpg (1,004.9KB, jpg)
Fig. S6

Phylogenetic trees of Aspergillus section Flavi series Alliacei and Flavi based on BenA, CaM, and RPB2. Strains of recently described species are shown in bold coloured text. The tree was rooted to A. avenaceus. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by T. Representative strains are indicated by R.

sim-2024-107-1-SF6.jpg (4.8MB, jpg)
Fig. S7

Phylogenetic trees of Aspergillus section Flavipedes based on BenA, CaM, RPB2 and ITS. Strains of recently described species are shown in bold coloured text. Trees were rooted to A. terreus. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by T.

sim-2024-107-1-SF7.jpg (4.5MB, jpg)
Fig. S8

Phylogenetic trees of Aspergillus section Fumigati based on BenA, CaM, and RPB2. Strains of recently described species are shown in bold coloured text. Trees were rooted to A. clavatus. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by T.

Fig. S9

Phylogenetic trees of Aspergillus section Nidulantes series Versicolores based on BenA, CaM, and RPB2. Strains of recently described species are shown in bold coloured text. Trees were rooted to A. aeneus. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by T.

sim-2024-107-1-SF9.jpg (1.3MB, jpg)
Fig. S10

Phylogenetic trees of Aspergillus section Nigri series Japonici and Nigri based on BenA, CaM, and RPB2. Strains of recently described species are shown in bold coloured text. Trees were rooted to A. candidus. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by T.

Fig. S11

Phylogenetic trees of Aspergillus section Polypaecilum based on BenA, CaM, and RPB2. Strains of recently described species are shown in bold coloured text. Trees were rooted to A. cremeus. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by T.

Fig. S12

Phylogenetic trees of Aspergillus section Terrei series Nivei and Terrei based on BenA, CaM, and RPB2. Strains of recently described species are shown in bold coloured text. Trees were rooted to A. ambiguus. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by T.

Fig. S13

Phylogenetic trees of Aspergillus section Usti series Calidousti based on BenA, CaM, and RPB2. Strains of recently described species are shown in bold coloured text. Trees were rooted to A. ustus. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by T.

Fig. S14

Phylogenetic trees of Paecilomyces based on BenA, CaM and RPB2. Strains of recently described species are shown in bold coloured text. Trees were rooted to Thermoascus crustaceus. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by T.

Fig. S15

Phylogenetic trees of Penicillium sections Aspergilloides, Charlesia, Cinnamopurpurea and Ramigena based on BenA, CaM, and RPB2. Strains of recently described species are shown in bold coloured text. Trees were rooted to P. taxi. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by T.

Fig. S16

Phylogenetic trees of Penicillium section Brevicompacta based on BenA, CaM, and RPB2. Strains of recently described species are shown in bold coloured text. Trees were rooted to P. tularense (except RPB2 that was midpoint rooted). UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by T.

Fig. S17

Phylogenetic trees of Penicillium section Fasciculata series Camembertiorum based on BenA, CaM, and RPB2. Strains of recently described species are shown in bold coloured text. Trees were rooted to P. expansum. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by T.

Fig. S18

Phylogenetic trees of Penicillium section Canescentia based on BenA, CaM, and RPB2. Strains of recently described species are shown in bold coloured text. The tree was midpoint rooted. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by T.

Fig. S19

Phylogenetic trees of Penicillium section Citrina based on BenA, CaM, and RPB2. Strains of recently described species are shown in bold coloured text. Trees were rooted to P. euglaucum. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by T.

Fig. S20

Phylogenetic trees of Penicillium sections Crypta and Torulomyces based on BenA, CaM, and RPB2. Strains of recently described species are shown in bold coloured text. Trees were rooted to P. alfredii. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by T.

Fig. S21

Phylogenetic trees of Penicillium sections Exilicaulis and Gracilenta based on BenA, CaM, and RPB2. Strains of recently described species are shown in bold coloured text. Trees were rooted to P. stolkiae. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by T.

Fig. S22

Phylogenetic trees of Penicillium section Lanata-Divaricata series Janthinella and Simplicissima, based on BenA, CaM, and RPB2. Strains of recently described species are shown in bold coloured text. Trees were rooted to P. stolkiae. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by T.

Fig. S23

Phylogenetic trees of Penicillium section Lanata-Divaricata series Dalearum, Oxalica and Rolfsiorum, based on BenA, CaM, and RPB2. Strains of recently described species are shown in bold coloured text. Trees were rooted to the series Oxalica clade. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by T.

Fig. S24

Phylogenetic trees of Penicillium sections Paradoxa, Ramosum and Robsamsonia, based on BenA, CaM, and RPB2. Strains of recently described species are shown in bold coloured text. The tree was midpoint rooted. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by T.

