Skip to main content
Cancer Immunology, Immunotherapy : CII logoLink to Cancer Immunology, Immunotherapy : CII
. 1995 Sep;40(5):322–328. doi: 10.1007/BF01519633

An antimelanoma immunotoxin containing recombinant human tumor necrosis factor: tissue disposition, pharmacokinetic, and therapeutic studies in xenograft models

Michael G Rosenblum 1,, Lawrence Cheung 1, Kalpana Mujoo 1, James L Murray 1
PMCID: PMC11037631  PMID: 7600565

Abstract

The ability of monoclonal antibody conjugates to re-direct plant or bacterial toxins, chemotherapeutic agents and radionuclides to selected target cells has been well-documented. Recombinant human tumor necrosis factor (TNF) is a macrophage-derived, non-glycosylated (17 kDa) peptide with a broad range of biological and immunological effects including antiviral activity, cytotoxic and cytostatic effects. A conjugate of the antimelanoma antibody ZME-018 and TNF in previous studies has shown melanoma-selective cytotoxic effects in vitro. Pharmacokinetic studies of the ZME-TNF immunotoxin showed that the agent cleared from plasma biphasically with α-and β-phase half-lives similar to that of ZME itself (72 min and 36 h compared to 84 min and 41 h respectively). In contrast, TNF itself was cleared rapidly from plasma with a terminalphase half-life of only 2.7 h. The clearance rate of ZME-TNF from plasma (Clp) was almost tenfold more rapid than for ZME (1.1 versus 0.16 ml/kg x min) but was threefold slower than the clearance for TNF itself (3.4 ml/kg x min). Tissue distribution studies in nude mice bearing human melanoma xenografts showed similar tumor localization of the immunotoxin compared to the free antibody and slightly higher concentrations in liver and kidney compared to ZME itself. Treatment of nude mice bearing well-developed A375 tumors with the immunotoxin resulted in a statistically significant (P<0.002) suppression in tumor growth rate (fivefold increase) compared to saline-treated controls, which increased 20-fold over the same period. These studies demonstrate the feasibility of this approach and suggest that TNF may represent a non-antigenic alternative to immunotoxins containing plant and bacterial toxins.

