Skip to main content
Cancer Immunology, Immunotherapy : CII logoLink to Cancer Immunology, Immunotherapy : CII
. 2003 Jan 29;52(2):80–88. doi: 10.1007/s00262-002-0335-x

Heat shock protein 70 expression induces antitumor immunity during intracellular hyperthermia using magnetite nanoparticles

Akira Ito 1, Masashige Shinkai 1, Hiroyuki Honda 1, Kazuhiro Yoshikawa 2, Shinsuke Saga 2, Toshihiko Wakabayashi 3, Jun Yoshida 3, Takeshi Kobayashi 1
PMCID: PMC11032904  PMID: 12594571

Abstract.

In this study we demonstrated that heat shock protein (HSP) 70 expression by hyperthermia induced antitumor immunity in the T-9 rat glioma. Our hyperthermic system using magnetic nanoparticles induced necrotic cell death that correlated with HSP70 expression. We purified the HSP70-peptide complexes from the tumor after hyperthermia to investigate whether HSP70 was involved in the antitumor immunity, and we found that in the F344 rats immunized with T-9-derived HSP70 the tumor growth of T-9 was significantly suppressed. Tumor rejection assay after hyperthermic treatment of implanted T-9 cells with incorporated magnetite cationic liposomes (MCL) was performed to investigate whether antitumor immunity was induced by release of HSP70 from the necrotic cells in the F344 rat. Tumor growth was strongly suppressed in the rats subjected to hyperthermia of implanted T-9 cells, and 50% of rats were protected from challenge with T-9 cells. Immunogenicity was enhanced when the HSP70-overexpressing T-9 cells were killed via necrosis in rats by hyperthermia, after which all rats were completely protected from challenge with T-9 cells. Our hyperthermic system produces vaccination with HSP70-peptide via necrotic tumor cell death in vivo, resulting in antitumor immunity. This phenomenon, which may be termed in situ vaccination, has important implications for the development of novel antitumor therapies.

Keywords: Antitumor immunity Cationic liposome HSP70 Hyperthermia Magnetite

Footnotes

Electronic Publication


Articles from Cancer Immunology, Immunotherapy : CII are provided here courtesy of Springer

RESOURCES