Fig. S25

Phylogenetic trees of Penicillium section Sclerotiorum, based on BenA, CaM, and RPB2. Strains of recently described species are shown in bold coloured text. Trees were rooted to P. glabrum. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by T.

Fig. S26

Phylogenetic trees of Rasamsonia, based on BenA, CaM and ITS. Strains of recently described species are shown in bold coloured text. The tree was rooted to Trichocoma paradoxa. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by superscript T. Representative strains are indicated by R.

Fig. S27

Phylogenetic trees of Talaromyces section Helici, based on BenA, CaM and RPB2. Strains of recently described species are shown in bold coloured text. Trees were rooted to T. purpureogenus. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by T.

Fig. S28

Phylogenetic trees of Talaromyces section Purpurei and Subinflati, based on BenA, CaM, and RPB2. Strains of recently described species are shown in bold coloured text. Trees were midpoint rooted. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by T.

sim-2024-107-1-SF28.jpg (948.5KB, jpg)
Fig. S29

Phylogenetic trees of Talaromyces section Talaromyces, based on BenA, CaM and RPB2. Strains of recently described species are shown in bold coloured text. Trees were rooted to T. helicus. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by T.

Fig. S30

Phylogenetic trees of Talaromyces section Trachyspermi, based on BenA, CaM and RPB2. Strains of recently described species are shown in bold coloured text. Trees were rooted to T. purpureus. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by T.

Table S1

List of reference species used for comparisons in this study.

sim-2024-107-1-ST1.xlsx (163.7KB, xlsx)

