Skip to main content
Cancer Immunology, Immunotherapy : CII logoLink to Cancer Immunology, Immunotherapy : CII
. 1999 Aug;48(5):219–229. doi: 10.1007/s002620050569

Pharmacokinetics and stability of the ch14.18–interleukin-2 fusion protein in mice

Kari Kendra 1, Jacek Gan 2, Melody Ricci 2, Jean Surfus 2, Anisa Shaker 2, Michael Super 3, Jami D Frost 2, Alexander Rakhmilevich 2, Jacquelyn A Hank 2, Stephen D Gillies 3, Paul M Sondel 2
PMCID: PMC11037148  PMID: 10478638

Abstract

The fusion protein formed from ch14.18 and interleukin-2 (ch14.18–IL-2), shown to exhibit antitumor efficacy in mouse models, consists of IL-2 genetically linked to each heavy chain of the ch14.18 chimeric anti-GD2 monoclonal antibody. The purpose of this study was to determine the pharmacokinetics of ch14.18–IL-2 in mice and assess its stability in murine serum. Following i.v. injection, the fusion protein was found to have a terminal half-life of 4.1 h. Detection of IL-2 following injection of the ch14.18–IL-2 fusion protein showed a similar half-life, indicating that the fusion protein prolongs the circulatory half-life of IL-2. Detection of human IgG1 following injection of ch14.18–IL-2 showed a terminal half-life of 26.9 h. These data suggested that the native fusion protein is being altered in vivo, resulting in a somewhat rapid loss of detectable IL-2, despite prolonged circulation of its immunoglobulin components. In vitro incubation of the ch14.18–IL-2 fusion protein in pooled mouse serum at 37 °C for 48 h resulted in a loss of its IL-2 component, as detected in enzyme-linked immunosorbent assay systems and in proliferation assays. Polyacrylamide gel electrophoresis and Western blot analysis of the fusion protein incubated in mouse serum at 37 °C indicated that the ch14.18–IL-2 is cleaved, resulting in a loss of the 67-kDa band (representing the IL-2 linked to the IgG1 heavy chain) and the detection of a band of more than 50 kDa, slightly heavier than the IgG1 heavy chain itself. This suggests that the fusion protein is being cleaved in vitro within the IL-2 portion of the molecule. These studies show that (1) ch14.18–IL-2 prolongs the circulatory half-life of IL-2 (compared to that of soluble IL-2) and (2) the in vivo clearance of the fusion protein occurs more rapidly than the clearance of the ch14.18 antibody itself, possibly reflecting in vivo cleavage within the IL-2 portion of the molecule, resulting in loss of IL-2 activity.

Keywords: Key words Interleukin-2, Antitumor antibody, Targetted immunotherapy, Ganglioside

Footnotes

Received: 8 December 1998 / Accepted: 30 March 1999


Articles from Cancer Immunology, Immunotherapy : CII are provided here courtesy of Springer

RESOURCES