Key words: TNF, Immunotoxins, Melanoma, Pharmacokinetics, Xenograft models

Footnotes

Research conducted, in part, by the Clayton Foundation for Research

References

  • 1.Goldenberg DM, Kim EE, Deland F, Van VanNagell JR, Jr, Javadpour N. Clinical radioimmunodetection of cancer with radioactive antibodies to human chronic gonadotropin. Sciece. 1980;208:1284. doi: 10.1126/science.7375942. [DOI] [PubMed] [Google Scholar]
  • 2.Goldenberg DM, Kim EE, Deland F, Spremulli E, Nelson MO, Gockerman JP, Primus FJ, Corgan RL, Alpert E. Clinical studies on radioimmunodetection of tumors containing alpha-feto protein. Cancer. 1990;45:2500. doi: 10.1002/1097-0142(19800515)45:10<2500::aid-cncr2820451006>3.0.co;2-j. [DOI] [PubMed] [Google Scholar]
  • 3.Mack JP, Carrel S, Forni M, Ritschard J, Donath A, Alberto P. Tumor localization of radiolabeled antibodies against carcinoembryonic antigen in patients with carcinoma. N Engl J Med. 1980;305:5. doi: 10.1056/NEJM198007033030102. [DOI] [PubMed] [Google Scholar]
  • 4.Marks A, Ettenson D, Bjorn MJ, Lei M, Baumal R. Inhibition of human tumor growth by intraperitoneal immunotoxins in nude mice. Cancer Res. 1990;50:288. [PubMed] [Google Scholar]
  • 5.Pastan I, Willingham MC, Fitzgerald DJF. Immunotoxins. Cell. 1986;47:641. doi: 10.1016/0092-8674(86)90506-4. [DOI] [PubMed] [Google Scholar]
  • 6.Press OW, Martin PJ, Thorpe PE, Vitetta ES. Ricin A-chain containing immunotoxins directed against different epitopes on the CD2 molecule differ in their ability to kill normal and malignant T cells. J Immunol. 1988;141:4410. [PubMed] [Google Scholar]
  • 7.Priker R, Fitzgerald DJP, Hamilton TC, Ozols RF, Laird W, Frankel AE, Willingham MC, Pastan I. Characterization of immunotoxins directed against ovarian cancer cell lines. J Clin Invest. 1985;76:1261. doi: 10.1172/JCI112082. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Rosenblum MG, Murray JL, Cheung L, Rifkin R, Salmon S, Bartholomew R. A specific and potent immunotoxicomposed of antibody ZME-018 and the plant toxin gelonin. Mol Biother. 1991;3:6. [PubMed] [Google Scholar]
  • 9.Mujoo K, Reisfeld RA, Cheung L, Rosenblum MG. A potent and specific immunotoxin for tumor cells expressing disialoganglioside GD2 . Cancer Immunol Immunother. 1991;34:198. doi: 10.1007/BF01742313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Trail PA, Willner D, Lasch SJ, Henderson AJ, Hofstead S, Casazza AM, Firestone RA, Hellstrom I, Hellstrom KE. Cure of xenografted human carcinomas by BR96-doxorubicin. Science. 1993;261:212. doi: 10.1126/science.8327892. [DOI] [PubMed] [Google Scholar]
  • 11.Rosenblum MG, Zuckerman JE, Marks W, Rotbein J, Allen W. Ross. A gelonin-containing immunotoxin directed against human breast carcinoma. Mol Biother. 1992;4:122. [PubMed] [Google Scholar]
  • 12.Pelham JM, Gray JB, Flannery GR, Pimm MV, Baldwin RW. Interferon-alpha conjugation to human osteogenic sarcoma monoclonal antibody 791T/36. Cancer Immunol Immunother. 1983;15:210. doi: 10.1007/BF00199167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Alkan SS, Miescher-Granger S, Braun DG, Hochkeppel HK. Antiviral and antiproliferative effects of interferon delivered via monoclonal antibodies. J Interferon Res. 1984;4:355. doi: 10.1089/jir.1984.4.355. [DOI] [PubMed] [Google Scholar]
  • 14.Ozzello L, De Rosa CM, Blank EW, Cantell K, Ceriani RL, Habif DV Sr. The use of natural interferon alpha conjugated to a monoclonal antibody anti mammary epithelial mucin (Mc5) for the treatment of human breast cancer xenografts (1993) Breast Cancer Res Treat. 1993;25:265. doi: 10.1007/BF00689841. [DOI] [PubMed] [Google Scholar]
  • 15.Carswell EA, Old LJ, Kassel RL, Green S, Fiore N, Williamson B. An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci USA. 1975;72:366. doi: 10.1073/pnas.72.9.3666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Aggarwal BB, Kohr WJ, Hass PE, Moffat B, Spencer SA, Henzel WJ, Bringman TS, Nedwin GE, Goeddel DV, Harkins RN. Human necrosis factor production, purification and characterization. J Biol Chem. 1985;260:2345. [PubMed] [Google Scholar]
  • 17.Tsujimoto M, Yip YK, Vilceck J. Tumor necrosis factor, specific binding and internalization in sensitive and resistant cells. Proc Natl Acad Sci USA. 1985;82:7226. doi: 10.1073/pnas.82.22.7626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Sugarman BJ, Aggarwal BB, Hass PE, Figarci IS, Palladino MA, Shepard HM. Recombinant tumor necrosis factor-α: effect on proliferation of normal and transformed cells in vitro. Science. 1985;230:943. doi: 10.1126/science.3933111. [DOI] [PubMed] [Google Scholar]
  • 19.Nitsu Y, Watanabe N, Sone H, Neda H, Yamauchi N, Urushizaki I. Mechanisms of the cytotoxic effect of tumor necrosis factor. Jpn J Cancer Res. 1985;76:1193. [PubMed] [Google Scholar]
  • 20.Block M, Sherwin SA, Rosenblum MG, Gutterman J. Phase I study of recombinant tumor necrosis factor in cancer patients. Cancer Res. 1987;47:2986. [PubMed] [Google Scholar]