REFERENCES

  1. Aime MC, Miller AN, Aoki T. et al. (2021). How to publish a new fungal species, or name, version 3.0. SIM 12: 11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Al-Bedak OA. (2020a). Aspergillus curvatus, a new species in section Circumdati isolated from an alkaline water of Lake Khadra in Wadi-El-Natron, Egypt. Asian Journal of Mycology 3: 325–334. [Google Scholar]
  3. Al-Bedak OA. (2020b). Aspergillus gaarensis, a new addition to section Circumdati from soil of Lake El-Gaar in Wadi-El-Natron, Egypt. Studies in Fungi 5: 59–65. [Google Scholar]
  4. Alves AL, Santos ACdS, Barbosa RdN. et al. (2022a). Penicillium gercinae and Penicillium stangiae (Eurotiomycetes, Ascomycota), two new species from soil in Brazil. Acta Botanica Brasilica 36: e2022abb0006. [Google Scholar]
  5. Alves VCS, Lira RA, Lima JMS. et al. (2022b). Unravelling the fungal darkness in a tropical cave: richness and the description of one new genus and six new species. Fungal Systematics and Evolution 10: 139–167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Andrade KCR, Fernandes RA, Pinho DB. et al. (2021). Sequencing and characterization of an L-asparaginase gene from a new species of Penicillium section Citrina isolated from Cerrado. Scientific Reports 11: 17861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ashtekar N, Rajeshkumar KC, Yilmaz N. et al. (2022). A new Penicillium section Citrina species and series from India. Mycological Progress 21: 42. [Google Scholar]
  8. Barbosa RdN, Santos JEFd, Bezerra JDP. et al. (2022). Brazilian Atlantic Forest and Pampa Biomes in the spotlight: an overview of Aspergillus, Penicillium, and Talaromyces (Eurotiales) species and the description of Penicillium nordestinense sp. nov. Acta Botanica Brasilica 36: e2021abb0390. [Google Scholar]
  9. Barbosa RN, Bezerra JDP, Souza-Motta CM. et al. (2018). New Penicillium and Talaromyces species from honey, pollen and nests of stingless bees. Antonie van Leeuwenhoek 111: 1–30. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Bian C, Kusaya Y, Sklenář F. et al. (2022). Reducing the number of accepted species in Aspergillus series Nigri. Studies in Mycology 102: 95–132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Bodinaku I, Shaffer J, Connors AB. et al. (2019). Rapid phenotypic and metabolomic domestication of wild Penicillium molds on cheese. mBio 10: e02445–02419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Boonmee S, Wanasinghe DN, Calabon MS. et al. (2021). Fungal diversity notes 1387–1511: taxonomic and phylogenetic contributions on genera and species of fungal taxa. Fungal Diversity 111: 1–335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Choi DH, You YH, Lee IS. et al. (2020). Penicillium ulleungdoense sp. nov. from Ulleung Island in Korea. Mycobiology 49: 46–53. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Crous PW, Boers J, Holdom D. et al. (2022). Fungal Planet description sheets: 1383–1435. Persoonia 48: 261–371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Crous PW, Carnegie AJ, Wingfield MJ. et al. (2019). Fungal Planet description sheets: 868–950. Persoonia 42: 291–473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Crous PW, Cowan DA, Maggs-Kölling G. et al. (2020a). Fungal Planet description sheets: 1112–1181. Persoonia 45: 251–409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Crous PW, Cowan DA, Maggs-Kolling G. et al. (2021a). Fungal Planet description sheets: 1182–1283. Persoonia 46: 313–528. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Crous PW, Osieck ER, Jurjević Ž. et al. (2021b). Fungal Planet description sheets: 1284–1382. Persoonia 47: 178–374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Crous PW, Wingfield MJ, Chooi YH. et al. (2020b). Fungal Planet description sheets: 1042–1111. Persoonia 44: 301–459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Doilom M, Guo JW, Phookamsak R. et al. (2020). Screening of phosphatesolubilizing fungi from air and soil in Yunnan, China: four novel species in Aspergillus, Gongronella, Penicillium, and Talaromyces. Frontiers in Microbiology 11: 585215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Frisvad JC, Samson RA. (2004). Polyphasic taxonomy of Penicillium subgenus Penicillium. A guide to identification of food and air-borne terverticillate Penicillia and their mycotoxins. Studies in Mycology 49: 1–174. [Google Scholar]
  22. George TK, Houbraken J, Mathew L. et al. (2018). Penicillium setosum, a new species from Withania somnifera (L.) Dunal. Mycology 10: 49–60. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Gilchrist CLM, Lacey HJ, Vuong D. et al. (2020). Comprehensive chemotaxonomic and genomic profiling of a biosynthetically talented Australian fungus, Aspergillus burnettii sp. nov. Fungal Genetics and Biology 143: 103435. [DOI] [PubMed] [Google Scholar]
  24. Giraud F, Giraud T, Aguileta G. et al. (2010). Microsatellite loci to recognize species for the cheese starter and contaminating strains associated with cheese manufacturing. International Journal of Food Microbiology 137: 204–213. [DOI] [PubMed] [Google Scholar]
