Skip to main content
Cancer Immunology, Immunotherapy : CII logoLink to Cancer Immunology, Immunotherapy : CII
. 1995 Sep;40(5):307–310. doi: 10.1007/BF01519630

Keyhole limpet hemocyanin contains Gal(β1–3)-GalNAc determinants that are cross-reactive with the T antigen

Itzhak Wirguin 1,2, Ljubica Suturkova-Milosević 1, Chiara Briani 1, Norman Latov 1,
PMCID: PMC11037588  PMID: 7600562

Abstract

Keyhole limpet hemocyanin (KLH) is widely used as a carrier molecule to enhance immune responses to administered antigens, and for immunotherapy of bladder and renal carcinoma. In the present study we show, using lectin and antibody binding studies, that native KLH contains Gal(β1–3)GalNAc-bearing oligosaccharides, and that immunization with KLH in Lewis rats induces the production of anti-Gal(β1–3)GalNAc antibodies. This might explain the beneficial effect of KLH in bladder cancers that express crossreactive Gal(β1–3)GalNAc determinants or the T antigen.

Key words: Keyhole limpet hemocyanin (KLH), T antigen, Immunotherapy

Footnotes

Supported by NIH grant NS11766 and by the William Rosenwald Family Fund Inc.

References

  • 1.Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances. Anal Chem. 1956;28:350. doi: 10.1038/168167a0. [DOI] [PubMed] [Google Scholar]
  • 2.Fung PYS, Madej M, Koganty RR, Longenecker BM. Active specific immunotherapy of a murine mammary adenocarcinoma using a synthetic tumor-associated glycoconjugate. Cancer Res. 1990;50:4308. [PubMed] [Google Scholar]
  • 3.Grzych J-M, Dissous C, Capron M, Torres S, Lambert P-H, Capron A. Schistosoma mansoni shares a protective carbohydrate epitope with keyhole limpet hemocyanin. J Exp Med. 1987;165:865. doi: 10.1084/jem.165.3.865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Helling F, Shang A, Calves M, Zhang S, Ren S, Yu RK, Oettgen HF, Livingston PO. GD3 vaccines for melanoma: superior immunogenicity of keyhole limpet hemocyanin conjugate vaccines. Cancer Res. 1994;54:197. [PubMed] [Google Scholar]
  • 5.Henningsson CM, Selvaraj S, MacLean GD, Suresh MR, Noujaim AA, Longenecker BM. T cell recognition of a tumor-associated glycoprotein and its synthetic carbohydrate epitopes: stimulation of anticancer T cell immunity in vivo. Cancer Immunol Immunother. 1987;25:231. doi: 10.1007/BF00199152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Langkilde NC, Wolf H, Clausen H, Ørntoft TF. Human urinary bladder carcinoma glycoconjugates expressing T (Galβ(1–3)GalNAcα1-O-R) and T-like antigens: a comparative study using peanut agglutinin and poly- and monoclonal antibodies. Cancer Res. 1992;52:5030. [PubMed] [Google Scholar]
  • 7.Langkilde NC, Wolf H, Clausen H, Kjeldsen T, Ørntoft TF. Nuclear volume and expression of T-antigen, sialosyl-Tn-antigen, and Tn-antigen in carcinoma of the human bladder. Cancer. 1992;69:219. doi: 10.1002/1097-0142(19920101)69:1<219::aid-cncr2820690136>3.0.co;2-a. [DOI] [PubMed] [Google Scholar]
  • 8.Ledeen RW, Yu RK. Gangliosides: structure, isolation and analysis. Methods Enzymol. 1982;83:139. doi: 10.1016/0076-6879(82)83012-7. [DOI] [PubMed] [Google Scholar]
  • 9.Longenecker BM, MacLean GD, McEwan AJB, Sykes T, Henningsson C, Suresh MR, Noujaim AA. Synthetic Thomsen Friedenreich antigens for production of anti-carcinoma monoclonal antibodies and generation of anti-carcinoma T cells. UCLA Symp Mol Cell Biol. 1988;79:307. [Google Scholar]
  • 10.MacLean GD, Bowen-Yacyshyn MB, Samuel J, Meikle A, Stuart G, Nation J, Poppema S, Jerry M, Koganty R, Wong T, Longenecker BM. Active immunization of human ovarian cancer patients against a common carcinoma (Thomsen-Friedenreich) determinant using a synthetic carbohydrate antigen. J Immunother. 1992;11:292. doi: 10.1097/00002371-199205000-00008. [DOI] [PubMed] [Google Scholar]
  • 11.MacLean GD, Reddish M, Koganty RR, Wong T, Gandhi S, Smolenski M, Samuel J, Nabholtz JM, Longenecker BM. Immunization of breast cancer patients using a synthetic sialyl-Tn glycoconjugate plus Detox adjuvant. Cancer Immunol Immunother. 1993;36:215. doi: 10.1007/BF01740902. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Momoi T, Tokunaga T, Nagai Y. Specific interaction of peanut agglutinin with the glycolipid asialo GM1. FEBS Lett. 1982;141:6. doi: 10.1016/0014-5793(82)80003-3. [DOI] [PubMed] [Google Scholar]
  • 13.Sadiq SA, Thomas FP, Kilidreas K, Protopsaltis S, Hays AP, Lee KW, Romas SN, Kumar N, van den Berg L, Santoro M, Lange DJ, Younger DS, Lovelace RE, Trojaborg W, Sherman WH, Miller JR, Minuk J, Fehr MA, Roelofs RI, Hollander D, Nichols FT, III, Mitsumoto H, Kelley JJ, Swift TR, Munsat TL, Latov N. The spectrum of neurologic disease associated with anti-GM1 antibodies. Neurology. 1990;40:1067. doi: 10.1212/wnl.40.7.1067. [DOI] [PubMed] [Google Scholar]
  • 14.Sargent ER, Williams RD. Immunotherapeutic alternatives in superficial bladder cancer. Urol Clin N Am. 1992;19:581. [PubMed] [Google Scholar]
  • 15.Singhal A, Fohn M, Hakomori S-H. Induction of α-N-acetylgalactosamine-O-serine/threonine (Tn) antigen-mediated cellular immune response for active immunotherapy in mice. Cancer Res. 1991;51:1406. [PubMed] [Google Scholar]
  • 16.Springer GF. T and Tn, general carcinoma autoantigen. Science. 1984;224:1198. doi: 10.1126/science.6729450. [DOI] [PubMed] [Google Scholar]
  • 17.Thomas FP, Trojaborg W, Nagy C, Santoro M, Sadiq SA, Latov N, Hays AP. Experimental autoimmune neuropathy with anti-GM1 antibodies and immunoglobulin deposits at the nodes of Ranvier. Acta Neuropathol. 1991;82:378. doi: 10.1007/BF00296548. [DOI] [PubMed] [Google Scholar]
  • 18.Woodward MP, Young WW, Jr, Bloodgood RA. Detection of monoclonal antibodies specific for carbohydrate epitopes using periodate oxidation. J Immunol Methods. 1985;78:143–153. doi: 10.1016/0022-1759(85)90337-0. [DOI] [PubMed] [Google Scholar]

Articles from Cancer Immunology, Immunotherapy : CII are provided here courtesy of Springer

RESOURCES