  • 21.Kus B, Sersa G, Novakovic S, Urbancic J, Stalc A. Modification of TNF-alpha pharmacokinetics in SA-1 tumorbearing mice. Int J Cancer. 1993;55:110. doi: 10.1002/ijc.2910550120. [DOI] [PubMed] [Google Scholar]
  • 22.Wilson BS, Imai K, Natali PG, Ferrone S. Distribution and molecular characterization of cell surface and cytoplasmic antigen detectable in human melanoma cells with monoclonal antibodies. Int J Cancer. 1981;28:293. doi: 10.1002/ijc.2910280307. [DOI] [PubMed] [Google Scholar]
  • 23.Murray JL, Rosenblum MG, Lamki L, Haynie TP, Glen HJ, Jahns M, Plager C, Hersh EM, Unger MW, Carlo DJ. Radioimmunodetection in malignant melanoma patients using a high molecular weight antigen kd 240. NCI Monogr. 1987;3:3. [PubMed] [Google Scholar]
  • 24.Rosenblum MG, Cheung L, Murray JL, Bartholomew R. Antibody-mediated delivery of tumor necrosis factor (TNF-α): improvement of cytotoxicity and reduction of cellular resistance. Cancer Commun. 1991;3:21. [PubMed] [Google Scholar]
  • 25.Wilbur DS, Hadley SW, Hylarides MD, Abrams PG, Beumier PA, Morgan AC, Reno JM, Fritzberg AR. Development of a stable radioiodinating reagent to label monoclonal antibodies for radiotherapy of cancer. J Nucl Med. 1989;30:216. [PubMed] [Google Scholar]
  • 26.Lindmo T, Boven E, Cullta F, Fedroko J, Bunn PAJ. Determination of immunoreactive fraction of radiolabeled monoclonal antibodies by linear extrapolation to binding at infinite antigen excess. J Immunol Methods. 1984;72:77. doi: 10.1016/0022-1759(84)90435-6. [DOI] [PubMed] [Google Scholar]
  • 27.Byers VS, Baldwin RW. Rationale for clinical use of immunotoxins in cancer and autoimmune disease. Semin Cell Biol. 1991;2:59. [PubMed] [Google Scholar]
  • 28.Cannon JB, Hui HW. Immunoconjugates in drug delivery systems. Targeted Diagn Ther. 1990;3:121. [PubMed] [Google Scholar]
  • 29.Lambert JM, Blattler WA, McIntyre GD, Goldmacher VS, Scott CF., Jr. Immunotoxins containing single-chain ribosomeinactivating proteins. Cancer Treat Res. 1988;37:175. doi: 10.1007/978-1-4613-1083-9_12. [DOI] [PubMed] [Google Scholar]
  • 30.Baldwin RW, Byers VS. Monoclonal antibodies and immunoconjugates for cancer treatment. Cancer Chemother Biol Response Modif. 1987;9:409. [PubMed] [Google Scholar]
  • 31.Mihara M, Koishihara Y, Fukui H, Yasukawa K, Ohsugi Y. Murine anti-human IL-6 monoclonal antibody prolongs the halflife in circulating blood and thus prolongs the bioactivity of human IL-6 in mice. Immunology. 1991;74:55. [PMC free article] [PubMed] [Google Scholar]
  • 32.Baglioni C, McCandless S, Tavernier J, Fiers W. Binding of human tumor necrosis factor to high affinity receptors on HeLa and lymphoblastoid cells sensitive to growth inhibition. J Biol Chem. 1985;260:13. [PubMed] [Google Scholar]
  • 33.Rosenblum MG, Donato NJ, Gutterman JU. Characterization of human recombinant tumor necrosis factor-alpha antiproliferative effects on human cells in culture. Lymphokine Res. 1985;7:107. [PubMed] [Google Scholar]
  • 34.Mujoo K, Donato NJ, Lapushin R, Rosenblum MG, Murray JL. Tumor necrosis factor alpha and gamma-interferon enhancement of anti-epidermal growth factor receptor monoclonal antibody binding to human melanoma cells. J Immunother. 1993;13:166. doi: 10.1097/00002371-199304000-00003. [DOI] [PubMed] [Google Scholar]
  • 35.Van de Wiel PA, Bloksma N, Kuper CF, Hofhuis FM, Willers JM. Macroscopic and microscopic early effects of tumour necrosis factor on murine Meth A sarcoma, and relation to curative activity. J Pathol. 1989;157:65. doi: 10.1002/path.1711570109. [DOI] [PubMed] [Google Scholar]
  • 36.Nunokawa Y, Tanaka S. Interferon-gamma inhibits proliferation of rat vascular smooth muscle cells by nitric oxide generation. Biochem Biophys Res Commun. 1992;188:409. doi: 10.1016/0006-291x(92)92400-r. [DOI] [PubMed] [Google Scholar]
  • 37.Guadagni F, Schlom J, Greiner JW. In vitro and in vivo regulation of tumor antigen expression by human recombinant interferons. Int J Rad Appl Instrum [B] 1991;18:409. doi: 10.1016/0883-2897(91)90068-v. [DOI] [PubMed] [Google Scholar]
  • 38.Rosenblum MG, Lamki LM, Murray JL, Carlo DJ, Gutterman JU. Interferon-induced changes in the pharmacokinetics and tumor uptake of [111In] labeled antimelanoma antibody 96.5 in melanoma patients. J Natl Cancer Inst. 1988;80:160. doi: 10.1093/jnci/80.3.160. [DOI] [PubMed] [Google Scholar]
  • 39.Gillies SD, Young D, Lo KM, Foley SF, Reisfeld RA. Expression of genetically engineered immunoconjugates of lymphotoxin and a chimeric anti-ganglioside GD2 antibody. Hybridoma. 1991;10:347. doi: 10.1089/hyb.1991.10.347. [DOI] [PubMed] [Google Scholar]
  • 40.Hoogenboom HR, Volckaert G, Raus JC. Construction and expression of antibody-tumor necrosis factor action fusion proteins. Mol Immunol. 1991;28:1027. doi: 10.1016/0161-5890(91)90189-q. [DOI] [PubMed] [Google Scholar]
  • 41.Gillies SD, Young D, Lo KM, Roberts S. Biological activity and in vivo clearance of antitumor antibody/cytokine fusion proteins. Bioconjug Chem. 1993;4:230. doi: 10.1021/bc00021a008. [DOI] [PubMed] [Google Scholar]

Articles from Cancer Immunology, Immunotherapy : CII are provided here courtesy of Springer

RESOURCES