  25. Glässnerová K, Sklenář F, Jurjević Ž. et al. (2022). A monograph of Aspergillus section Candidi. Studies in Mycology 102: 1–51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Guerra Sierra BE, Arteaga-Figueroa LA, Sierra-Pelaéz S. et al. (2022). Talaromyces santanderensis: A new Cadmium-tolerant fungus from Cacao soils in Colombia. Journal of Fungi 8: 1042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Han PJ, Sun JQ, Wang L. (2021). Two new sexual Talaromyces species discovered in estuary soil in China. Journal of Fungi 8: 36. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Hoang DT, Chernomor O, von Haeseler A. et al. (2018). UFBoot2: Improving the ultrafast bootstrap approximation. Molecular Biology and Evolution 35: 518–522. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Houbraken J, Frisvad JC, Samson RA. (2011). Taxonomy of Penicillium section Citrina. Studies in Mycology 70: 53–138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Houbraken J, Kocsube S, Visagie CM. et al. (2020). Classification of Aspergillus, Penicillium, Talaromyces and related genera (Eurotiales): an overview of families, genera, subgenera, sections, series and species. Studies in Mycology 95: 5–169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Houbraken J, Samson RA. (2011). Phylogeny of Penicillium and the segregation of Trichocomaceae into three families. Studies in Mycology 70: 1–51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Huang P, Jiang X, Wu B. et al. (2020). Aspergillus jilinensis sp. nov. and its thermostable alkaline enzymes evaluation. Mycoscience 61: 205–211. [Google Scholar]
  33. Iliushin VA. (2022). Aspergillus sibiricus (Aspergillaceae, Eurotiales), a novel acid-tolerant species in Aspergillus section Fumigati. Phytotaxa 531: 63–72. [Google Scholar]
  34. Katoh K, Standley DM. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30: 772–780. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Khuna S, Suwannarach N, Kumla J. et al. (2021). Growth enhancement of Arabidopsis (Arabidopsis thaliana) and onion (Allium cepa) with inoculation of three newly identified mineral-solubilizing fungi in the genus Aspergillus section Nigri. Frontiers in Microbiology 12: 705896. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Kirchmair M, Embacher J, Heimdörfer D. et al. (2022). Penicillium poederi and P. tirolense, two new species of section Torulomyces. Fungal Systematics and Evolution 10: 91–101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Kirichuk NN, Pivkin MV, Matveeva TV. (2016). Three new Penicillium species from marine subaqueous soils. Mycological Progress 16: 15–26. [Google Scholar]
  38. Kocsube S, Perrone G, Magista D. et al. (2016). Aspergillus is monophyletic: Evidence from multiple gene phylogenies and extrolites profiles. Studies in Mycology 85: 199–213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Labuda R, Bacher M, Rosenau T. et al. (2021). Polyphasic approach utilized for the identification of two new toxigenic members of Penicillium section Exilicaulis, P. krskae and P. silybi spp. nov. Journal of Fungi 7: 557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Lanfear R, Frandsen PB, Wright AM. et al. (2017). PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution 34: 772–773. [DOI] [PubMed] [Google Scholar]
  41. Lenz AR, Balbinot E, de Abreu FP. et al. (2022). Taxonomy, comparative genomics and evolutionary insights of Penicillium ucsense: a novel species in series Oxalica. Antonie van Leeuwenhoek 115: 1009–1029. [DOI] [PubMed] [Google Scholar]
  42. Liang L-J, Jeewon R, Dhandevi P. et al. (2021). A novel species of Penicillium with inhibitory effects against Pyricularia oryzae and fungal pathogens inducing Citrus diseases. Frontiers in Cellular and Infection Microbiology 10: 10:604504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Malloch D, Cain RF. (1972). The Trichocomataceae: Ascomycetes with Aspergillus, Paecilomyces, and Penicillium imperfect states. Canadian Journal of Botany 50: 2613–2628. [Google Scholar]
  44. Malloch D, Cain RF. (1973). The genus Thielavia. Mycologia 65: 1055–1077. [Google Scholar]
  45. May TW, Redhead SA, Bensch K. et al. (2019). Chapter F of the International Code of Nomenclature for algae, fungi, and plants as approved by the 11th International Mycological Congress, San Juan, Puerto Rico, July 2018. SIM 10: 21. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. McNeill J, Barrie FR, Buck WR. et al. (2012). International Code of Nomenclature for algae, fungi and plants (Melbourne Code). Regnum Vegetabile 154. Koeltz Scientific Books, Glashütten, Germany. [Google Scholar]
  47. Minh BQ, Schmidt HA, Chernomor O. et al. (2020). IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution 37: 1530–1534. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Nguyen TTT, Frisvad JC, Kirk PM. et al. (2021a). Discovery and extrolite production of three new species of Talaromyces belonging to sections Helici and Purpurei from freshwater in Korea. Journal of Fungi 7: 722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Nguyen TTT, Kwan Noh KJ, Lee HB. (2021b). New species and eight undescribed species belonging to the families Aspergillaceae and Trichocomaceae in Korea. Mycobiology 49: 534–550. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Nguyen VD, Pham TT. (2022). Penicillium vietnamense sp. nov., the first novel marine fungi species described from Vietnam with a unique conidiophore structure and molecular phylogeny of Penicillium section Charlesia. Mycobiology 50: 155–165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Nilsson RH, Sánchez-García M, Ryberg MK. et al. (2017). Read qualitybased trimming of the distal ends of public fungal DNA sequences is nowhere near satisfactory. MycoKeys 26: 13–24. [Google Scholar]
  52. Nuankaew S, Chuaseeharonnachai C, Preedanon S. et al. (2022). Two novel species of Talaromyces discovered in a karst cave in the satun UNESCO Global Geopark of Southern Thailand. Journal of Fungi 8: 825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. O’Callahan D, Vaidya A, Donaldson L. et al. (2020). Penicillium rotoruae, a new species from an in-ground timber durability test site in New Zealand. Current Microbiology 77: 4129–4139. [DOI] [PubMed] [Google Scholar]
  54. Perini L, Gostincar C, Likar M. et al. (2023). Interactions of fungi and algae from the Greenland ice sheet. Microbial Ecology 86: 282–296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Pitt J, Hocking AD. (2022). Fungi and Food Spoilage. 4th edn. Springer International Publishing. [Google Scholar]
  56. Pitt JI. (1980). The genus Penicillium and its teleomorphic states Eupenicillium and Talaromyces. Academic Press, London. [Google Scholar]
  57. Pitt JI, Hocking AD. (1985a). Interfaces among genera related to Aspergillus and Penicillium. Mycologia 77: 810–824. [Google Scholar]
  58. Pitt JI, Hocking AD. (1985b). New species of fungi from Indonesian dried fish. Mycotaxon 22: 197–208. [Google Scholar]
  59. Pitt JI, Samson RA. (1993). Species names in current use in the Trichocomaceae (Fungi, Eurotiales). In: Names in current use in the family Trichocomaceae, Cladoniaceae, Pinaceae, and Lemnaceae (Greuter W. ed.) Koeltz Scientific Books, Königstein, Germany: 13–57. [Google Scholar]
  60. Pitt JI, Samson RA, Frisvad JC. (2000). List of accepted species and their synonyms in the family Trichocomaceae. In: Integration of Modern Taxonomic Methods for Penicillium and Aspergillus Classification (Samson RA, Pitt JI. eds). Harwood Academic Publishers, Reading: 9–79. [Google Scholar]
  61. Pyrri I, Visagie CM, Soccio P. et al. (2021). Re-evaluation of the taxonomy of Talaromyces minioluteus. Journal of Fungi 7: 993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Quintanilla JA. (1982). Cuatro nuevas especies de Penicillium aisladas en centeno: P. mariaecrucis, sp. nov., P. castellae, sp. nov., P. cieglerii, sp. nov., y P. smithii, sp. nov. Avances en Alimentation y Mechora Animal 23: 333–343. [Google Scholar]
  63. Quintanilla JA. (1990). Penicillium cluniae nov. sp. y P. burgense nov. sp., dos nuevas especies aisladas de suelo no cultivado. Avances en Alimentation y Mechora Animal 30: 174–180. [Google Scholar]
  64. Ramos SMS, Cruz R, Barbosa RdN. et al. (2021). Two new Penicillium section Sclerotiorum species from sugarcane soil in Brazil. Mycological Progress 20: 823–835. [Google Scholar]
  65. Rivera KG, Seifert KA. (2011). A taxonomic and phylogenetic revision of the Penicillium sclerotiorum complex. Studies in Mycology 70: 139–158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Rivolta S. (1873). Dei Parassiti Vegetali. 1–592. [Google Scholar]
  67. Rodriguez-Andrade E, Stchigel AM, Cano-Lira JF. (2021). New xerophilic species of Penicillium from soil. Journal of Fungi 7: 126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Ropars J, Didiot E, Rodriguez de la Vega RC. et al. (2020). Domestication of the emblematic white cheese-making fungus Penicillium camemberti and its diversification into two varieties. Current Biology 30: 4441–4453. [DOI] [PubMed] [Google Scholar]
  69. Samson RA, Visagie CM, Houbraken J. et al. (2014). Phylogeny, identification and nomenclature of the genus Aspergillus. Studies in Mycology 78: 141–173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Samson RA, Yilmaz N, Houbraken J. et al. (2011). Phylogeny and nomenclature of the genus Talaromyces and taxa accommodated in Penicillium subgenus Biverticillium. Studies in Mycology 70: 159–183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Schoch CL, Seifert KA, Huhndorf S. et al. (2012). Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences of the United States of America 109: 6241–6246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Seifert KA, Rossman AY. (2010). How to describe a new fungal species. SIM 1: 109–116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Sigler L, Hawksworth DL. (1987). International Commission on the Taxonomy of Fungi (ICTF) Code of Practice for Systematic Mycologists. Mycopathologia 99: 3–7. [DOI] [PubMed] [Google Scholar]
  74. Silva JJ, Fungaro MH, Wang X. et al. (2022). Deep genotypic species delimitation of Aspergillus section Flavi isolated from brazilian foodstuffs and the description of Aspergillus annui sp. nov. and Aspergillus saccharicola sp. nov. Journal of Fungi 8: 1279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Silva JJD, Iamanaka BT, Ferranti LS. et al. (2020). Diversity within Aspergillus niger clade and description of a new species: Aspergillus vinaceus sp. nov. Journal of Fungi 6: 371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Singh P, Callicott KA, Orbach MJ. et al. (2020). Molecular analysis of S-morphology aflatoxin producers from the United States reveals previously unknown diversity and two new taxa. Frontiers in Microbiology 11: 1236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Sklenář F, Glässnerová K, Jurjević Ž. et al. (2022). Taxonomy of Aspergillus series Versicolores: species reduction and lessons learned about intraspecific variability. Studies in Mycology 102: 53–93. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Sklenář F, Jurjević Ž, Houbraken J. et al. (2021). Re-examination of species limits in Aspergillus section Flavipedes using advanced species delimitation methods and proposal of four new species. Studies in Mycology 99: 100120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Spetik M, Berraf-Tebbal A, Gramaje D. et al. (2022). Paecilomyces clematidis (Eurotiales, Thermoascaceae): a new species from Clematis root. Phytotaxa 559: 238–246. [Google Scholar]
  80. Sun B, Luo C, Gerald BF. et al. (2022a). Four new species of Aspergillus subgenus Nidulantes from China. Journal of Fungi 8: 1205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Sun B-D, Chen AJ, Houbraken J. et al. (2020a). New section and species in Talaromyces. MycoKeys 68: 75–113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Sun B-D, Houbraken J, Frisvad JC. et al. (2020b). New species in Aspergillus section Usti and an overview of Aspergillus section Cavernicolarum. International Journal of Systematic and Evolutionary Microbiology 70: 5401–5416. [DOI] [PubMed] [Google Scholar]
  83. Sun B-D, Huang P-P, Wei H-L. et al. (2020c). Aspergillus telluris, a new soil derived species belonging to Aspergillus subgenus Polypaecilum. Phytotaxa 455: 137–151. [Google Scholar]
  84. Sun B-D, Visagie CM, Chen AJ. et al. (2021). A taxonomic review of Penicillium section Charlesia. Mycological Progress 20: 1383–1397. [Google Scholar]
  85. Sun XR, Xu MY, Kong WL. et al. (2022b). Fine identification and classification of a novel beneficial Talaromyces fungal species from masson Pine rhizosphere soil. Journal of Fungi 8: 155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Tan YP, Bishop-Hurley S, Marney TS. et al. (2021). Nomenclatural novelties. Index Fungorum 503: 1–8. [Google Scholar]
  87. Tan YP, Bishop-Hurley SL, Shivas RG. et al. (2022). Fungal Planet description sheets: 1436–1477. Persoonia 49: 261–350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. Tan YP, Shivas RG. (2022). Nomenclatural novelties. Index of Australian Fungi 3: 1–21. [Google Scholar]
  89. Taylor JW, Jacobson DJ, Kroken S. et al. (2000). Phylogenetic species recognition and species concepts in fungi. Fungal Genetics and Biology 31: 21–32. [DOI] [PubMed] [Google Scholar]
  90. Thom C. (1954). The evolution of species concepts in Aspergillus and Penicillium. Annals of the New York Academy of Sciences 60: 24–34. [DOI] [PubMed] [Google Scholar]
  91. Tian JQ, Wang YF, Sun JZ. (2021). Talaromyces peaticola (Aspergillaceae, Eurotiales), a new species from the Zoige wetlands, China. Studies in Fungi 6: 391–399. [Google Scholar]
  92. Torres-Garcia D, Gene J, Garcia D. (2022). New and interesting species of Penicillium (Eurotiomycetes, Aspergillaceae) in freshwater sediments from Spain. MycoKeys 86: 103–145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. Trovao J, Soares F, Tiago I. et al. (2021). Talaromyces saxoxalicus sp. nov., isolated from the limestone walls of the Old Cathedral of Coimbra, Portugal. International Journal of Systematic and Evolutionary Microbiology 71: 005175. [DOI] [PubMed] [Google Scholar]
  94. Turland NJ. (2019). The Code Decoded: A user’s guide to the International Code of Nomenclature for algae, fungi, and plants. 2nd edn. Pensoft Pulisher, Sofia, Bulgaria. [Google Scholar]
  95. Turland NJ, Wiersema JH, Barrie FR. et al. (2018). International Code of Nomenclature for algae, fungi, and plants (Shenzhen Code) adopted by the Nineteenth International Botanical Congress Shenzhen, China, July 2017. Regnum Vegetabile 159. Koeltz Botanical Books, Glashütten, Germany. [Google Scholar]
  96. Visagie CM, Yilmaz N. (2023). Along the footpath of Penicillium discovery: Six new species from the Woodville Big Tree Forest Trail. Mycologia 115: 87–106. [DOI] [PubMed] [Google Scholar]
  97. Visagie CM, Frisvad JC, Houbraken J. et al. (2021). A re-evaluation of Penicillium section Canescentia, including the description of five new species. Persoonia 46: 163–187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  98. Visagie CM, Goodwell M, Nkwe DO. (2021). Aspergillus diversity from the Gcwihaba Cave in Botswana and description of one new species. Fungal Systematics and Evolution 8: 81–89. [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Visagie CM, Houbraken J, Frisvad JC. et al. (2014). Identification and nomenclature of the genus Penicillium. Studies in Mycology 78: 343–371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. Visagie CM, Houbraken J, Rodriques C. et al. (2013). Five new Penicillium species in section Sclerotiora: a tribute to the Dutch Royal family. Persoonia 31: 42–62. [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. Visagie CM, Seifert KA, Houbraken J. et al. (2016). A phylogenetic revision of Penicillium sect. Exilicaulis, including nine new species from fynbos in South Africa. SIM 7: 75–117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  102. Von Höhnel F. (1910). Fragmente zur Mykologie (X. Mitteilung 475. Dichlaena lentisci). Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften in Wien Mathematisch-Naturwissenschaftliche Classe 119: 399–400. [Google Scholar]
  103. Wang XC, Zhuang WY. (2022a). New species of Aspergillus (Aspergillaceae) from tropical islands of China. Journal of Fungi 8: 225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. Wang XC, Zhuang WY. (2022b). New species of Talaromyces (Trichocomaceae, Eurotiales) from southwestern China. Journal of Fungi 8: 647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  105. Wei S, Xu X, Wang L. (2021). Four new species of Talaromyces section Talaromyces discovered in China. Mycologia 113: 1–17. [DOI] [PubMed] [Google Scholar]
  106. Xu KX, Shan XN, Ruan Y. et al. (2022). Three new Penicillium species isolated from the tidal flats of China. PeerJ 10: e13224. [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Yanai M, Maekawa S, Udagawa S-I. (2020). A phylogenetic revision of Penicillium oblatum and P. sabulosum as heat resistant molds. Japanese Journal of Mycology 61: 91–101. [Google Scholar]
  108. Yilmaz N, Visagie CM, Houbraken J. et al. (2014). Polyphasic taxonomy of the genus Talaromyces. Studies in Mycology 78: 175–341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  109. Zhang H, Wei TP, Mao YT. et al. (2021a). Ascodesmisrosicola sp. nov. and Talaromycesrosarhiza sp. nov., two endophytes from Rosaroxburghii in China. Biodiversity Data Journal 9: e70088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  110. Zhang Z-F, Zhou S-Y, Eurwilaichitr L. et al. (2020). Culturable mycobiota from karst caves in China II, with descriptions of 33 new species. Fungal Diversity 106: 29–136. [Google Scholar]
  111. Zhang ZK, Wang XC, Zhuang WY. et al. (2021b). New species of Talaromyces (Fungi) isolated from soil in Southwestern China. Biology 10: 745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  112. Zhori A-NA, Al-Bedak OA, Abdel-Kareem MM. (2020). Aspergillus sakultaensis, a new species in section Flavipedes isolated from Sohag Governorate, Egypt. Journal of Environmental Studies 20: 21–27. [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Fig. S1

Phylogenetic trees of Aspergillus section Aenei series Aenei based on BenA, CaM, and RPB2. Strains of recently described species are shown in bold coloured text. Trees were rooted to A. versicolor. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by T.

sim-2024-107-1-SF1.jpg (860.5KB, jpg)
Fig. S2

Phylogenetic trees of Aspergillus section Candidi series Candidi based on BenA, CaM, and RPB2. Strains of recently described species are shown in bold coloured text. Trees were rooted to A. neotritici. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by T.

sim-2024-107-1-SF2.jpg (3.3MB, jpg)
Fig. S3

Phylogenetic trees of Aspergillus sections Cavernicolarum, Ochraceorosei and Sparsi based on BenA, CaM, and RPB2. Strains of recently described species are shown in bold coloured text. Trees were rooted to A. bisporus. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by T.

sim-2024-107-1-SF3.jpg (1.4MB, jpg)
Fig. S4

Phylogenetic trees of Aspergillus section Circumdati series Sclerotiorum based on BenA, CaM, and RPB2, and series Steynii based on ITS. Strains of recently described species are shown in bold coloured text. Trees were rooted to A. ochraceus. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by T.

sim-2024-107-1-SF4.jpg (1.8MB, jpg)
Fig. S5

Phylogenetic trees of Aspergillus section Cremei series Wentiorum based on BenA, CaM, and RPB2. Strains of recently described species are shown in bold coloured text. Trees were rooted to A. cremeus. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by T.

sim-2024-107-1-SF5.jpg (1,004.9KB, jpg)
Fig. S6

Phylogenetic trees of Aspergillus section Flavi series Alliacei and Flavi based on BenA, CaM, and RPB2. Strains of recently described species are shown in bold coloured text. The tree was rooted to A. avenaceus. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by T. Representative strains are indicated by R.

sim-2024-107-1-SF6.jpg (4.8MB, jpg)
Fig. S7

Phylogenetic trees of Aspergillus section Flavipedes based on BenA, CaM, RPB2 and ITS. Strains of recently described species are shown in bold coloured text. Trees were rooted to A. terreus. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by T.

sim-2024-107-1-SF7.jpg (4.5MB, jpg)
Fig. S8

Phylogenetic trees of Aspergillus section Fumigati based on BenA, CaM, and RPB2. Strains of recently described species are shown in bold coloured text. Trees were rooted to A. clavatus. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by T.

Fig. S9

Phylogenetic trees of Aspergillus section Nidulantes series Versicolores based on BenA, CaM, and RPB2. Strains of recently described species are shown in bold coloured text. Trees were rooted to A. aeneus. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by T.

sim-2024-107-1-SF9.jpg (1.3MB, jpg)
Fig. S10

Phylogenetic trees of Aspergillus section Nigri series Japonici and Nigri based on BenA, CaM, and RPB2. Strains of recently described species are shown in bold coloured text. Trees were rooted to A. candidus. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by T.

Fig. S11

Phylogenetic trees of Aspergillus section Polypaecilum based on BenA, CaM, and RPB2. Strains of recently described species are shown in bold coloured text. Trees were rooted to A. cremeus. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by T.

Fig. S12

Phylogenetic trees of Aspergillus section Terrei series Nivei and Terrei based on BenA, CaM, and RPB2. Strains of recently described species are shown in bold coloured text. Trees were rooted to A. ambiguus. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by T.

Fig. S13

Phylogenetic trees of Aspergillus section Usti series Calidousti based on BenA, CaM, and RPB2. Strains of recently described species are shown in bold coloured text. Trees were rooted to A. ustus. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by T.

Fig. S14

Phylogenetic trees of Paecilomyces based on BenA, CaM and RPB2. Strains of recently described species are shown in bold coloured text. Trees were rooted to Thermoascus crustaceus. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by T.

Fig. S15

Phylogenetic trees of Penicillium sections Aspergilloides, Charlesia, Cinnamopurpurea and Ramigena based on BenA, CaM, and RPB2. Strains of recently described species are shown in bold coloured text. Trees were rooted to P. taxi. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by T.

Fig. S16

Phylogenetic trees of Penicillium section Brevicompacta based on BenA, CaM, and RPB2. Strains of recently described species are shown in bold coloured text. Trees were rooted to P. tularense (except RPB2 that was midpoint rooted). UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by T.

Fig. S17

Phylogenetic trees of Penicillium section Fasciculata series Camembertiorum based on BenA, CaM, and RPB2. Strains of recently described species are shown in bold coloured text. Trees were rooted to P. expansum. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by T.

Fig. S18

Phylogenetic trees of Penicillium section Canescentia based on BenA, CaM, and RPB2. Strains of recently described species are shown in bold coloured text. The tree was midpoint rooted. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by T.

Fig. S19

Phylogenetic trees of Penicillium section Citrina based on BenA, CaM, and RPB2. Strains of recently described species are shown in bold coloured text. Trees were rooted to P. euglaucum. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by T.

Fig. S20

Phylogenetic trees of Penicillium sections Crypta and Torulomyces based on BenA, CaM, and RPB2. Strains of recently described species are shown in bold coloured text. Trees were rooted to P. alfredii. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by T.

Fig. S21

Phylogenetic trees of Penicillium sections Exilicaulis and Gracilenta based on BenA, CaM, and RPB2. Strains of recently described species are shown in bold coloured text. Trees were rooted to P. stolkiae. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by T.

Fig. S22

Phylogenetic trees of Penicillium section Lanata-Divaricata series Janthinella and Simplicissima, based on BenA, CaM, and RPB2. Strains of recently described species are shown in bold coloured text. Trees were rooted to P. stolkiae. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by T.

Fig. S23

Phylogenetic trees of Penicillium section Lanata-Divaricata series Dalearum, Oxalica and Rolfsiorum, based on BenA, CaM, and RPB2. Strains of recently described species are shown in bold coloured text. Trees were rooted to the series Oxalica clade. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by T.

Fig. S24

Phylogenetic trees of Penicillium sections Paradoxa, Ramosum and Robsamsonia, based on BenA, CaM, and RPB2. Strains of recently described species are shown in bold coloured text. The tree was midpoint rooted. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by T.

Fig. S25

Phylogenetic trees of Penicillium section Sclerotiorum, based on BenA, CaM, and RPB2. Strains of recently described species are shown in bold coloured text. Trees were rooted to P. glabrum. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by T.

Fig. S26

Phylogenetic trees of Rasamsonia, based on BenA, CaM and ITS. Strains of recently described species are shown in bold coloured text. The tree was rooted to Trichocoma paradoxa. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by superscript T. Representative strains are indicated by R.

Fig. S27

Phylogenetic trees of Talaromyces section Helici, based on BenA, CaM and RPB2. Strains of recently described species are shown in bold coloured text. Trees were rooted to T. purpureogenus. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by T.

Fig. S28

Phylogenetic trees of Talaromyces section Purpurei and Subinflati, based on BenA, CaM, and RPB2. Strains of recently described species are shown in bold coloured text. Trees were midpoint rooted. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by T.

sim-2024-107-1-SF28.jpg (948.5KB, jpg)
Fig. S29

Phylogenetic trees of Talaromyces section Talaromyces, based on BenA, CaM and RPB2. Strains of recently described species are shown in bold coloured text. Trees were rooted to T. helicus. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by T.

Fig. S30

Phylogenetic trees of Talaromyces section Trachyspermi, based on BenA, CaM and RPB2. Strains of recently described species are shown in bold coloured text. Trees were rooted to T. purpureus. UltraFast Bootstrap support values higher than 95 % are shown at relevant branches. Ex-type strains are indicated by T.

Table S1

List of reference species used for comparisons in this study.

sim-2024-107-1-ST1.xlsx (163.7KB, xlsx)

Articles from Studies in Mycology are provided here courtesy of Westerdijk Fungal Biodiversity Institute

RESOURCES